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Abstract

We solve the problem of finding the best possible constant of ultraprimeness for the special class of
Euclidean algebra called algebra of hermitian operators on a quaternionic Hilbert space. More precisely,
we prove that for algebra of hermitian operators, equipped with spectral norm, the best possible constant of
ultraprimeness is 1

2 .
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1. Introduction

In this paper we address the following problem: determine the best possible constant of ul-
traprimeness for the special class of Euclidean algebra called algebra of hermitian operators on
a quaternionic Hilbert space. The topic of ultraprimeness was started for the class of associative
Banach algebras by Mathieu (see [9]). The original definition involved ultrafilters, hence the
name ultraprimeness. To be more precise, let A be an associative Banach algebra and a, b ∈ A.
The multiplication operator Ma,b : A → A is defined by Ma,b(x) = axb. Then Mathieu proved
that A is ultraprime if and only if there exists a constant κ > 0 such that the estimate
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‖Ma,b‖ � κ‖a‖‖b‖ holds for all a, b ∈ A. The best possible κ could be called the ultraprimeness
constant ofA. It is obvious that every ultraprime associative Banach algebra is also a prime algebra
but the converse is not true. It is well known that the algebra of Hilbert–Schmidt operators over
an infinite dimensional Hilbert space is prime but not ultraprime.

The topic of ultraprimeness has been transferred to the nonassociative setting by numerous
algebraists (see [2–7]). They proved that for the class of Jordan Banach algebras ultraprimeness
is also equivalent to a certain uniform norm estimate ‖Ua,b‖ � κ‖a‖‖b‖. Here Ua,b denotes the
operator on a Jordan algebra (J, ◦) defined by Ua,b(x) = a ◦ (b ◦ x) + b ◦ (a ◦ x) − (a ◦ b) ◦ x

called Jacobson–McCrimmon operator. Similar work has also been done in the context of ternary
compositions (see [1,7]).

The purpose of our paper is to continue the investigation of the ultraprimeness constant for
a particular class of Euclidean algebras which is called algebra of hermitian operators on a
quaternionic Hilbert space. Throughout the rest of the article it will be denoted by Herm(H).
This algebra belongs to a class, which is related to the analysis on symmetric cones in Rn. The
standard reference for this theory is [8].

The first paper to deal with the question of the ultraprimeness constant of Herm(H) is [10],

where it was proved that there is an estimate ‖Ua,b‖ �
(√

2 − 1
)

‖a‖‖b‖. Our aim in the sequel

is to show that a better estimate is possible for the case of Herm(H). More precisely we shall
prove that our estimate 1

2 is also the best possible.

2. Preliminaries

We summarize here only the essential properties of the n-dimensional quaternionic Hilbert
space H. Let H be the division ring of real quaternions. For any h ∈ H, h∗ will denote the
conjugate and |h| = √

h∗h the absolute value of h. Let H = Hn be a right n-dimensional qua-
ternionic Hilbert space with inner product 〈 , 〉. We recall that an inner product on H is a mapping
〈 , 〉 : H × H −→ H with the following properties:

(i) 〈h, k〉 = 〈k, h〉∗,
(ii) 〈ha + kb, g〉 = 〈h, g〉a + 〈k, g〉b,

(iii) 〈h, ka + gb〉 = a∗〈h, k〉 + b∗〈h, g〉,
(iv) 〈h, h〉 � 0 and 〈h, h〉 = 0 if and only if h = 0,

for all h, k, g ∈ H and a, b ∈ H.
LetB(H)be the algebra of bounded linear transformations onH. With respect to an inner prod-

uct 〈 , 〉, we define the adjoint of an operator A ∈ B(H), denoted by A∗, by 〈Ah, k〉 = 〈h, A∗k〉,
for all h, k ∈ H. Hence the definitions of hermitian, unitary and normal operators follow in the
usual way.

