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ON THE EQUIVALENCE OF MINIMAX
THEOREMS

WEN SONG (Harbin)

Abstract. In this note we show that Ky Fan's minimax theorem and its
several genceralizations such as Wonig's minimax theorem [6], M. Neumann’s min-
imax theorem [8] and Fuchsstciner-Koénig's minimax theorem [3] are equivalent.
We alsa give a direct prool for Fuchssteiner-IKanig’s minimax theorem on the basis
of Eidelheit’s well-known seperation theorem.

1. Introduction

In 1953, Ky Fan [2] proved a minimax theorem for a function with
convexlike-concavelike properties generalizing the Kieser minimax and then
the von Neumann minimax theorem.  Since then, there is a living inter-
est for the axiomatic character of minimax theorems. In 1968, Konig [6]
extended the ISy Fan minimax theorem to the ease where the function has
mid-convexlike-concavelike properties. The Konig minimax theorem was fur-
ther extended by M. Nemmann [8] in 1977, and the result of M. Neumann
was subscquently extended by Fuchssteiner and Konig [3] in 1980 by weak-
ening the convexlike-concavelike conditions. Borwein and Zhuang [1] and
Kassay [3] gave a simple proof of the Fan and Kénig minimax theorem, re-
apectively. In 1994, Staché [12] derived the Konig minimax theorem (1968)
fram the I{y Fan minimax theorem by using a function lifting. In this note
we give a simple proof for the Fuchssteiner-IKonig minimax theorem from the
Ky Fan minimax theorem. This implies that all the minhmax theorems men
tioned above are equivalent. Finally, we also give an elemmeutary proof of the
Fuchssteiner-Kénig minimax theorem nsing a standard separation theorem.
For a survey of minimax theorems, we refer to Simons [11].

2. Minimax thcorems

DEFINITION 1 [9]. Let f : X x Y — R, where X and ¥V are arbitrary
nonempty sets. The function f is said to be nearly suhconvexlike on Y, i

2.1) dae € (0,1), Ve>0, Yy, €yY, Jpel, Veec X
21
such that  f{x,13) S af(z,n) + (1 — o) f(x,y2) + &
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f is said to be nearly subconcavelike on X, if

(22) {3;’3 €(0,1), Ye>0, Ve,,melX, Trze X, Vyel,
2.2

such that  f(a,y) 2 Bf(r ) + (1= B)f(ra,9) — &

The function [ is said to be

(i) enbeonvexlike on V' [reap. aubconcavelike on X, if (2.1) [resp. (2.2)]
holds for all a € (0,1) [resp. all B € (0,1)];

(ii) nearly convexlike on Y [resp. nearly concavelike on X1, if (2.1) [resp.
{2.2)] holds for ¢ — 04

(iii) convexlike on ¥ [resp. eoncavelike on X], if (2.1) {resp. (2.2)] holds
for £ = 0 and all & € {0, 1) |resp. all 7€ (0,1}];

(iv) mid-convexlike on ¥ [resp. mid-coneavelike on N, it (2.1) [resp. (2.2)]
holds for e = 0 and a = § [resp. # = zl-

REMARK 1. Obviously, we have the following implications:  convex-
like =+ mid-convexlike = nearly convexlike == ncarly snbeonvexlike;
convexlike == subconvexlike == ncarly snbconvexlike. For the concave-
like properties, we have similar implications. From Remark 4.2 of [9], one
can conclude that, if ¥ {X) is a compact topological space and [ is lower
(upper) semicontinuous on ¥ (X), then all the convexlike (coucavelike) prop-
ertics for f defined in Definition 2.1 are equivalent. Note that, in Theorem
4.1 and Remark 4.2 of [9], the Hansdor(f assumption on Y is not uecessary.

In 1953, Ky Fan established the following result generalizing the Kneser
minimax theorem:

THEOREM 1 [2]. Let X be a nonempty set and Y o nonempty compact
topological space. Let f + X xY — R be lower semucontinuous, convexlike
on Y and concavelibe on X. Then

minsup f = sup min f.
Yoox x v

In [1], Borwein and Zhuang gave a very short proof of Theorem 1 hy
using the Eidelheit separation theorem. In 1968, I{6nig proved the following
result generalizing Theorem 1:

TUEOREM 2 [6]. Let X be a nonempty set and Y o nonempty com-
pact topological space. Lel f : X x Y — R be lower semicontinuous, mid-
convezlike on' Y and mid-concavelike on X. Then

minsup f = supmin f.
Y x 4 Y

o

In (5], Kassay gave an elementary proof of Theorem 2 by using so-called
methods of level sets and cones. Theorvm 2 was further extended by M. Neu-
mann in 1977 and by Fuchssteiner-Konig in 1980.
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TuroreM 3 [3], [7]. Let X be a nonempty set and Y a nonempty com-
pact topological space. Let [+ X xY — R be lower semiconlinuous, nearly
subconvexlike on' Y and nearly subconcavelibe on X. Then

minsup f = supmin f.
Yo oox N Y

In [8], Newmann proved Theorem 3 by assuming that f is ncarly con-
cavelike on X instead of that f is nearly subconcavelike on X

In [4], Jeyakumar proved a generatization of Theorem 1 for a function f
with subconvexlike-subeoncavelike property by a theorem of the alternative.
His result is a special case of Theorem 3.

