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A F L E X I B L E  M I N I M A X  T H E O R E M  

S. SIMONS (Santa Barbara) 

Dedicated to Pro]essor Heinz Khnig 

Introduction 

The purpose of this paper is to unify a number of minimax theorems 
that use hypotheses that are superficially very different. 

The important role of connectedness in minimax theorems was first 
noted by Wu [29], followed by Tuy [27,28], who was able to generalize Sion's 
minimax theorem [24]. Based on Job's result [8], Stach5 [25] and Komornik 
[16] proved minimax theorems for "interval spaces". These results were 
unified by Kindler-Trost [12]. 

Minimax conditions that use algebraic conditions were considered by 
Fan [1], Khnig [17], Neumann [19], Irle [7], Lin-Quan [18], Kindler [11] and 
Simons [20]. 

Minimax theorems that mix both connectedness and algebraic condi- 
tions were considered by Terkelsen [26], Geraghty-Lin [2,4,5], Kindler [11] 
and Simons [21]. 

Kindler [11] was the first to observe that the algebraic conditions force 
conditions akin to connectedness. 

In this paper, we give results that unify all the ideas mentioned above, 
as well as other ideas due to Ha [6] and Simons [22,23]. 

The basic minimax theorem is Theorem 1 which has a simple proof using 
a compactness condition (1.1), a condition on Y ,  (1.2) and a condition on 
x,  (1.3). 

There are obvious topological situations in which (1.2) holds - -  see (8.2). 
Lemma 2 gives a set-theoretic situation in which (1.2) holds - -  in Remarks 3, 
we show that ,  to within c, Lemma 2 encompasses all the algebraic situations 
mentioned above. 

Lemmas 4 and 5 give topological situations (which will require that X 
be an interval space) in which (1.3) holds. Lemma 6 gives a set-theoretic 
situation in which (1.3) holds - -  in Remarks 7, we show that, to within c 
again, Lemma 6 encompasses all the algebraic situations mentioned above. 

The reader will undoubtedly notice the similarity between the hypothe- 
ses (2.2) and (6.1). In Remarks 7, we give a common result from which both 
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Lemma 2 and Lemma 6 can be derived. (We have not used this in the text 
for clarity of exposition.) 

Let X and Y be nonempty sets and f : X )< Y ~ R. If 7 6 R we define 
multifunctions 7[ from X into 2 Y and ~ from Y into 2 X by 

Vx E X, 7[x := {y : y E Y, f (x ,y)  <= 7 } 

and 
VyeY,  y:={x:xex, f(x,y)>T}. 

For convenience, we write LE(W, 7) for N 7_.7_] w. 
w6W 

The author would like to thank Professor Jiirgen Kindler for an interest- 
ing discussion on minimax theorems and for suggesting that he incorporate 
[12] into an earlier version of this work. 

T h e  j o i n i ng  of  sets  and p s e u d o c o n n e c t e d n e s s  

We say that sets H0 and H1 are joined by a set H if 

HCHoUHI, HNHo## and HNHI#r 

We say that a family 7 /o f  sets is pseudoconnected if, 

(0.1) Ho, H1, H 6 7"/ and Ho and H1 joined by H =v Ho N H1 # ~. 

Any family of closed connected subsets of a topological space is pseu- 
doconnected. So also is any family of open connected subsets. In Lemma 2 
we give a situation related to minimax theorems in which a certain family 
of sets is automatically pseudoconnected. 

THEOREM 1. Let Y be a topological space, and B be a nonempty subset 
of R such that infB = sup i n f f .  Suppose that, V ~ 6 B and finite subsets 

X Y 
W of X (with the convention/E(O,/~) = Y), 

(1.1) Vx 6 X, fl_~x is closed and compact, 

(1.2) 

and, 

(1.3) 

{ ~Jx N LE(W,~)t~6 x is pseudoconnected 

VXo, Xl 6 X ,  3 x E X such that 
~_~xo and ~Jxi are joined by ~.~x n iE(W,~) .  
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A FLEXIBLE MINIMAX THEOREM 121 

T h e n  

min sup f = sup inf f. 
Y X X Y 

PROOF. Let /3 E Y. Let V be a nonempty finite subset of X. We 
can write V = {xo,xa} U W. Let x be as in (1.3). It follows that _~xo N 
n LE(W,~) and ~lxl N LE(W,Z) are joined by 2 ix  N LE(W,Z). From 
(1.2) and (0.1), LE(V,~) r O. The result follows from (1.1) and the finite 
intersection property. 

