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Abstract

In this note we improve the constant of ultraprimeness for the Euclidean algebra of hermi-
tian operators on a quaternionic Hilbert space. More precisely we shall prove that a constant
of ultraprimeness is

√
2 − 1.
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1. Introduction

The topic of ultraprime algebras was started for the class of associative Banach
algebras by Mathieu (see [9]). The original definition involved ultrafilters, hence the
name ultraprimeness. It was also proved by Mathieu that ultraprimeness is equivalent
to the existence of a certain norm estimate, which could be called uniform primeness.

To be more precise, let A be an associative Banach algebra and a, b ∈ A. The
multiplication operator Ma,b : A → A is defined by Ma,b(x) = axb. Then Mathieu
proved that A is ultraprime if and only if there exists a constant κ > 0 such that the
estimate ‖Ma,b‖ � κ‖a‖‖b‖ holds for all a, b ∈ A. The best possible κ could be
called the ultraprimeness constant of A.
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It is obvious that every ultraprime associative Banach algebra is also a prime
algebra but the converse is not true. It is well known that the algebra of Hilbert–
Schmidt operators over an infinite dimensional Hilbert space is prime but not
ultraprime.

The topic of ultraprimeness has been transferred to the nonassociative setting by
Spanish school of Jordan algebras (see [2–7]). They proved that for the class of Jordan
Banach algebras ultraprimeness is also equivalent to a certain uniform norm esti-
mate ‖Ua,b‖ � κ‖a‖‖b‖. Here Ua,b denotes the Jacobson–McCrimmon operator on
a Jordan algebra (J, ◦) defined byUa,b(x) = a ◦ (b ◦ x) + b ◦ (a ◦ x) − (a ◦ b) ◦ x.

Beside general theory there are also some explicit calculation for some impor-
tant cases. Mathieu proved that for prime C∗-algebras we even have the equality
‖Ma,b‖ = ‖a‖‖b‖. In Jordan theory mostly estimates are known. In [6] the authors
proved that prime JB∗-algebras are in fact ultraprime. In [1] it has been shown that in
complex prime JB∗-algebras and prime JB∗-triples the uniform estimate ‖Ua,b‖ �
1
6‖a‖‖b‖ holds. Later in [7] it was shown that for real JB∗-algebras and real JB∗-
triples the estimate

∥∥Ua,b

∥∥ � 1
12‖a‖‖b‖ holds. It is still an open question whether

those two constants are sharp.
The aim of our paper is to continue the investigation of the ultraprimeness con-

stant for another interesting class of real algebras which are called Euclidean al-
gebras. They are intimately connected with the analysis on symmetric cones. The
standard reference for this theory is [8]. The classical structure theorem for Euclidean
algebras is the following: An Euclidean algebra is prime if and only if it is simple.
In this case it is isomorphic to one of the algebras below

i. Herm(n,R) algebra of n × n hermitian matrices over R;
ii. Herm(n,C) algebra of n × n hermitian matrices over C;

iii. Herm(n,H) algebra of n × n hermitian matrices over quaternions H;
iv. Herm(3,O) algebra of 3 × 3 hermitian matrices over octonions O;
v. Lor(n) n-dimensional Lorentz algebra.

The first paper to deal with the question of the ultraprimeness constant of Euclide-
an algebras is [10], where it was proved that for Herm(n,R) and Herm(n,C) there is
an estimate ‖Ua,b‖ � 1

2‖a‖‖b‖. Actually the results in [1] are proved not only for Rn

and Cn but also in the setting of general real and complex Hilbert spaces. For Lorentz
algebras we established the estimate ‖Ua,b‖ � 1

3‖a‖‖b‖ in [11]. For Herm(n,H)

and Herm(3,O) there is an estimate ‖Ua,b‖ � 1
12‖a‖‖b‖, which is implicit in the

results of Chu et al. [7]. Our aim below is to show that a better estimate is possible
for the case of Herm(n,H). More precisely we shall prove

Theorem 1.1. Let H be a n-dimensional quaternionic Hilbert space and a, b ∈
Herm(H). Then the uniform estimate

‖Ua,b‖ � (
√

2 − 1)‖a‖‖b‖
holds.
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2. Preliminaries