There are two natural norms on Euclidean algebras. Since they are modeled on the Hilbert
space, they have the natural Hilbert space norm ‖A‖2 = √

Trace(AA∗). Another norm can be
defined with the aid of the spectral theorem [8, p. 43], as

‖A‖∞ = max{|λi |},
where λi are eigenvalues of the spectral decomposition of A ∈ Herm(H). We note that for
the Euclidean algebra Herm(H) this spectral norm is the same as the operator norm ‖A‖op =
sup‖h‖=1 ‖Ah‖. So, it is natural to use it in our work as well. In the sequel, we will drop the
subscript “op” and just write ‖A‖.
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In order to prove the ultraprimeness of Herm(H), we use some results proved in [10] and the
method introduced in the sequel. First we consider the two-dimensional case, and in the proof of
the main theorem, we will apply it to the n-dimensional case. By Herm(H2) we denote the algebra
of hermitian 2 × 2 quaternionic matrices equipped with the usual operator norm. We recall that
the operator norm of hermitian matrix

A =
[

α u
u∗ β

]
∈ Herm(H2)

is

‖A‖ = 1

2

(
|α + β| +

√
(α − β)2 + 4|u|2

)

= 1

2

(
|Trace(A)| +

√
(Trace(A))2 − 4 det(A)

)
,

which is a result that follows immediately from the determination of the eigenvalues of A:

λ± = 1

2

(
α + β ±

√
(α − β)2 + 4|u|2

)
.

We recall again that UA,B : Herm(H2) → Herm(H2) is defined by

UA,B(X) = 1

2
(AXB + BXA).

Without loss of generality we may suppose that A and B have norm one and therefore both have
1 or −1 in their spectrum. The norm of UA,B does not change if we replace A with −A or if we
switch the roles of A and B. Therefore we may assume that σ(A) = {1, a} and σ(B) = {1, b},
where |a|, |b| � 1, a, b ∈ R, and that there exist ϕ, ϑ ∈ [0, 2π ] and h, k ∈ H of norm one, such
that

Uϕ =
[

cos ϕ h sin ϕ

h∗ sin ϕ − cos ϕ

]
, Uϑ =

[
cos ϑ k sin ϑ

k∗ sin ϑ − cos ϑ

]
,

and

A = Uϕ

[
1 0
0 a

]
Uϕ and B = Uϑ

[
1 0
0 b

]
Uϑ.

Note that in the decomposition of norm-one hermitian matrix A =
[

α u
u∗ β

]
, with σ(A) = {1, a},

we have first a = −1 + α + β. In the case of u = 0, we have two possibilities. When α = 1, we
can take h = 1 and ϕ = 0. When α /= 1, we can take h = 1 and ϕ = π

2 . In the case when u /= 0,
it follows a /= 1, so we can define ϕ ∈ [0, 2π ] by the conditions

sin 2ϕ = 2|u|
1 − a

and (α − β) cos 2ϕ � 0.

Finally we define h by

h = 2u
(1 − a) sin 2ϕ

.

The above decomposition is indeed a direct consequence of Schur decomposition theorem for
quaternionic matrices. We refer the reader to [11].

Let M2 denote the algebra of 2 × 2 quaternionic matrices. If we define φ : M2 → M2 by
φ(X) = UϕXUϕ , then φ is an algebra isomorphism which is isometric. Hence φUA,B = UφA,φB ,
and therefore
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‖UA,B‖ = ‖UφA,φB‖ =
∥∥∥∥∥∥U[

1 0
0 a

]
,UϕUϑ

[
1 0
0 b

]
UϑUϕ

∥∥∥∥∥∥ .

Thus we may assume in the sequel that A =
[

1 0
0 a

]
, where |a| � 1. In this case B is some

hermitian matrix of norm one and it may be written as B = Uδ

[
1 0
0 b

]
Uδ , where |b| � 1 and

δ ∈ [0, 2π ].

3. The result

We first give some preliminary results which play an important role in the proof of the main
theorem. Following the proofs of Lemmas 3.1 and 3.2 in [10], we can prove the following lemma.

Lemma 1. Let A, B ∈ Herm(H2). Then the estimates

(a) ‖UA,B‖ � max{|a|, |b|},
(b) ‖UA,B‖ � 1

2 (1 + ab)

hold.

It is interesting to note that the method introduced in [10] and the estimates of the above lemma
allow us to achieve the ultraprimeness constant of

√
2 − 1. In order to estimate a better constant

of ultraprimeness, a more elaborate method is required.
Our method consists of choosing appropriate matrix X for which AXB + BXA has an expres-

sion which is simple enough to allow universal estimates independent of Uδ , and at the same time
large enough for those estimates to be useful. Once the correct idea for X is at hand, the remaining
proofs are quite easy. In order to get the correct idea, we made excessive experiments with the
aid of numerical computer algebra.