Sufficient conditions for (1.2) 

In our next result, W does not necessarily have to be finite. 

LEMMA 2. Let W C X and fl E R. Suppose that, 

(2.1) V3' >/3 and x e X,  7ix n LE(W, t3) is closed and compact, 

and, whenever ,5 > 7, 3 N > 1 and 7o, . . . ,  ?N E R such that 

(2.2) 
(2.2.1) 
(2.2.2) 
(2.2.3) 
(2.2.4) 

7 0 = 6 ,  7 N = 7  and, 
VY0,Yl E Y~ 3y E Y such that, Vn E {1 , . . . ,N} ,  

~F~n Y c F] yo u I'I~-I yl, 
VZy c u 

V& c V yo u V y,. 

Then 

(1.2) { ~__~xNLE(W,~)}~:Ex is pseudoconnected. 

PROOF. Suppose that the result fails. Then 3 x0, xa,x E X such that, 
writing T := ~__~x N LE(W,3),  

(2.3) 
(2.4) 

T C _~x0 U __~xl, 

~xo n Z l z l  n T = O, 

and, for i = 0, 1, 

(2.5) ui E __~Jxi n T. 
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From (2.1) and (2.4), q 7 > ~ such that 

(2.6) 71zo n ~..~.Jx 1 n T = 0. 

From (2.5) and (2.6), u0 • ...~.Jigl. Let ~f := f (x l ,uo)  V f (xo ,u l )  > 7, 

Uo := ~ z o  n ~lzl  n T 9 Uo and V 1 : =  j.Jx 0 n ~1~1 n T ~ ul. 

Choose N and 70, . . .  ,7N as in (2.2). Then, from (2.6), 

Uo c ~ z ~  = 7OlZl and Uo n 7NIx, = go  n 7[Xl - -  ~, 

Thus, Vt E Uo, 3!go(t) E { 1 , . . . , N }  such that 

(2.7) go(t) < n < N =~ t ~_ 7~lxl and n = go(t) =~ t E 7n-1]x1. 

Similarly, Yt  E U1, 3 !gl(t) E {1,. . .  ,N} such that 

gl(t) < n ~ N ~ t r 7nix 0 and n - g l ( t ) : : ~ t  e 7n-liX0. 

We fix Yi E Ui to maximize gi(Yi) and choose y E Y as in (2.2). From (2.2.3), 
y E T. From (2.3), we can suppose without loss of generality that y E __~Jx0. 
From (2.2.4) since Yi E ~Jxl ,  y e _~xl.  Thus y E U0. Let n := go(Yo). 
From (2.7), Yo E 7n-l lx l .  Since Yl e Vl, Yl E ...~JXl. From (2.2.1), y E 
E 7nix1. From (2.7), n < go(Y). This contradiction of the maximality of 
go(Yo) completes the proof of the Lemma. 

REMARKS 3. In the context of minimax theorems, various authors have 
introduced conditions that imply (2.2). 

Inspired by a result of Fan [1], Kbnig [17] introduced the condition: 

(3.i) 
Vy0, yl E Y, 3 y E Y such that, 
x E X ~ Ax,  y) < [f(x,y0) + f (x ,  yl)] /2.  

(3.1) was weakened by Neumann [19], who also showed that it sufficed 
that his condition hold "to within E". (See the discussion on Irle's theorem 
below.) 

Neumann's condition was further weakened by Geraghty-Lin [2,4,5] and 
Lin-Quan [18], who introduced the condition: 
(3.2) 

3s E (0,1) such that, Vyo,yl E Y, 3y E Y such that, 
x E X =~ f ( x , y )  <= (1 - s )[ f  (x,yo) V f (x,yi)] + s[ f  (x, yo) A f (x, y))]. 

(To see this take s := 1/2). 
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Simons [20] weakened (3.2) to the "penalty condition": 
(3.3) 

1 
3 a nondecreasing function 7r : R + -+ R + such that 
)~ > 0 =~ r(A) > 0 and Vyo, yl E Y, 3y E Y such that, 
x E X => f ( x , y )  <= f ( x , yo )  V f ( x , y l )  - ~r(if(x,yo) - f ( x ,  yi)l).  

