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A b s t r a c t  

In this paper we first introduce the concept of  probabilistic interval space. Under 

this framework, a new version of KKM theorem is obtained. As application, we utilize 

this result to stud), some new minimax theorem, section theorem, matching theorem, 

coincidence theorem and f ixed  point.theorem in probabilistic metric spaces. The results 

presented in this paper not only contain the main result of yon Neumann [71 as its 

special case but also extend the corresponding resul tsof  [I, 3, 4, 6, 8] to the case of  

probabilistic metric spaces. 

Key words probabilistic metric space, probabilistic interval space, 

chainability, W-chainability, coincidence point 

I. I n t r o d u c t i o n  and Pre l iminar ie s  

As it is known to all, the K K M  theorem plays an important role in the theory of 

nonlinear functional analysis. 
Since 1929 the Polish mathematicians Knaster, Kuratowski and Mazurkiewicz established 

the famous K K M  theorem in finite dimensional space [5], in 1961, Ky Fan extended this 

theorem to the case of infinite dimension spaces. Recently, K K M  theorem has been extended 

and generalized in Various directions by many mathemati.cians to study a large class of. 

problems arising in variational inequalities, minimax and coincidence •point theory, etc. 

The purpose of this paper is to introduce the concept  of probabiiistic interval space. 

Under this framework, by using the chainability to replace the convexity, a new version of 

K K M  theorem is obtained. As applications, we utilize this result to study the minimax 

problem, coincidence point problem, section theorem and matching theorem in probabilistic 

interval space. Our results not only contain the following theorem which is the main result of 

yon Neumann rr] as its special case: 

T h e o r e m  A Let M and N be two finite dimensional simplexes, f :  M × I V ~ R  be a 

continuous function such that x , - - , , f ( x ,  !/) is quasi-concave and , y , - - , f ( x ,  11) is quasi- 
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convex. Then 

s u p  i n f  / ( x ,  y )= in f  s u p  f (x ,  y) 
z r c M  " y ~ N  ~ r ~ N  ~ - M  

but also extend the corresponding results in Komorink 16~, Fan t3. 41 Chang and Mam and Park N 

to the cases of  probabilistic metric spaces. 

Throughout  this paper, the concepts, notations, terminologies and properties relating to 

probabilistic metric spaces are adopted from [2, 9, 12]. 

In the sequel, we denote by ~,F(X) the family of  all nonempty finite subsets Of X. 

D e f i n i t i o n  1.1 Let Z be a linear ordered space. (1) Z is called to be c o m p l e t e ,  if each 

nonempty subset in Z has a least upper bound; (2) Z is called to be d en se ,  if for any 

a, fiEZ, a~f l ,  then there exists a ~EZ" such that a~d~f l .  
In the sequel, we always assume that Z is a complete dense linear ordered space. 

D e f i n i t i o n  1.2 . Let (X, .~-) be a probabilistic metric space, and D~X.  be a subset. D 

is called to be c h a i n a b l e ,  if for any a, beD and for any e ~ 0 ,  )oE(0, 1] there exists a 

finite subset {a=po, p~, ..., P,~-l, p, ,=b}cD such that F0~, pj_~(e) > 1 - 2  (i---1,  

2, .-., n) . The set{p0,  P! ,  - ' . ,  P ,}  is called a (e , ~.) .-chain joining a a n d &  

In what follows, we" always assurhe that the empty set q~ is chainable. 

D e f i n i t i o n  1.3 Let ( X ,  ~ r  ,d) be a Menger probabilistic metric space. ( X ,  ..~-, 4 )  

is called a p r o b a b i l i s t i c  i n t e r v a l  space ,  if there exists a mapping [ . ,  • ] I X  × X---~2 x such 

that for any x t ,  x2EX, [x~, xz] -~ [xz, xt]  is a chainable subset in X containing x, and x2. 

The set Ix,, x2] is called a probabilistic interval in X. 

