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Uniform primeness of classical Banach Lie algebras

of compact operators

By R. STRAŠEK (Maribor) and B. ZALAR (Maribor)

Abstract. The concept of associative ultraprime algebras was developed by

M. Mathieu who also showed that it is equivalent to a certain norm estimate which
we call uniform primeness. The topic was further pursued by several authors in both
associative and Jordan Banach algebras. In the present note we give a formal definition
of uniformly prime Banach Lie algebra and prove that classical Banach Lie algebras of
compact operators, in the sense of de la Harpe, are uniformly prime.

1. Introduction

Finite dimensional Lie algebras are much studied objects because of

their connection with various parts of mathematics and even physics. The

theory of Banach Lie algebras however is much less developed than that

of its associative or Jordan counterparts. Perhaps the only class which

has complete and satisfactory structure theory is that of Lie H∗-algebras

(see [11], [12]). They turn out to be direct sums of simple components

which can be constructed from the class of Hilbert–Schmidt operators.

They belong therefore to a larger class of classical Banach Lie algebras of

compact operators in the sense of P. de la Harpe (see [13]). We chose

this framework for our present work. Some additional references for other

recently treated topics in Banach Lie algebras are [2]–[5], [17].

A very interesting topic in the theory of associative Banach algebras

and Jordan Banach algebras is that of ultraprimeness or uniform primeness
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(see [1] [6]–[10], [14], [15], [17]). It was introduced by M. Mathieu. Its
original definition included ultrafilters hence the name ultraprimeness. An
equivalent definition can be given which involves only metric estimates and
could be called uniform primeness.

Suppose that A is Banach algebra of a given class (associative, Jordan,
alternative, Lie, . . . ) and A(a, b) : A −→ A an algebraic operator, suitable
for a given class, depending on two parameters. Then A is called uniformly
prime if the estimate

‖A(a, b)‖ ≥ κ‖a‖ ‖b‖
is valid for some constant κ > 0 and all a, b ∈ A. For the class of associative
algebras this algebraic operator is the so called elementary operator

A(a, b)x =Ma,bx = axb.

For the class of Jordan algebras the proper A(a, b) is the so called
Jacobson–McCrimmon operator

A(a, b)x = Ua,bx = a ◦ (b ◦ x) + b ◦ (a ◦ x)− (a ◦ b) ◦ x
where ◦ denotes the Jordan algebra product.

A simple observation, valid for all classes of Banach algebras, is the
following. The concept of primeness is always the same; namely the prod-
uct of nonzero ideals must be nonzero. Now if A is uniformly prime
and I,J ⊂ A nonzero ideals, we can pick nonzero a ∈ I and b ∈ J .
Since I, J are ideals, algebraic operator A(a, b) maps A into IJ . Since
‖A(a, b)‖ ≥ κ‖a‖ ‖b‖ > 0, A(a, b) is nonzero. Consequently its range and
thus IJ are also nonzero. This means that uniformly prime algebra is
always prime. The converse is not true. Counterexamples can be given
for associative, Jordan and Lie algebras using the class of Hilbert–Schmidt
operators.

The purpose of our paper is to give a formal definition of uniformly
prime Banach Lie algebra and to prove that classical Banach Lie algebras
of compact operators are uniformly prime.

2. Definitions and main result

We denote by (A, [ , ]) a Lie algebra with Lie bracket product [x, y].
This product satisfies two identities

[x, x] = 0 (anticommutativity)

[

[x, y], z
]

+
[

[z, x], y
]

+
[

[y, z], x
]

= 0 (Jacobi identity).
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IfA is also a Banach space, we call it a Banach Lie algebra if ‖ [a, b] ‖ ≤
2‖a‖ ‖b‖ holds for all a, b ∈ A. Note that any associative Banach algebra
gives rise to a Banach Lie algebra if we define [x, y] = xy − yx.

Let (A, [ , ]) be a Banach Lie algebra. Given any a, b ∈ A we define
the algebraic operator

L(a, b) : A −→ A
by

L(a, b)x =
[

a, [b, x]
]

.