(To see this take lr(A) := sA. Much smaller choices of ~r are possible, for 
instance, ~r(A) := e -1 /~ ) .  

Simons [20] weakened (3.3) to the "upward condition": 
(3.4) 

V e > 0 ,  3 ~ > 0  such that, V yo, y 1E Y, 3 y E Y such that, 

x E X and I f ( x , y o ) -  f ( x , y l ) l  >= e ~ f ( x , y )  <= f ( x , y o ) V  f ( x ,  y l ) -  
and x e X ~ f ( x , y )  <= f (x,yo) V f ( x , y , ) .  

(To see this take ~/:= ~r(e).) 
We now show that  /f /~ < 7 < ~f then (3.4) implies (2.2): We set 

e := 7 - ~, choose ~? as in (3.4) and 70 , . . . , 7N e [7,/i] with 70 =/ i ,  7N = "~ 
and, Vn E ( 1 , . . . , N } ,  7n-1 - %  _-< q. Let Yo,Yl E Y and choose y E Y as 
in (3.4). Suppose that  f ( z , y o )  -<_ 7,~-1 and f ( z , y l )  <= ft. We distinguish 
t w o  c a s e s :  

Case 1: f (x, y0) _<- 7. Then f (x ,  y) <= 7 V fl = 7 <= 7n. 
Case 2: f (x,yo) > 7. Then f (x, yo) - f (x, yl) >= e hence, from (3.4), 

I ( ~ ,  y )  < ~ - 1  v ~ - ~ = ~ - 1  - ~ < ~n. 

Thus f ( x , y o )  <= 7n--1 and f ( x , y l )  ~= ~ ::~ f ( x , y )  __< 7n, from which 
(2.2.1) follows. We can prove similarly that (2.2.2) holds. Finally, f( . ,  y) _<_ 
_-< f (',Y0) V f ( ' ,Yl ) )  gives (2.2.3) and (2.2.4). 

Irle [7] introduced the concept of an averaging function ~ (a suitable real 
function defined on a suitable subset of R x R)  and considered a condition 
of the form: 

{ V e > O and yo, yl E Y, 3 y E Y such that, 

x E X =v f ( x , y )  <= ~( f (x ,  yo), f ( x ,  yl)) + e. 

We see that,  in common with the situation already described for Neumann's 
result, it suffices that  Irle's condition hold "to within r However, if ~ is a 
suitable averaging function or, more generally, mean function in the sense 
of Kindler [11] then 

(3.5) ( Vyo,Yl E Y, 3y E Y such that, 

~ x ~ f (~ ,y)  =< ~(f(~,y0),  f (x ,y l ) )  

implies that  (2.2) holds if ~ < 7 < 6. 
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Irle's minimax theorem was generalized by Simons [22], however it com- 
plicates the proof immensely to have to deal with "to within s" conditions. 
In this paper, we shall follow the philosophy of Kindler [11] and not con- 
sider "to within s" conditions. We hope that this simplification will show 
the underlying structures more clearly. 

Using the same method of proof as that used in Lemma 2, one can 
establish the following more general result: 

LEMMA 2'. L e t T  C Y and~,7  E R with~3 <= 7. Suppose that, V~f > 7, 
3 N  > 1 and To , . . . , 7g  C R such that 7o = ~, 7N = 7 andVyo,y l  E T, 
3 y E T such that, V n E { 1 , . . . , N } ,  (2.2.1), (2.2.2) and (2.2.4) hold. Let 
x0,xl E X and fl.~Xo and ~_~xl be joined by T. Then 

_~xo n 7__ix1 n T # O. 

Kindler [11] was the first to observe that there are conditions resem- 
bling connectedness that are automatic in certain minimax theorems. He 
defines two concepts, ~p-connectedness and F-connectedness and uses p- con- 
nectedness to establish a general minimax theorem. We will not discuss 
~2-connectedness further since it involves a mean function ~, and the phi- 
losophy of this paper is to work as much as possible with the intrinsic prop- 
erties of X,  Y and f and avoid additional functions. The precise definition 
of P-connectedness is: if sup i n f f  < ~ < 7 < oc, W is a finite subset of 

X Y 
X, XO,X 1 E X, and fl~JXo and fl_~xl are joined by LE(W,~),  then ~_Jxo N 
N ~_TJxl M LE(W, 7) ~ O. Thus Lemma 2' can be used to give a sufficient 
condition for F-connectedness and, in fact, for a more general concept in 
which W is not restricted to be finite. 