Let H = {h = h0 + h1i + h2j + h3k} be the division ring of real quaternions.
For any h ∈ H, h∗ = h0 − h1i − h2j − h3k will denote the conjugate of h, |h| =√

h∗h =
√
h2

0 + h2
1 + h2

2 + h2
3 the absolute value of h, Re(h) = h0 the real part,

Co(h) = h0 + h1i the complex part and Im(h) = h1i + h2j + h3k the imaginary part
of h. Let H = Hn be a right n-dimensional quaternionic Hilbert space with inner
product 〈·, ·〉 defined by

〈h, k〉 =
n∑

i=1

k∗
i hi .

We recall that an inner product on H is a mapping 〈·, ·〉 : H × H → H with the
following properties:

i. 〈h, k〉 = 〈k, h〉∗ ,

ii. 〈ha + kb, g〉 = 〈h, g〉 a + 〈k, g〉 b,
iii. 〈h, ka + gb〉 = a∗ 〈h, k〉 + b∗ 〈h, g〉,
iv. 〈h, h〉 � 0 and 〈h, h〉 = 0 if and only if h = 0,

for all h, k, g ∈ H and a, b ∈ H.
Let B(H) be the algebra of bounded linear transformations on H. Since the

geometry of quaternionic Hilbert spaces is entirely similar to that of complex Hilbert
spaces, the Riesz representation theorem for quaternionic Hilbert space can be used
to show the existence of adjoints (see [12]). With respect to an inner product 〈·, ·〉, we
define the adjoint of an operator A ∈ B(H), denoted by A∗, by 〈Ah, k〉 = 〈h, A∗k〉,
for all h, k ∈ H. Hence the definitions of hermitian, unitary and normal operators
follow in the usual way. Throughout the rest of the article Herm(H) will denote the
Euclidean algebra of hermitian operators on H.

In the monograph [8] of Faraut and Koranyi there are two important norms on
Euclidean algebras which are considered. The first one is the Hilbert space norm
‖A‖2 = √

Trace(AA∗), for all A ∈ Herm(H). The second one, which is the frame-
work of most existing results on ultraprimeness is the so called spectral norm and is
defined by

‖A‖∞ = max {|λi |} ,
where λi are eigenvalues of the spectral decomposition of A ∈ Herm(H). We re-
call that by spectral decomposition, for each A ∈ Herm(H) there exist unique real
numbers λ1, . . . , λm all distinct, and an unique complete system of orthogonal
idempotents {P1, . . . , Pm} such that A = λ1P1 + · · · + λmPm. We also recall that
{P1, . . . , Pm} is a complete system of orthogonal idempotents if P 2

i = Pi , PiPj = 0,
for i /= j and P1 + · · · + Pm = I . Since ‖A‖op = sup‖h‖=1 ‖Ah‖ for the case of
Herm(H) the spectral norm is the operator norm, it is natural to use it in our work
as well. In the sequel, we will drop the subscript “op” and just write ‖A‖.
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3. The two-dimensional case

In order to prove the uniform primeness of Herm(H), we first consider the two-
dimensional case. In the last section, we will apply it to the n-dimensional case. By
Herm(H2) we denote the algebra of hermitian 2 × 2 quaternionic matrices equipped
with the usual operator norm. We recall that the operator norm of a matrix

A =
[
α u
u∗ β

]
∈ Herm(H2)

is

‖A‖ = 1

2

(
|α + β| +

√
(α − β)2 + 4|u|2

)
,

which is a result that follows immediately from the determination of the eigenvalues
of A:

λ± = 1

2

(
α + β ±

√
(α − β)2 + 4|u|2

)
.

We recall again that UA,B : Herm(H2) → Herm(H2) is defined by

2UA,B(X) = AXB + BXA.

Without loss of generality we may suppose that A and B have norm one and therefore
both have 1 or −1 in their spectrum. The norm of UA,B does not change if we replace
A with −A or if we switch the roles of A and B. Therefore we may assume that
σ(A) = {1, a} and σ(B) = {1, b}, where |a|, |b| � 1, a, b ∈ R, and that there exist
ϕ, ϑ ∈ [0, 2�] and h, k ∈ H of norm one, such that

Uϕ =
[

cosϕ h sinϕ

h∗ sinϕ −cosϕ

]
, Uϑ =

[
cosϑ k sinϑ

k∗ sinϑ −cosϑ

]
,

and

A = Uϕ

[
1 0
0 a

]
Uϕ and B = Uϑ

[
1 0
0 b

]
Uϑ.