D e f i n i t i o n  1.4 Let ( X ,  J ' ,  ,d)  be a probabilistic interval space. A subset D~_.Y is 

called W-eha inab l e ,  if for any x~, x2eD, then [x,, x2]cD; f . . X o Z  is called probabilistic 

q u a s i  c o n v e x  ( resp .  c o n c a v e ) ,  if the set {xEX:  f ( x ) ~ r }  ( { X E X : f ( x ) ~ r } )  is W- 

chainable for all r~Z. 
D e f i n i t i o n  1.5 [6] Let X be a topological space. A mapping f :  X->Z is called u p p e r  

( resp .  l owe r )  s e m i - c o n t i n u o u s ,  if for any feZ, the set { x ~X :  f ( x ) ~ r [  (resp. {xEX: 
f ( x )~r } )  is closed; f.. X ~ Z  is called u p p e r  c o m p a c t ,  if for any r~Z, the set 

{ x E X . f ( x ) ~ r }  is compact. 

R e m a r k  If  X is compact and f :  X-~Z is upper semi-continuous, then f must be upper 

compact. 

D e f i n i t i o n  1.6 A probabilistic interval space ( X ,  ~" ,  ~f) is called to be D a d e k i n d  

c o m p l e t e ,  if for a n y x l ,  x~.EXand for any W-chainable subsets H~,//2 in X with xtE/r-/~, xzC 

/l~. and [x~, x:] ~ h r l  UH2 then there exists an XoeX such that either xoeH~, [x2, xo): = 

[x~, Xo]\{x~}~H~ or x0~H~ a n d [ x l ,  xo)~Hl .  
A Dadekind complete probabilistic interval space ( X ,  J ' ,  z / )  is called a s t r o n g l y  

D a d e k i n d  c o m p l e t e ,  if for any x,, x~eX and for any n points u:, ---, u .~[x~,  xzt , then 

P r o p o s i t i o n  1.1 The intersection of any family of W-chainable subsets in probabilistie 

interval space is still W-chainable (we stipulate that the empty set t~ is W-chainable). 

P r o p o s i t i o n  1.2 Let (~' ,~W,,/J) be a probabilistic normed linear space and X be a 

nonempty convex subset of  E. Then X is a strongly Dadekind complete probabilistic interval 

space, where [x,, x:]:=co{x,, x~} for all x ~ ,  x o ~ X  . 

P r o o f  It is obvious that ( X ,  oW, zl)  is a probabilistic metric space, where 
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~ ( a .  b ) ' ~ o ~ - ( a - b ) ,  i .e. ,  F, .~:----Fa_b for all a, b~X. 
Next, we prove that any connected subset M in X is chainable. 

"Suppose the contrary, there exist e>  0 and 2e(0,1] and x, y e M such that there is no any 

(e, 2)-chain joining X and y in M. Let A be the subset of all points in M such that each point 

in A can be joined with X using a (e, ).)-chain. Denote B = M\A, then XsA and y EB. 

If  there exists a pEA N B , then there exists a qeB such that /vp, q ( e ) ~  1 -3 .  , and so 

q~A. Hence qEAN B ,  a contradiction (since A f3 B=qb ). This shows 'AN B=dO." 
Similarly, we can prove that A N B~-~-dp. This implies that A and B are separated. 

However M = A  U B. This contradicts M being connected. The desired conclusion is proved. 

Because Ix , ,  xz]:  = e o { x t ,  x~} , therefore [x~, x2] is a chainable subset in X containing 

x, and x2. This implies that ( X ,  ~ ' ,  z / )  is a probabilistic interval space. By Lemma 1 in 

[1'1], we know that Jf is Dadekind complete, and hence ( X ,  ~ ' ,  ,d) is Dadekind complete 

probabilistic interval space. 

Besides, for any xl, x,_~X and for any '  z l ,  .-., z,E[xj, x~) letting z ~ = ( 1 -  

/~)Xl~--[-/~tXl , then 0 < 2 t ~ l .  Let 2 = m i n { A ,  i = 1 ,  ..-, n} , then 0<~2~1.  