We say that A is uniformly prime if there exists a positive constant κ such
that the uniform estimate

‖L(a, b)‖ ≥ κ‖a‖ ‖b‖

holds for all a, b ∈ A. Here L(a, b) is an operator acting on a Banach space
and we consider its usual operator norm.

The classical Lie algebras are built from complex n× n matrices and

classical Banach Lie algebras of compact operators are their natural ex-

tension to infinite dimension (infinite matrices). We give the definitions,

following the classical monograph of P. de la Harpe [13], page 90.

Let H be an infinite dimensional complex Hilbert space. Then the

classical Banach Lie algebra is the space of compact operators C(H),
equipped with the operator norm and product [X,Y ] = XY − Y X. It

is denoted by gl(H, C∞).
Suppose that H is equipped with a conjugation x 7−→ x. This is

a conjugate linear mapping which is isometric and satisfies x = x. The

simplest example (on C
2) is (z1, z2) 7−→ (z1, z2). We define the transpose

of an operator S : H −→ H by

STx = S∗ (x)

where S∗ is the usual adjoint. Then the classical orthogonal Banach Lie

algebra of compact operators is

o(H, , C∞) =
{

S ∈ C(H) : ST = −S
}

,

equipped with operator norm and product [X,Y ] = XY − Y X. The fact

that [X,Y ] actually lies in o(H, , C∞) is not difficult to verify (see [13]).
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Now suppose that Hilbert spaceH is equipped with anticonjugation J .
This is a conjugate linear isometric mapping J : H −→ H satisfying

J(Jx) = −x. The simplest example (on C
2) is (z1, z2) 7−→ (z2,−z1).

Then the classical symplectic Banach Lie algebra of compact operators is

sp(H, J, C∞) = {X ∈ C(H) : JX∗J = X}

equipped with operator norm and product [X,Y ] = XY − Y X. Again it

can be verified that the Lie bracket of two elements from sp(H, J, C∞) is
again in sp(H, J, C∞).

It is our purpose in the sequel to prove that all classical Banach Lie

algebras, defined above, are uniformly prime. More precisely we shall prove

Theorem 1. Let H be a complex Hilbert space of infinite dimension.

Then we have

‖L(A,B)‖ ≥ 2
3

(√
2− 1

)

‖A‖ ‖B‖ for gl(H, C∞),

‖L(A,B)‖ ≥ 1
6
‖A‖ ‖B‖ for o(H, , C∞)

and

‖L(A,B)‖ ≥ 1
6
‖A‖ ‖B‖ for sp(H, J, C∞).

3. Proof for rectangular case

In this section we present the proof of Theorem 1 for the case of algebra

gl(H, C∞), which is modeled on a space C(H) of compact operators. Since
L(A,B) : C(H) −→ C(H) is defined by

L(A,B)X =
[

A, [B,X]
]

,

we have

(1) L(A,B)X = (ABX +XBA)− (AXB +BXA) .

Now we use the result on elementary operators from [16] which is

stated for all standard operator algebras and is therefore valid for C(H).
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Proposition 1 (see [16]). The norm of the operator X 7−→ AXB +

BXA is at least

2
(√
2− 1

)

‖A‖ ‖B‖ .

As the proof is not short, we do not repeat it here. From Proposition 1

and identity (1) we obtain immediate

Corollary 1. For Lie algebra gl(H, C∞) the following estimate

‖L(A,B)‖ ≥ 2
(√
2− 1

)

‖A‖ ‖B‖ − ‖AB‖ − ‖BA‖

is valid for all A,B ∈ gl(H, C∞).

It is now necessary to provide one estimate more in order to combine it

with Corollary 1. This can be done using the fact that finite rank operators

are dense in C(H) and some manipulation with rank one operators. We
use rather standard notation a⊗b, given a, b ∈ H, for operator (a⊗b)(x) =
〈x, b〉a. Here 〈x, b〉 is the inner product of H.