Sufficient cond i t ions  for (1.3) 

We suppose throughout this section that Z C Y. 

LEMMA 4. Let X be a topological space, ~ E It, xo, xl E X,  and C be 
a connected subset of X such that 

(4.1) C ~ x0,  x I and, Vx E C, ~ x  C ~JxoU ~Xl,  

Suppose that 

(4.2) 

and 

(4.3) 

V y E Z ,  { x : x E C ,  f ( x , y ) < f l )  is open in C 

V x E C ,  3 y E  Z such that f ( x , y ) < ~ .  
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Then 3x E X such that 

(4.4) ~_JXo and  ~_~JX 1 are joined by fl_Jx n Z. 

PROOF. We can suppose that 

(4.5) __~Jx0 N __~_J xl n Z = 0, 

for otherwise (4.4) follows with x := x0. For i = 0, 1, let 

(4.6) C i : = { x : x 6 C ,  ~ J x n Z c  ~_~Jx,}gxi. 

From (4.1) and (4.5), 

(4.7) Ci.-- {x:xEC, ~xN ~_~Xl_iNZ--~}. 
From (4.3), (4.5) and (4.6), 

(4.8) Co N C1 -- O. 

We can suppose that 

(4.9) Co U C1 ' -  C, 

for if x E C \ (Co U C1) then (4.4) follows from (4.1) and (4.7). Let x E C. 
We now prove that 

(4.10) x E C o C V B y E  ~JxoNZ suchtha t  f ( x , y )< f l .  

( o )  I f x  E Co and y i s  as in (4.3) then y E _~_JxRZ. From (4.6), y E 
E __~_Jx0 n Z, as required. (4=) If y is as in the right-hand side of (4.10) then 
y E fl_~Jxn~_~JxonZ. From (4.7), x ~ C1. From (4.9) x E Co. This completes 
the proof of (4.10). From (4.2) and (4.10), Co is open in C. Similarly, C1 
is open in C. Then (4.8) and (4.9) contradict the connectedness of C. This 
contradiction completes the proof of the Lemma. 

LEMMA 5. Let X be a topological space, /3 E R, x0, Xl E X, and C be 
a connected subset of X such that 

(4.1) C ~ x o ,  xl and, V x E C ,  ~_JxC ~_~_JxoU fl_JXl. 

Let Y be a compact topological space, 

(5.1) { ( x , y ) : x  E C, y E Z, f (x ,y)  <= fl} be closed in C x Y, 
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and 

(5.2) VxeC, ~ x n z r 1 6 2  

Then 3x E X such that 

(4.4) ~_~Jxo a n d  ~_~JXl are  joined by fl_~x N Z. 

PROOF. Even though (5.2) is weaker than (4.3), we can proceed as in 
the proof of Lemma 4 up to (4.9). Instead of (4.10), we have: Vx E C, 

(5.3) zeCoc~3ye  ~__~JxonZ suchthat f ( x , y ) ~ .  

Let x~ be a net of elements of Co, x E C and x~ ~ x. From (5.3), 

3y~E ~ x o N Z  such that f(xA,y;~)<-_/~. 

Since Y is compact, by passing to an appropriate subnet, we can suppose 
that 3y E Y such that y;~ ~ y. Then (xA,y~) ~ (x ,y)  and (xo, y~) -~ 

(xo, y). From (5.1), y E Z,  f ( x , y )  =< fl and f ( xo , y )  <= /3. From (5.3), 
x E Co. Thus Co is closed in C. Similarly, C1 is closed in C. Then (4.8) 
and (4.9) contradict the connectedness of C. This contradiction completes 
the proof of the Lemma. 

LEMMA 6. Let (~, ~ E R and ~ < ~. Suppose that, Y ~ < a, 3 N >= 1 
and ao, . . . , an <= t3 such that 

(6.1.1) 
(6.1) (6.1.2) 

(6.1.3) 

(6.1.4) 

Suppose that 

O~ 0 = ~, O~ N ..~ O~ and, 
Vto , t l  E X,  3 x  E X such that, Vn E {1 , . . . ,N} ,  

~,lx c ~.-lltoU__~_.]tl, 
O~nlX C ~_~toU O~n-1]tz, 

c u 2It1, 
c _ to u Lit1 

(6.2) v x e x ,  ~ x  n z # ~, 

Let 

(6.3) xo ,x l  E X ,  inf f (xo,  Z) > -0o  and inf f ( x l , Z )  > -~c .  