Taking x o =  (1--.,t)xzq-~,xi, we have xoE[xj, x~). Again taking a~--).t2 ,, we h a v e 0 ~ a i ~ l ,  

i = 1 ,  2, ..., n and x0=(1-cr~)x=-l-a~z~,  i~--l, 2, . . . ,  n. This implies that x0E [3 [z i ,  xz)- 
i = l  

Therefore ( X ,  ~ ' ,  z / )  is a strongly Dadekind complete probabilistic interval space. 

This completes the proof. 

As pointed out in [10] that if ( X ,  o~-, z / )  is a Menger probabilistic metric space with 

a continuous t-norm,d, then X is a Hausdorff  topological space in the topology induced by the 

family of  (E, ;.)-neighborhoods {U~(e, 2)" pEX,  e ~ 0 ,  2~>0} , where Up(e, 2)= 
{xE.X: F~ ,p (e )~ l -2} .  

A subset D in a probabilistic interval space ( X ,  ,~-, zl) is called to be i n t e r v a l  c l o s e d  

( r e sp .  o p e n )  if for any interval Cxl, x2] ~ X ,  Drl [xl, x~] is a relatively closed (resp. 

open) set in [x~, x2]. 

A subset D in a topological space X is called c o m p a c t l y  o p e n  ( resp .  d o s e d ) ,  if for 

any compact subset M in X, D 0 M is.a relatively open (resp. closed) set in M. 

Let X and Y be tWO topological spaces, we denote by 8' ( X ,  Y) the set of  all continuous 

mappings from ) / i n to  Y, and we denote 

8 " ~ ( X ,  Y).:={sES" (X,  Y):  s -~ makes any connected subset in Y 

a connected subset in X}. 

II. N e w  V e r s i o n s  of  KKM T h e o r e m  in Probabi l i s t i e  In terva l  Spaces  

In order to prove our main results, we need the following lemmas: 

L e m m a  2.1 Let (X~ ~'~ z/)  oe a probabilistic interval space, Y be a nonempty set 

and G:X--,~2 r be a mapping. Then for any 9.EY, X\G-~(p) is W-chainable if and only 

i f  for  Xx~ x ~ X ,  we have G(x) ~ UG(x~) for all xG[x~, xz]. 
I = l  • 

P r o o f  If for any ~ eY, the set XkG =~ (9) is. W-chain~ible, then for any x~, x~G.Xand 

for any xE[x~, x~ when y~G(x~) O G ( x z ) ,  we have {x~, x~}~X\G-~(p),  an so 

[ x ~ , x ~ X \ G - ~ ( V ) .  Therefore xqSG';l(!]) , i. e., !¢q)G(x). This implies that G ( x ) ~  

U G(xi) for altx~[x~,~ x~]. 



1012 Zhang Shisheng, Yeol Je Cho and Wu Xian 

Conversely, if for any xt~ xzEX and for any  xE~[pq, xz], G(x) c OG(x , ) .  Hence for 

any y eY, any a~ bEX\G-~(y) and for any xE[a~ b] , since a, b~G-~(y), we know. 

that vq~G(a)UG(b). Since G ( x ) c  G(a) UG(b), we have yq~G(x), i. e., 
xEX\G'~.(B), and so [a, b] cX\G=i (y). This implies that X\G- '  (y) is W-chainable. This 
completes the proof. 

L e m m a  2.2 Let ( X ,  5 r ,  zst) be a Menger probabilistic metric space (M-PM space), 

let {p ,} ,  {q~}cX be two sequences such that p~--->p, and q~-)q. If Fp,..q.(~-)>l I n  
for all heN (the set of all natural numbers), then p = q. 

P r o o f  For any ~>0 and 2>0,  it follows from the continuity of Lf that there exists a, 

At(0,  1] such that , d ( 1 - ~ ,  1 - A t ) > l - - A .  Hence there exists n~EJV large enough 

1 . 
such that whenever n>.~no we have n < m l n { , f ,  ?/} and F p ~ . ~ ( 2 ) > l , 2 ' .  

Therefore for any n~no we have 

>~,d(1-A', 1-;t') 
>1 - a  

This implies that q.---~p. Since q,,-->q, we have p=q 
This completes the proof. 