Proposition 2. For Lie algebra gl(H, C∞) the following estimate

‖L(A,B)‖ ≥ max {‖AB‖ , ‖BA‖}

is valid for all A,B ∈ gl(H, C∞).

Proof. First we assume that A,B are finite rank operators. As H
is infinite dimensional, there exists a unit vector e ∈ (ImA + ImB)⊥.

Let a ∈ H be arbitrary nonzero vector. Then the norm of the operator

X = a⊗ e is ‖a‖ ‖e‖ = ‖a‖, as is well known and easy to see. As

XAx = 〈Ax, e〉a ∈ 〈ImA, e〉 a = 0,

XBx = 〈Bx, e〉 a ∈ 〈ImB, e〉 a = 0,

we have XA = XB = 0. Since

L(A,B)X = ABX +XBA−AXB −BXA = ABX,

we have

‖L(A,B)‖ ≥ ‖ABX‖
‖X‖ =

‖ABa⊗ e‖
‖a‖ =

‖ABa‖
‖a‖
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and thus, as a is arbitrary, ‖AB‖ ≤ ‖L(A,B)‖. This imply that

‖BA‖ =
∥

∥(BA)
∗∥
∥ = ‖A∗B∗‖ ≤ ‖L(A∗, B∗)‖ .

From the definition of L(A,B) we can easily calculate that

L(A∗, B∗)X∗ = (L(A,B)X)
∗
,

and so the norms of L(A∗, B∗) and L(A,B) are the same. This concludes

the proof for finite ranks. Since every compact operator is a limit of a

sequence of finite rank operators, and L(A,B) is continuous in A and B,

we can pass to the limit and easily conclude the proof in general case. ¤

Proof of the first statement of Theorem 1. If we add up the estimates

from Corollary 1 and Proposition 2, we obtain

3‖L(A,B)‖ ≥ 2
(√
2− 1

)

‖A‖ ‖B‖ − ‖AB‖ − ‖BA‖+ ‖AB‖+ ‖BA‖

= 2
(√
2− 1

)

‖A‖ ‖B‖

and so

‖L(A,B)‖ ≥ κ‖A‖ ‖B‖,

where κ = 2

3

(√
2− 1

) ·
= 0.276. ¤

4. Proof for orthogonal case

Let A = o(H, , C∞) ⊂ C(H). For A,B ∈ A, we know the estimate of
the operator L(A,B) : C(H) −→ C(H), from the previous section. This
is not enough, because the definition of uniform primeness forces us to

compute the norm of its restriction L(A,B) : A −→ A. We follow the
general pattern of the previous section. The results of [16] however cannot

be used so we must provide the analogous estimate as follows.

Proposition 3. Let A,B ∈ A. The norm of the operator L1(A,B) :

A −→ A, defined by L1(A,B)X = AXB +BXA satisfies the inequality

‖L1(A,B)‖ ≥
1

2
‖A‖ ‖B‖.

In order to prove this we need the following simple facts about the

conjugation a 7−→ a, with respect to which o(H, , C∞) is defined.
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Lemma 1. Let A ∈ o(H, , C∞) be arbitrary. Then

〈

Ah, k
〉

= −
〈

Ak, h
〉

and

〈

Ah, h
〉

= 0 for all h, k ∈ H.

Proof. By the definition of o(H, , C∞) we have Ah = −A∗h. Since
h 7−→ h is conjugate linear isometry, the identity 〈h, h〉 =

〈

h, h
〉

can be

linearized into 〈h, k〉 =
〈

k, h
〉

. Thus

〈

Ah, k
〉

=
〈

h,A∗k
〉

=

〈

h,A∗k

〉

=
〈

h,−Ak
〉

= −
〈

Ak, h
〉

.

The second statement is only specialization of the first one to the case

h = k. ¤

Lemma 2. Let h, k ∈ H be orthogonal unit vectors. Then the rank 2

operator X = h ⊗ k − k ⊗ h lies in the Lie algebra o(H, , C∞) and has

norm 1.