Then 3x E X such that 

(4.4) ~._.~Xo and ~..~Jxl are joined by ~_~_Jx M Z. 
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From (6.1.3), __~x N Z C 

(6.6) 

We next prove that 

(6.7) 
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PROOF. From (6.3), we can choose ( E R such that _(Jz0 N Z = .s N 
A Z - -  0. From (6.2), ( < a. Let N >__ l a n d a o . . . , a N  satisfy (6.1). If 
t E X and f(Jt A Z = !~ then, from (6.2), 

ao]tnz= (_]tnz=O a~d aNltnZ= a__JtnZr 
Thus B !g(t) r { 1 , . . . , N }  such that 

(6.4) 9( t )<_n<_N:,  a ,~ l tnZ#O and n = g ( t ) ~  a , _ l l t N Z = ~ .  

For i = 0 , 1  let u~ 
We fix ti E Ui to maximize g(ti) and choose x E X to satisfy (6.1.1)-(6.1.4). 
From (6.1.4), 

~xnZ =0. 

 lxnZ 

~ n ~ n z r  
If x r U0 the,,, from (6.5), ~_~Jx A Z r ~_~z0 and (6.7) follows from (6.6). If, 
on the other hand, x E U0 we set n := g(to). From the assumed maximality 
of g(to), 9(x) <= n. From (6.4), 

a,,Jznzr and . ~ _ l l t 0 n Z = ( b .  

From (6.1.1), ro~lx N tiff.jr1 n Z r 0. (6.7) follows since a~ <=/3 and t l r  Ua. 
This completes the proof of (6.7). We can prove similarly that __~z A_~ xo A 
N Z r ~. The result follows from (6.6). 

REMARKS 7". The numbering of the statements in these remarks is 
chosen to correspond with the numbering of the statements in Remarks 3. 
The credits are identical. 

(7.1) 

implies 

(7.2) { 

{ V to, h 6 X, 3 x E X such that, 
y r Y =~ f(x, y) >= [/(to, y) + f (h ,  y)]/2 

3 s C ( 0 , 1 )  such that, Vto, tl E X, 3x E X such that, 
y r Y =~ f(x,y)  >= (1 - s)[(to, y) V f(tl,y)] + s[f(to,y) A f(tl,y)] 
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which implies 

(7.3) 

3 a nondecreasing function a" : R + ---, t t  + such that 

> 0 ~ r(~)  > 0 
and Vto, tl E X,  3x  E X such that, 

y ~ Y ~ f ( x , y )  > f(to,  y) ^ f ( ta ,y )  + r(If(to,  y) - f ( t l , y )[ )  

which implies 
(7.4) 

r e  > O, 3 ~ > 0 such that, V to, tl E X,  3 x E X such that, 

y E Y and If(to, y ) -  f( t l ,Y)I >-_ e =v f ( x , y )  >_ f ( to ,y )A  f ( t l , y )  + 
and y E Y =~ f ( x , y )  > f( to,y)  A f ( t l , y )  

which implies tha t  (6.1) holds if r < a </3.  If ~o is a suitable averaging or 
mean  funct ion 

(7.5) { Vto , t l  E X,  3x  E X such that, 

y E Y =v f ( x , y )  > ~v(f(to,y), f( t l ,y))  

also implies tha t  (6.1) holds if r < a </3.  
The  following more abstract  result can be used to prove both  L e m m a  

2 and L e m m a 6 .  Let U a n d V  be nonempty sets, B : U--* 2 V, a n d V n  E 
E { 1 , . . . ,  N},  D,~ : U ~ 2 y.  Let Do = O. Suppose that, 

and 

Vto,ta E U, 3u E U such that, V n E { 1 , . . . , N } ,  

D n - l t o = O  and B u M B t l  =O=~ Dnu=O,  

Dn-lta = O and Bu N Bto = O =~ Dnu = O, 
Bu C Bto U Btl.  