Note that in the decomposition of norm-one hermitian matrix

A =
[

α u
u∗ β

]
,

with σ(A) = {1, a}, we have first a = −1 + α + β. In the case of u = 0, we have
two possibilities. When α = 1, we can take h = 1 and ϕ = 0. When α /= 1, we can
take h = 1 and ϕ = �/2. In the case when u /= 0, it follows a /= 1, so we can define
ϕ ∈ [0, 2�] by the conditions

sin 2ϕ = 2|u|
1 − a

and (α − β) cos 2ϕ � 0.

Finally we define h by

h = 2u
(1 − a) sin 2ϕ

.
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The above decomposition is indeed a direct consequence of Schur decomposition
theorem for quaternionic matrices. We refer the reader to Zhang [12].

Let M2 denote the algebra of 2 × 2 quaternionic matrices. If we define φ : M2 →
M2 by φ(X) = UϕXUϕ , then φ is an algebra isomorphism which is isometric.
Hence φUA,B = UφA,φB , and therefore

‖UA,B‖ = ‖UφA,φB‖ =
∥∥∥∥∥U[

1 0
0 a

]
,UϕUϑ

[
1 0
0 b

]
UϑUϕ

∥∥∥∥∥.
Thus we may assume in the sequel that

A =
[

1 0
0 a

]
,

where |a| � 1. In this case B is some hermitian matrix of norm one and it may be
written as

B = Uδ

[
1 0
0 b

]
Uδ,

where |b| � 1 and δ ∈ [0, 2�].

Lemma 3.1. Let A,B ∈ Herm(H2). Then the estimate

‖UA,B‖ � 1
2 (1 + ab)

holds.

Proof. Let h ∈ H be the unit quaternion in the representation of Uδ, i.e.

Uδ =
[

cos δ h sin δ

h∗ sin δ −cos δ

]
.

Note that an elementary calculation shows that ‖Uδ‖ = 1. Let

ξ =
[

1
0

]
∈ H2.

Considering

‖UA,B‖ = ‖Uδ‖ · ‖UA,B‖ � ‖UA,B(Uδ)‖ � ‖UA,B(Uδ)(�)‖,
we obtain

‖UA,B(Uδ)(�)‖2 =
∥∥∥∥
[

cos δ h 1
2 (1 + ab) sin δ

h∗ 1
2 (1 + ab) sin δ −ab cos δ

] [
1
0

]∥∥∥∥
2

�
∥∥∥∥
[

cos δ
h∗ 1

2 (1 + ab) sin δ

]∥∥∥∥
2

= cos2 δ + 1
4 (1 + ab)2 sin2 δ.
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Since 1 + ab � 2, we have cos2 δ � 1
4 (1 + ab)2 cos2 δ and finally

‖UA,B‖2 � 1
4 (1 + ab)2 cos2 δ + 1

4 (1 + ab)2 sin2 δ = 1
4 (1 + ab)2,

which completes the proof. �

Remark 3.1. The main point in the proof of the above lemma, as well as the forth-
coming one, is to find a matrix for which AXB + BXA has an expression which
is simple enough to allow universal estimates independent of Uδ , and at the same
time large enough for those estimates to be useful. Once the correct idea for X is at
hand, the remaining proofs are quite easy. In order to get the correct idea, we made
excessive experiments with the aid of symbolic computer algebra.

Lemma 3.2. Let A,B ∈ Herm(H2). Then the estimate

‖UA,B‖ � max{|a|, |b|}
holds.