Proof. Given any x ∈ H, we have

X∗x =
(

h⊗ k − k ⊗ h
)∗
x =

(

k ⊗ h− h⊗ k
)

x

= 〈x, h〉 k − 〈x, k〉h =
〈

h, x
〉

k −
〈

k, x
〉

h

=
〈

x, h
〉

k −
〈

x, k
〉

h =
(

k ⊗ h− h⊗ k
)

x = −Xx.

So X ∈ o(H, , C∞) by the definition.

Since h is orthogonal to k and h is orthogonal to k, the norm can be

easily computed.

Lemma 3. Let H be a Hilbert space and A, B bounded operators

on H. Then
sup
‖h‖≤1

‖Ah‖ ‖Bh‖ ≥ 1
2
‖A‖ ‖B‖.

Proof. We can assume ‖A‖ = ‖B‖ = 1. Choose ε with 0 < ε < 1.

Then there exist h, k ∈ H such that ‖h‖ = ‖k‖ = 1 and ‖Ah‖, ‖Bk‖ > 1−ε.
By multiplying one of them by a suitable constant, if necessary, we may
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assume that r := 〈h, k〉 is nonnegative. Note that this clearly implies that
h+ k 6= 0. Since

‖A∗Ah− h‖2 = 1 + ‖A∗Ah‖2 − 2 ‖Ah‖2 ≤ 2− 2 (1− ε)
2
= 2ε (2− ε) ,

we obtain

Re 〈h−A∗Ah, k〉 ≤ |〈h−A∗Ah, k〉| ≤ ‖h−A∗Ah‖ <
√

2ε (2− ε).

Also 〈Ah,Ak〉 = 〈h, k〉 − 〈h − A∗Ah, k〉, so that Re〈Ah,Ak〉 = r −
Re〈h−A∗Ah, k〉. Hence Re 〈Ah,Ak〉 > r −

√

2ε (2− ε) implies that

‖A(h+ k)‖2
‖(h+ k)‖2 =

‖Ah‖2 + ‖Ak‖2 + 2Re〈Ah,Ak〉
2 + 2Re(〈h, k〉)

>
(1− ε)2 + 2r − 2

√

2ε(2− ε)

2 + 2r

=
1 + 2r − f(ε)

2 + 2r
=
1

2
+

r

2 + 2r
− f(ε)

2 + 2r
.

We therefore obtained that given ε > 0, there are norm one vectors h, k

such that
∥

∥

∥

∥

A

(

h+ k

‖h+ k‖

)
∥

∥

∥

∥

2

>
1

2
− f(ε)

2 + 2r
>
1

2
− f(ε)

2

where f(ε) tends to zero as ε→ 0. If we interchange the roles of h and k

we also obtain
∥

∥

∥

∥

B

(

h+ k

‖h+ k‖

)∥

∥

∥

∥

2

>
1

2
− f(ε)

2
,

which implies

∥

∥

∥

∥

A

(

h+ k

‖h+ k‖

)
∥

∥

∥

∥

∥

∥

∥

∥

B

(

h+ k

‖h+ k‖

)
∥

∥

∥

∥

>
1

2
− f(ε)

2

and by letting ε tend to zero, we conclude the proof. ¤

Remark 1. The above estimate is in general the best possible. This

can be seen by taking any H of dimension at least 2 and orthogonal unit
vectors a, b ∈ H. Then, given A = a⊗ a and B = b⊗ b we have

‖Ah‖2 + ‖Bh‖2 = |〈h, a〉|2 + |〈h, b〉|2 ≤ ‖h‖2 = 1
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and so

‖Ah‖ ‖Bh‖ ≤ 1
2

(

‖Ah‖2 + ‖Bh‖2
)

≤ 1
2
.

Proof of Proposition 3. Let h, k ∈ H be orthogonal unit vectors. By
Lemma 2 the operator X = h⊗k−k⊗h is in o(H, , C∞) and has norm 1.

Consequently ‖L1 (A,B)‖ ≥ ‖AXB +BXA‖. By a direct computation
we get

U := AXB +BXA = −Ah⊗Bk −Bh⊗Ak +Ak ⊗Bh+Bk ⊗Ah.