Lemma 2. Let A, B ∈ Herm(H2), 0 � |a|, |b| < 1
2 and ab < 0. Then

‖UA,B‖ � 1

2
[(1 + |ab|)| cos δ| + (1 − |ab|)].

Proof. Choosing

X = Uδ−ϑ =
[

cos(δ − ϑ) h sin(δ − ϑ)

h∗ sin(δ − ϑ) − cos(δ − ϑ)

]
,

a tedious but straightforward computation shows that ‖X‖ = 1 and

UA,B(X) = 1

2

([
2 cos δ h(1 + ab) sin δ

h∗(1 + ab) sin δ −2ab cos δ

]
cos ϑ

+
[

2b sin δ −h(a + b) cos δ

−h∗(a + b) cos δ −2a sin δ

]
sin ϑ

)
.
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Denoting

L =
[

2 cos δ h(1 + ab) sin δ

h∗(1 + ab) sin δ −2ab cos δ

]
,

and

R =
[

2b sin δ −h(a + b) cos δ

−h∗(a + b) cos δ −2a sin δ

]
we have

‖UA,B‖ � ‖UA,B(Uδ−ϑ)‖ � 1

2
max

ϑ
‖L cos ϑ + R sin ϑ‖.

By specializing ϑ = 0 we obtain

‖UA,B‖ � 1

2

∥∥∥∥
[

2 cos δ h(1 + ab) sin δ

h∗(1 + ab) sin δ −2ab cos δ

]∥∥∥∥ ,

and therefore

‖UA,B‖
� 1

4

[
|2(1 − ab) cos δ| +

√
4(1 − ab)2 cos2 δ − 4(−4ab cos2 δ − h∗h(1 + ab)2 sin2 δ

]

= 1

4

[
|2(1 − ab) cos δ| + 2

√
(1 − ab)2 cos2 δ + 4ab cos2 δ + |h|2(1 + ab)2 sin2 δ

]

= 1

4

[
|2(1 − ab) cos δ| + 2

√
(1 + ab)2 cos2 δ + (1 + ab)2 sin2 δ

]

= 1

2
[(1 + |ab|)| cos δ| + (1 − |ab|)],

which completes the proof. �

Lemma 3. Let A, B ∈ Herm(H2), 0 � |a|, |b| < 1
2 and ab < 0. Then

‖UA,B‖ � 1

2
[(1 + |ab|) − (1 − |ab|)| cos δ|].

Proof. We consider the unit vector u =
[

cos δ
2

h∗ sin δ
2

]
∈ H2, which is an eigenvector of Uδ . By

specializing u in

‖UA,B‖2 � |〈UA,B(X)u, u〉|2
we obtain

‖UA,B‖2 �
∣∣∣∣
〈

1

2
(AXUδBUδ + UδBUδXA)u, u

〉∣∣∣∣2

=
∣∣∣∣1

2
〈(AXUδBUδ)u, u〉 + 1

2
〈(UδBUδXA)u, u〉

∣∣∣∣2

=
∣∣∣∣1

2
〈(AXUδBUδ)u, u〉 + 1

2
〈u, (AXUδBUδ)u〉

∣∣∣∣2

= |Re〈(AXUδBUδ)u, u〉|2.



R. Strašek / Linear Algebra and its Applications 416 (2006) 580–587 585

Now, choosing

X =
[

cos(δ − ϕ) h sin(δ − ϕ)

h∗ sin(δ − ϕ) − cos(δ − ϕ)

]
,

a straightforward computation shows that

‖UA,B‖ � 1

2
max

ϕ
|((1 + ab) + (1 − ab) cos δ) cos ϕ + (b − a) sin δ sin ϕ|.

Taking into account that for any real numbers u, v the estimate

max
ϕ

|u sin ϕ + v cos ϕ| =
√

u2 + v2

holds, we have

‖UA,B‖2 � 1

4
[((1 + ab) + (1 − ab) cos δ)2 + (b − a)2 sin2 δ].