T h e o r e m  2.1 Let (X~ .9", L/) be a probabilistic interval space with a continuous t- 

norm,d ,  ( y ,  oW, z~') be a strongly Dadekind complete probahilistic interval space with a 

continuous t-norm ,~ 'and G: Y--,2 'r be a mapping with nonempty compact values. If the 
following conditions are satisfied: 

(i) For any AEdF (Y) ,  f7 Gfy) is chainable; 
l E A  

(ii) For any xEX~ Y\G-'  (x) is W-chainable; 

(iii) For any xEX,  G-l(x) is interval closed; 

then N G(y )  : # 6 .  
ICY 

P r o o f  First we prove t h a t { G ( y ) -  BEY} has the finite intersection property. We use 
induction to prove. 

Since G has the nonempty values, for any BEY~ (~(Y):#~?. Suppose that for any n 

elements of {C2(B): vEIl}  their intersection is nonempty. Now we prove that fo r any n + l  

elements of {G(Y)t BEY} their intersection is also nonempty. Suppose the contrary, then 
))+1 n + l  

there exists {YJ, "", Y~+t}~Y such that N G(yt)----~p. Letting H-----N G(W),  then we 
have t - l f = 3 

(H N G(v,) ) N (H n G (v~) ) =4, (2.1) 

By the assumption of induction and condition (i) we know that 
t-i N G(y)  is nonempty and chainable for all y ~Y ( 2  2) 

By condition (ii) and Lemma 2.1, for any u, v eY we have 

G(.v) c G ( u )  UG(v)  f o r a l l  yE[,~, v] (2.3~ 
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Especially we have 

~'(y) cG(yl)  UG(y~) for all YE[Y,, Y~J (2.4) 

Therefore we have 

HN G ( y ) c ( H N  G(yi) )  U ( H A  ~(y~)) for  all yE[yL, Yz] 

It follows from the chainability of HN G(y) and (2.1) that for any yE[YI~ y2J~we must 

have that 

either H fl G (y) c H  N G(yl) or / / [7  G (y) c H  f'l G (y~) (2.5) 

In fact, if there exist xl, x~E//NG(y) such that x1~HVIG(y2),  and x t ~ H N  
G(yl) . Hence x~EHN G(y~), i = l, 2_ Since H f) 6"- (y) is chainable for all nEN (the set of all 

( ~ 1 )  . . . .  joining x, natural numbers), there exists ~ - ~  -chain and x2 in/-/I-) G(y).  Therefore 

there exist a,E/~- ['1 G(y,)  and b,,EI-I N G(y~) such that 

1 Fa., b . ( - '~ )>  1 n 1 

On the other hand, since /-/N G(y~) is compact (i= 1, 2), without loss o f  generality we can 

assume that a,,~aEHNG(9t) , b,--)bEHflG(yz). By Lemma 2.2 we have a=b. This 
contradicts (2.1). Thus (2.5) is true. 

Denote E~----{yEY.- HN G(y) cHl ' l  G(y , )} ,  i = i ,  2. It is obvious that y,EE~ , i = 1 ,  2 

and [y~ ~ y~] c E ~  IA Ev  Again" by (2.3), we knowthat  El and E2 both are W-chaniable subsets 

in Y. By the Dadekin completeness of Y, there exist kE{ 1,2} and yoEE~, such that 

[Y~ Y0) ~E~,  where iE{ 1,2}~{ M, without loss of generality we can assume that k = 1, and 

so voEEj ~ [y~ , go) c.E~. Hence we get 

H n G(Yo)r"H fq G(y;) 

H N G ( u ) c H N G ( U ~ ) ,  foral lyE~u~,  Yo) ) (2 .6)  

Besides, since [ y ~  Ya] is chainable, for any neN there exists p~E[y~ Yo) such that 

This implies that P.--~Yo. 
II 

Since Y is strongly Dadekind complete, for any{u~ .-.~ u=}~[/h~ Y0), N [tq,Vo) N 
t = l  

[Y2, yo)q=d~. Therefore there exists a ~E[u~ Y0)lq [Y~ W) , i = 1, 2, . .... m. It follows 
from (2.3) and (2.6) that 

t ' ING(~)c-HN (G(u,) U G ( w ) ) N  (Hf lG(y t ) )~I - tNG(u , ) ,  i=1, 2 . . . . .  rn 

Since it/17 G(e)=#t~ , / - /nG(u~)~d~.This  implies that { / / f i G ( y ) .  YE[B,~ y0)}has the 
t * !  

finite intersection property: Since H N (7 (y) is compact for any B~Y, 17 H f117(//) ~dp. 