By Lemma 1 we have
〈

Ah, h
〉

=
〈

Bh, h
〉

= 0 and so

Uh = −
〈

h,Bk
〉

Ah−
〈

h,Ak
〉

Bh.

This implies, using Lemma 1,

〈

Uh, k
〉

= −
〈

Bk, h
〉 〈

Ah, k
〉

−
〈

Ak, h
〉 〈

Bh, k
〉

= 2
〈

Ah, k
〉 〈

Bh, k
〉

.

Thus

2
∣

∣

〈

Ah, k
〉 〈

Bh, k
〉
∣

∣ =
∣

∣

〈

Uh, k
〉
∣

∣ ≤ ‖U‖ ≤ ‖L1 (A,B)‖

and this is valid for all k of norm 1 which are orthogonal to h.

The case when Ah = 0 or Bh = 0 is trivial, so we assume for the

moment that Ah 6= 0 and Bh 6= 0. Let us denote

1

‖Ah‖ ‖Bh‖ 〈Ah,Bh〉 = reiϕ.

Then

k =
1

√

2 (1 + r)

(

Ah

‖Ah‖ + e−iϕ Bh

‖Bh‖

)

is a unit vector which is, by Lemma 1, orthogonal to h. By the estimate

of the previous paragraph we have

‖L1(A,B)‖ ≥
2

2 (1+r)

∣

∣

∣

〈

Ah,
Ah

‖Ah‖ + eiϕ Bh

‖Bh‖
〉
∣

∣

∣

∣

∣

∣

〈

Bh,
Ah

‖Ah‖ + eiϕ Bh

‖Bh‖
〉
∣

∣

∣

=
1

1 + r
(‖Ah‖+ r‖Ah‖) (‖Bh‖+ r‖Bh‖)

= ‖Ah‖ ‖Bh‖(1 + r) ≥ ‖Ah‖ ‖Bh‖.
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Since this estimate is trivial when Ah = 0 or Bh = 0 we finally have

‖L1 (A,B)‖ ≥ sup
‖h‖≤1

‖Ah‖ ‖Bh‖ .

Using Lemma 3, we conclude the proof. ¤

In order to conclude the proof of our theorem for the orthogonal case,
we must prove analogous statement to Proposition 2.

Proposition 2. For Lie algebra o(H, , C∞) the following estimate

‖L(A,B)‖ ≥ max {‖AB‖ , ‖BA‖}

is valid for all A,B ∈ o(H, , C∞).

Remark 2. Note that L(A,B) in this proposition is not the same as
L(A,B) in Proposition 2 but its restriction to the subspace o(H, , C∞) ⊂
C(H). We therefore cannot use Proposition 2 directly.

Proof. As in the proof of Proposition 2 we may assume that A,B ∈
o(H, , C∞) are finite rank operators. Since H has infinite dimension,

there is a unit vector h ∈ (ImA+ ImB)
⊥
. Let k ∈ H be any unit vector

orthogonal to h. Then, by Lemma 2, X = h⊗k−k⊗h lies in o(H, , C∞).
Now we compute

〈

(L(A,B)X)
(

ABk
)

, h
〉

,

using (1) to expand L(A,B). Since h is orthogonal to images of A and B,
from eight terms of the previous expression, seven are zero and the only
remaining one is

〈(

h⊗ k
)

BA
(

ABk
)

, h
〉

=
〈

BA
(

ABk
)

, k
〉

〈h, h〉 =
〈

BA
(

ABk
)

, k
〉

.

Since A,B ∈ o(H, , C∞), we have A∗ (a) = −Aa and B∗ (a) = −Ba for
all a ∈ H. This implies

〈

BA
(

ABk
)

, k
〉

=
〈

A
(

ABk
)

, B∗k
〉

= −
〈

A
(

ABk
)

, Bk
〉

= −
〈

ABk,A∗Bk
〉

=
〈

ABk,ABk
〉

= ‖ABk‖2 .