Proof. First we prove that ‖UA,B‖ � |b|. This is clear whenever b = 0. Other-

wise, cos2 δ + b2 sin2 δ /= 0, and we can consider ρ = 1/
√

cos2 δ + b2 sin2 δ. Now,
choosing

X = ρ

[
cos2 δ + b sin2 δ h(1 − b) sin δ cos δ

h∗(1 − b) sin δ cos δ −cos2 δ − b sin2 δ

]
,

a tedious but straightforward computation shows that ‖X‖ = 1 and

UA,B(X) = ρ

[
cos2 δ + b2 sin2 δ h 1

4 (1 − b2) sin 2δ
h∗ 1

4 (1 − b2) sin 2δ −ab

]
.

By specializing

u =
[

1
0

]
∈ H2

in

‖UA,B‖ �
∣∣〈UA,B(X)u, u

〉∣∣
we obtain

‖UA,B‖ �
∣∣∣∣
〈
ρ

[
cos2 δ + b2 sin2 δ h 1

4 (1 − b2) sin 2δ
h∗ 1

4 (1 − b2) sin 2δ −ab

] [
1
0

]
,

[
1
0

]〉∣∣∣∣
= 1√

cos2 δ + b2 sin2 δ

∣∣∣∣
〈[

cos2 δ + b2 sin2 δ

h∗ 1
4 (1 − b2) sin 2δ

]
,

[
1
0

]〉∣∣∣∣
= cos2 δ + b2 sin2 δ√

cos2 δ + b2 sin2 δ
=

√
cos2 δ + b2 sin2 δ.
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Since b2 � 1, we have

cos2 δ + b2 sin2 δ � b2 cos2 δ + b2 sin2 δ = b2

and so

‖UA,B‖ � |b|.
If we now take into account the fact that the norm of UA,B does not change if we
switch the roles of A and B, we obtain

‖UA,B‖ � |a|.
Considering both estimates, we conclude the proof. �

Preposition 3.1. The statement of Theorem 1.1 is true for n = 2.

Proof. Without loss of generality we may suppose that ‖A‖ = ‖B‖ = 1. Denote by

κ = max{|a|, |b|}.
If κ <

√
2 − 1, by Lemma 3.1, we have

‖UA,B‖ � 1
2 (1 − |a||b|) � 1

2 (1 − κ2) >
√

2 − 1.

On the other hand, if κ �
√

2 − 1, the same estimate is direct consequence of Lemma
3.2. Considering both estimations, we get

‖UA,B‖ �
√

2 − 1,

which completes the proof in the case dimH = 2. �

4. The conclusion of the proof of Theorem 1.1

In this section we complete the proof of uniform primeness of Herm(H) by re-
duction to the two-dimensional case. Note first that one-dimensional case is trivial,
since Herm(H) � R with the absolute value | · | as a norm. In this case, given any
a, b ∈ R, we have Ua,b(x) = abx for all x ∈ R and so ‖Ua,b‖ = |a||b|.

Suppose first that the quaternionic Hilbert space H is n-dimensional and A, B ∈
Herm(H). Without loss of generality we may assume that ‖A‖ = ‖B‖ = 1 and both
have 1 in their spectrum. Thus there exist unit vectors µ, η ∈ H such that Aµ = µ

and Bη = η. Let K be the span of {µ, η}. If K is one-dimensional, then the in-
equality ‖UA,B‖ � 1 is obvious. If K is two-dimensional, then let P : H → H be
the orthogonal projection onto K. Define φ : Herm(H) → Herm(H) by φ(X) =
PXP . Then it is obvious that ‖φ‖ � 1 and that ran(φ) is isometrically isomorphic as
an Euclidean algebra to Herm(H2). Since Pµ = µ and Pη = η, we have ‖φ(A)‖ =
‖φ(B)‖ = 1. Therefore, considering Proposition 3.1, we get
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‖UA,B‖ = sup
‖X‖=1,X=X∗

1

2
‖AXB + BXA‖

� sup
‖X‖=1,X=X∗

1

2
‖PAXBP + PBXAP ‖

� sup
‖PYP ‖=1,Y=Y ∗

1

2
‖PAPYPBP + PBPYPAP ‖

= sup
Z∈Imφ,‖Z‖=1

‖Uφ(A),φ(B)(Z)‖

� ‖U ′
φ(A),φ(B)‖ � (

√
2 − 1)‖φ(A)‖‖φ(B)‖ = √

2 − 1,

where U ′ : Imφ → Imφ.
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