Suppose also that { B u } ~ u  is pseudoconnected and, V u E U, DNu ~ O. 
Then Y uo, ua E U, Buo N BUl ~ O. 

We note,  finally, tha t  (4.1) automatical ly holds if, Vy E Y,  f ( . ,y )  is 
quasiconcave in the sense of interval spaces. 

Applications of  Theorem 1 

For Theorems 8 and 9, we suppose tha t  Y is a topological space, /~ is a 
n o n e m p t y  subset of R ,  i n f B  = sup i n f f  and, V/~ E B, 

X Y 

(s.1) ~/x E X,  _~x  is nonempty,  closed and compact ,  
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and either 

(8.2) V nonempty finite subsets V of X, LE(V, fl) is connected 

or  

' / f > 3 , > / 3  and x E X , . _ ~ x  is closed and 

(8.a) [ > 1 and e R such that (2.2) holds. 

(The choice can depend on ft.) We point out that the "nonempty" as- 
sumption in (8.1) automatically holds if either, V/~ E B,/~ > sup i n f f  or, 

X Y 
V z E X,  min f ( x ,  Y )  exists. 

THEOREM 8. Let Y be compact, X be a topological space and, ~/ /3 E 13 
and xo, xl E X,  3 a connected subset C of X such that 

(4.1) C ~ XO, X 1 and,  Vx E C, ._if_ix C __~x0U __~.JXl 

and 

Then 

{ ( x , y ) : x  E C, yG Y, f ( x , y )  <=/3} is closed i n C x  Y. 

min sup f = sup inf f. 
Y X X Y 

PROOF. Let fl E B. By assumption, (1.1) holds and, from Lemma 2 if 
necessary, if W is finite then (1.2) holds. From Lemma 5 with Z := Y, 

if W = $ then (1.3) holds. 

Now suppose that n _>_ 1 and 

if card W __< n -  1 then (1.3) holds. 

From the proof of Theorem 1, if card V < n + 1 then LE(V,/3) ~ $. Thus 

if card W < n and Z = LE(W,  fl) then (5.2) holds. 

From Lemma 5, 
if card W < n then (1.3) holds. 

Thus we have proved by induction that 

if W is finite then (1.3) holds. 

The result follows from Theorem 1. 
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(9.1) 

OF~ 

(9.2) 

Then 

TItEOREM 9. Suppose that either 

V/3 E B,/3 > sup inf f, X is a topological space and, 
X Y 

VXo, Xl E X, 3 a connected subsetC of X 
such that (4.1) holds and 

Vy E Y, {x : x E C, f (x ,y)  </3} is open inC. 

{ V/3 E B, fl > sup inf f,  
X Y 

Vr < a </3, 3N  > 1 andao, . . . ,aN </3 such that (6.1) holds 

andVx E X,  inf f ( x , Y )  > - ~ .  

min sup f = sup inf f .  
Y X X Y 

PROOF. By assumption, V/3 E B, (1.1) holds and, from Lemma 2 if 
necessary, if W is finite then (1.2) holds. From Lemma 4 or Lemma 6 with 
Z : ~  Y ,  

if/~ 
Now suppose that n > 

i f f l E B  

E B and W = 0 then (1.3) holds. 

1 and 

and card W < n - 1 then (1.3) holds. 

If/3 E B, we choose a E B such that c~ </3. From the proof of Theorem 1 
with/~ replaced by ~, if card Y ~ n + 1 then LE(V, a) ~ 0. Thus 

if fl E B, card W ~ n and Z = LE(W,~) then (4.3) and (6.2) hold. 

From Lemma 4 or Lemma 6, 

if fl E B and card W __< n then (1.3) holds. 

Thus we have proved by induction that 

if/3 E B and W is finite then (1.3) holds. 

The result follows from Theorem 1. 

REMARKS 10. The minimax theorems referred to in the introduction 
that depend only on connectedness follow from either Theorem 8-(8.2) or 
Theorem 9-(8.2, 9.1). Those that depend on algebraic conditions, and their 
set-theoretic generalizations follow from Theorem 9-(8.3, 9.2). Those that 
mix algebraic conditions and connectedness follow from Theorem 9-(8.2, 
9.2). Theorem 8-(8.3) and Theorem 9-(8.3, 9.1) give new results. We 
remark, finally, that in Theorem 8 and Theorem 9-(9.1), C can depend on 
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