Since (b − a)2 = b2 − 2ab + a2 = b2 + a2 + 2|ab| � 4|ab|, we have

‖UA,B‖2

� 1

4
[(1 − |ab|)2 + 2(1 − |ab|)(1 + |ab|) cos δ + (1 + |ab|)2 cos2 δ + 4|ab|(1 − cos2 δ)]

� 1

4
[(1 − |ab|)2 − 2(1 − |ab|)(1+|ab|)| cos δ|+(1 + |ab|)2 cos2 δ + 4|ab| − 4|ab| cos2 δ]

= 1

4
[(1 + |ab|)2 − 2(1 − |ab|)(1 + |ab|)| cos δ| + (1 − |ab|)2 cos2 δ]

= 1

4
[(1 + |ab|) − (1 − |ab|)| cos δ|]2,

which completes the proof. �

Lemma 4. Let A, B ∈ Herm(H2), 0 � |a|, |b| < 1
2 and ab < 0. Then the estimate

‖UA,B‖ � 1

2

holds.

Proof. The estimate is a direct consequence of the statements of Lemmas 2 and 3. Adding both
estimations, we get

‖UA,B‖ � 1

2
+ 1

2
|ab|| cos δ| � 1

2
,

which completes the proof. �

We are now in a position to establish a lower bound of the constant of ultraprimeness for the
algebra of hermitian operators on a quaternionic Hilbert space.

Theorem 5. Let H be a n-dimensional quaternionic Hilbert space and A, B ∈ Herm(H). Then
the uniform estimate
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‖UA,B‖ � 1

2
‖A‖‖B‖

holds.

Proof. Without loss of generality we may suppose that ‖A‖ = ‖B‖ = 1. Denote by κ =
max{|a|, |b|}. If κ � 1

2 , by Lemma 1(a), we have ‖UA,B‖ � 1
2 . In the case of κ < 1

2 , we have two
possibilities. When ab � 0, the statement is true by Lemma 1(b). In the case when ab < 0, we have
‖UA,B‖ � 1

2 by Lemma 4. This completes the proof in the case of two-dimensional quaternionic
Hilbert space. In order to complete the proof of ultraprimeness for the n-dimensional case, we
made it by reduction to the two-dimensional case.

Note first that one-dimensional case is trivial, since Herm(H) 
 R with the absolute value
| | as a norm. In this case, given any a, b ∈ R, we have Ua,b(x) = abx for all x ∈ R and so
‖Ua,b‖ = |a||b|.

Suppose next that the quaternionic Hilbert space H is n-dimensional and A, B ∈ Herm(H).
Then there exist unit vectors µ, η ∈ H such that Aµ = µ and Bη = η. Let K be the span of
{µ, η}. If K is one-dimensional, then the inequality ‖UA,B‖ � 1 is obvious. If K is two-dimen-
sional, then let P : H → H be the orthogonal projection onto K. Define φ : Herm(H) →
Herm(H) by φ(X) = PXP . Then it is obvious that ‖φ‖ � 1 and that ran(φ) is isometrically
isomorphic as an Euclidean algebra to Herm(H2). Since Pµ = µ and Pη = η, we have ‖φ(A)‖ =
‖φ(B)‖ = 1. Therefore, considering Lemma 4, we get

‖UA,B‖ = sup
‖X‖=1,X=X∗

1

2
‖AXB + BXA‖

� sup
‖X‖=1,X=X∗

1

2
‖PAXBP + PBXAP ‖

� sup
‖PYP ‖=1,Y=Y ∗

1

2
‖PAPYPBP + PBPYPAP ‖

= sup
Z∈Im φ,‖Z‖=1

‖Uφ(A),φ(B)(Z)‖ � ‖Ũφ(A),φ(B)‖ � 1

2
‖φ(A)‖‖φ(B)‖ = 1

2
,

where Ũ : Im φ → Im φ. �

Remark 6. We wish to mention that the proved constant of ultraprimeness is the best possible,
regardless of the dimension ofH. Indeed, ifH is at least two-dimensional, we can take orthogonal
unit vectors h, k ∈ H and form P, Q ∈ Herm(H) by Pu = h〈h, u〉 and Qu = k〈k, u〉. Then, it
is easy to check that ‖UP,Q‖ = 1

2 .

4. Conclusion

As our final remark we wish to note that it is still unclear how to compute the precise value of

max‖A‖,‖B‖=1
‖UA,B‖,

or even how to give some useful estimate in the form ‖UA,B‖ = 1
2 + m(A, B). In many cases

‖UA,B‖ = 1
2 (‖A‖‖B‖ + ‖AB‖) but we do not know whether this holds in general.
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