Hence

‖ABk‖2 =
〈

(L(A,B)X)
(

ABk
)

, h
〉

≤ ‖L(A,B)‖ ‖X‖ ‖ABk‖ ‖h‖
= ‖L(A,B)‖ ‖ABk‖
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and so

‖ABk‖ ≤ ‖L(A,B)‖

for all those unit vectors k which can be orthogonal to some nonzero vector

from the subspace (ImA+ ImB).

But since this subspace has infinite dimension (hence dim ≥ 2), any k
can occur, so we have

‖AB‖ = sup
‖k‖=1

‖ABk‖ ≤ ‖L(A,B)‖ .

Since o(H, , C∞) is closed for taking adjoints, we can conclude the proof

in the same way as the proof of Proposition 2. ¤

Proof of the second statement of Theorem 1. If we denote

L(A,B) = −L1(A,B) + L2(A,B),

where L1(A,B)X = AXB + BXA and L2(A,B)X = ABX + XBA, we

obviously have

‖L2(A,B)‖ ≤ 2max {‖AB‖ , ‖BA‖}

so, by Proposition 4,

‖L2(A,B)‖ ≤ 2 ‖L(A,B)‖ .

Thus, by Proposition 3,

1

2
‖A‖ ‖B‖ ≤ ‖L1(A,B)‖ ≤ ‖L(A,B)‖+ ‖L2(A,B)‖ ≤ 3 ‖L(A,B)‖ . ¤

5. Proof for symplectic case

Let J denote an anticonjugation on an infinite dimensional complex

Hilbert space H. Recall that J2 = −Id and J is conjugate linear isometry.
Recall also that sp(H, J, C∞) = {X ∈ C(H) : JX∗J = X}. Let us denote
XS = JX∗J .
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Lemma 4. Given any orthogonal unit vectors h, k ∈ H, the rank two

operator X = h⊗ Jk + k ⊗ Jh lies in sp(H, J, C∞) and has norm 1.

Proof. The statement about the norm follows from ‖h‖ = ‖k‖ = 1
and 〈h, k〉 = 〈Jk, Jh〉 = 0. Given a, b ∈ H, we have

(a⊗ b)
S
x = J (a⊗ b)

∗
Jx = J (b⊗ a) Jx = J(〈Jx, a〉 b) = 〈Jx, a〉Jb

= 〈a, Jx〉Jb = −〈JJa, Jx〉Jb = −〈x, Ja〉Jb = − (Jb⊗ Ja)x

so

(a⊗ b)
S
= −Jb⊗ Ja.

Thus

(h⊗ Jk + k ⊗ Jh)
S
= −J2k ⊗ Jh− J2h⊗ Jk = k ⊗ Jh+ h⊗ Jk. ¤

Proposition 5. Let A,B ∈ sp(H, J, C∞). Then

‖L(A,B)‖ ≥ max {‖AB)‖, ‖BA)‖} .

Proof. We can proof this in almost the same way as Proposition 4.

First we can pass to the case when A, B have finite rank. Then we choose

h ∈ (ImA+ ImB)
⊥
and k orthogonal to h, both of norm 1. We take

X = k ⊗ Jh + h ⊗ Jk and compute expression
〈

(L(A,B)X)
(

ABk
)

, h
〉

.

Since almost all terms are zero, we have

〈

(L(A,B)X)
(

ABk
)

, h
〉

= ‖ABk‖2 ,

from which ‖ABk‖ ≤ ‖L(A,B)‖ follows. All other steps are the same as
in the proof of Proposition 4. ¤

A result for sp(H, J, C∞) which is parallel to Proposition 3 for
o(H, , C∞) cannot be proved in the same way. The main reason is that

proof of Proposition 3 rests on the fact that for A ∈ o(H, , C∞) and con-

jugation x 7−→ x we have 〈Ax, x〉 = 0. This is not true for anticonjugation
J . Namely 〈Ax, Jx〉 need not be zero for A ∈ sp(H, J, C∞).
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Proposition 6. Let A,B ∈ sp(H, J, C∞) and denote

L1(A,B) : sp(H, J, C∞) −→ sp(H, J, C∞)

the operator given by

L1(A,B)X = AXB +BXA.