In [12], Stachd gave an iinmediate deduction of Theorem 2 from The-
orem 1. In the following, we shall give a simple proof of Theorem 3 from
Theorem 1. For this purpose, we need the {ollowing lemma.

A function [+ X x ¥ — R is said to nearly 7-subconcavelike on X if
(2.2) holds for g = .

LEMMA 1 [9]. If [ is nearly subconeavelike on X, then
Q= {‘r & (0,1), f is nearly T-subconcavelike on X}

@ dense n [0,1].

REMARK 2. By 5™ we denote the m — 1-dimensional simplex, 1.c.

§" = {(,\1,...,,\?,1) eR": N 20,Y = '1}.

=1

Let M be a subset of 8" with the following property: for cvery
t={t,...\lm) €M, 2),...,2m € X and £ > 0 there exists x; € X such that

o

S otif (i) E fleoy) +e, forall yeY.

i=1

From Lemma 1, it is easy lo show that M is dense in S™ if f is nearly
subconcavelike on X

ProoF orF THEOREM 3. Let a be an arbitrary real number strictly
less than miny supy f. Let Cx)={y €Y : flz,y)>a}. Then ¥V =
Urex C(x). Since C(x) is open for each # € X and Y is compact, oue can
find z1,...,2m € X such that

o < min max f(z;,¥y).
v lg‘i(érn .f( la,l)
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Define a function ¢ : S™ x Y — R by

P

oA y) = Z Xif (v, y)

i=1
Clearly, we have

min wax f{x;,y) = minsup (A, y).
Y 1§1§9n Y ogm

It is elear that ¢ is affine {finite, convex and concave) in its first. variable

and then concavelike on 8™, and lower semicontinuous in its gecond variable.

From Remark 1, one can see that ¢ is convexlike on Y. By Theorem 1, we
have

minsup @A, y) = sup min ¢(A,y).
Y ogm gm Y
Thus
min max [(z;,y) = supmin¢(A, i)
Yo 1gigm GV

Since, for each ¥ € Y, A — @(A,y) is a continuons affine function, by Theo-
rem 10.2 of [10], the function A — miny S(A,y) is continuous on S™. Thus
there oxists some XM & 8 sueh that

min max fle.y) = min (A, y).
v léi(grnf( HJ) Yy #( 1./)

Since A — miny @), y) is continuous on 5™ and the set M (in Remark 2) is
_ Y
dense in §™, for any ¢ > 0 there exists an g € M such that

T

min max f{a,y) < ming{p,y) +e = nin Z s f (e y) e
YogiEm Y Yo© ]
Sig o

The definition of the set M implies that there exists T € X such that

1 éié T

11'}}11 max [, y) < 11}';1‘1;“(;1’:,11) + 2¢ < sup u{iuf(;u, y) + 2e.
X

Ilonce

a S sup n{in ).
X

From the choice of o, we have

minsup f(a,y) S supmin f(x,y),
Yooox x Y

which compleies the proof. O
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Therefore, we conclude that Theorems 1, 2, 3 and Corollary 3.1 of [4] are
cquivalent.

REMARK 3. We give an elementary proof of Theorem 3 using the Eidel-

heit separation theorem. The proof is adapted from that of Theorem A in
[1] and Theorem in [3].

Proor. Let o be an arbitrary real number strictly less than miny supy f.
Let Clx)y={y &Y : flz.y) >a}. Then Y = Uyex Cla). Since C(x) is open
for cachh 2 € X and Y is compact, one can find #, ..., 2, € X such that

o < min max flx;,y).
v léi‘g?nf( J.1.f)

Define a mapping +0 @ Y — R as follows

Yly) = (flzy) — a0 fln y) — o),

where o) = miny max, <<, f{r;,v). Since f i nearly subconvexlike on Y,
we have 33 € (0,1), Ve > 0, Yy, ym € Y, dys € YV, such that s + Sy{y1)
+{1—)ly2) —(ys) € /Y, where s = {1,...,1) € int R, "This means that
¥ is a nearly R'-subconvexlike mapping (see [9]). By Theorem 3.1 of [9], we
sce that (1) -+ int /277" is convex and so

(V) + Ry = (Y) +int B

is convex.
From the definition of ¥, it is clear that

(G(Y) + RN (—int RT) = 0.
Since int BT is open, we have that
PY)+ RO (—int R = 0.
By the Eidelheit separation theorem, there exists t = (¢1,..., 1) € BT\ {0}

such that

T

Zf-i(f(ﬂfny) —a)20 forall yeV.
i=1

Let A} =8/ 3 00 45 Then M = (Xy,..., Ay, ) € 5™ and

m
min max f(z;,y) S miuz Aif (i, y) = ming(A, ).
Yo1<i<m Y o4 | ¥
Sis i
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134 WEN SONG: ON THE EQUIVALENCE OF MINIMAX THECOREMS
The inverse inequality is obviously true and thus

min max [, y) = min N, y).
i 1g,z{gmf( i»y) = ming(A, y)

By using exactly the same argmments as in the previous proof we can finish
the proof. 0O

In view of the proofs of Theorem 3 above, we obtain a stronger version
of Thearemn 3 by replacing the nearly subconcavelikeness of f on X with the
assnption that the set M {in Remark 2) is dense in §™.
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