Then we have

‖L1(A,B)‖ ≥
1

2
‖A‖ ‖B‖.

Proof. Take any unit vector h ∈ H. Since Jh is also a unit vector,
the operator X = h ⊗ Jh has norm 1. Since XS = −

(

J2h⊗ Jh
)

=

h ⊗ Jh = X, we have X ∈ sp(H, J, C∞). We can therefore compute
L1(A,B)X, which is

Ah⊗B∗Jh+Bh⊗A∗Jh.

Since JA∗J = A, we have A∗J = −JA and B∗J = −JB. This gives

L1(A,B)X = −Ah⊗ JBh−Bh⊗ JAh.

Now we compute 〈L1(A,B)X JBh,Ah〉 which turns out to be

−‖Ah‖2 ‖Bh‖2 − |〈Ah,Bh〉|2 .

Thus

‖Ah‖2‖Bh‖2 ≤ |〈L1(A,B)XJBh,Ah〉| ≤ ‖L1(A,B)‖ ‖Ah‖ ‖Bh‖

and so

‖L1(A,B)‖ ≥ sup
‖h‖=1

‖Ah‖ ‖Bh‖ .

An application of Lemma 3 concludes the proof. ¤

The third statement of Theorem 1 now follows from Proposition 5

and Proposition 6 in exactly the same way as the second statement of

Theorem 1 follows from Proposition 3 and Proposition 4.
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6. A counterexample and concluding remarks

In P. de la Harpe book [13] Lie algebras built from Schatten classes

Cp (H) equipped with corresponding p-norms are also considered. They
provide examples of Banach Lie algebras which are prime but not uniformly

prime. More precisely, we have

Observation 1. Let H be an infinite dimensional complex Hilbert

space and C2 (H) the class of Hilbert–Schmidt operators equipped with

the norm ‖A‖2 =
√

Tr (AA∗). Let gl(H, C2) denotes a Banach Lie algebra

modeled on this space with the product [A,B] = AB−BA. Then gl(H, C2)

is prime but not uniformly prime.

Proof. Since C2(H) is norm dense in C(H) Theorem 1 implies that
for nonzero A,B ∈ C2(H), operator L(A,B) : C2(H) −→ C2 (H) is also
nonzero. This clearly implies that gl(H, C2) is prime Lie algebra.

In order to show that gl(H, C2) is not uniformly prime, it suffices to

find a sequence of elements such that ‖Pn‖2 →∞ while

‖L (Pn, Pn)‖ = sup
‖L (Pn, Pn) X‖2

‖X‖
2

≤ 4

for all n. This clearly makes estimate

4 ≥ ‖L (Pn, Pn)‖ ≥ κ ‖Pn‖22

impossible for any positive κ.

In fact, we can take Pn to be orthogonal projection on n-dimensional

subspace of H. Then Pn = P ∗n and P 2

n = Pn so ‖Pn‖22 =
√

Tr (Pn) =√
n −→∞.
Given any X ∈ gl(H, C2) we have L (Pn, Pn)X = PnX + XPn −

2PnXPn. If we consider the operator L1(X) = PnX, we have

‖L1(X)‖22 = Tr (PnXX∗Pn) = Tr (X
∗PnX) .

Since X∗X = X∗PnX + X∗ (1− Pn)X and both operators on the right

hand side are positive, we have

‖L1(X)‖22 = Tr (X∗PnX) ≤ Tr (X∗X) = ‖X‖22
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and so ‖L1‖ ≤ 1. In a similar way one can prove that L2(X) = XPn and

L3(X) = PnXPn are also bounded in norm by 1, so we have ‖L (Pn, Pn)‖ ≤
4 for all n. ¤

As our final remark we wish to note that we were not able to find

operators where the proved constants 2

3

(√
2− 1

)

and 1

6
would actually

be attained, so we consider the problem of determining the best constant

of uniform (ultra) primeness for Lie algebras gl(H, C), o(H, , C∞) and

sp(H, J, C∞) still open.
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