Therefore there exists an xo~X such that x0E 17 H I"1 G (~ , )~  ~/-/17 G ( # , ) .  
i~[Vt.y0) =-t 

This implies for any hEN, x~EG(p,), i. e., lor any nEN, p,,EG-' (x,). Hence {p,,} c-- 
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G-a(xo)('l LY2, Yo] • It follows from p,->y~ and condition (iii) that poEG-l(xo), i_ e., 

xoEG(vo). 
O n  the other hand, in view of xoEPiNG(II,) and condition (2.1), we know that 

x0 ~ ):/A G(bq) . B y  (2.6), x0 ~ / - / N  C (g0) , and so xD ~ G (Be), a contradiction. This shows 

that the intersection of any n +  1 elements in {6 (9) : gEY} is nonempty. 

This implies that. {G(.y): 11E~} has the finite intersection property.  Since G( /1 ) is 

compact for all !I 6Y, Iq G(.y):#qb. 
FE¥  

C o r o l l a r y  2.1 Let (.X~ .Sr-~ .d) be a probabilistic interval space with a continuous t- 

norm,d , (Y~ o ~  z~)be  a strongly Dadekind complete probabilistic interval space with a 

continuous t -norm,~  and Gi Y-->2 x be a mapping with a nonempty compact W-chainable 

values. If  for any xEX~ G-l(x) is interval closed, and Y\G-~(x) is W-chainable, then 

N a(y)  ~ ~. 
~tE ¥ 

C o r o l l a r y  9..9~ Let (X9 5 r ,  z/) be a probabilistic interval.space with a continuous t- 

norm J ,  ( ~ ,  ~ ,  Z~) be a probablllStic normed linteaf space with a continuous t-norm z~, 

Y be a nonempty convex subset in ~,, and G. Jd-->~.a" be a mapping with nonempty W- 

chainable values_ If  for any xEX,  G -~ (x)N co{lily U2} is a relatively closed set in co{y~ 

Y~} for ally,  ,Y'2 ~Yand  Y\G-~(x) is convex. Then f'IG(V)q=dO. 
iE #- 

P r o o f  For any Y, , W EY, letting EYI~ Y2! : = o o {v l  ~ Yz}, by Proposition 1.2, We know 

that Y is a strongly Dadeking complete probabilistic interval .space. Therefore the conclusion is 

obtained from Proposition 2.4. 
R e m a r k  Theorem 2.1, Corollaries 2.1 and 2.2 are all the versions of K K M  theorem 

which are first established in probabilistic metric spaces. These results generalize and unify 

many recent results related to K K M  theorem. 

II! .  Minimax Inequalities inProbabilistie Interval Spaces 

T h e o r e m  3.1 Let (X~ J-~ z/) be a probabilistic interval space with a continuous t- 

norm J ,  ,(Y~ ~,~ /~) be a strongly Dadekind complete probabilistic interval space with a 

continuous t-norm z~ and qo: A r × Y--> Z be a mapping satisfying the following conditions: 

(i) For any A E J r ( Y )  and for any rEZ, ~ {xEX}: cp(x, y)~-r} is chainable; 
3' 6A 

(ii) For  any t.ICY, qJ(', !I) is upper compact; 
(iii) For any xEX,  cp (x, .) is probabilistic quasi-convex and is upper semi-continuous 

on any probabilistic interval of Y. 

Then 
z ~ : = s u p  inf~0(x, y)---- inf sup,p(x,  V ) ' = z  ~" 

P r o o f  First we prove that  z . ~ z * .  
Suppose the contrary, then Z.J~z * i By the density of Z, there exists an c~6Z such that 

z . ( a ~ . z * ,  Now we define a set-valued mapping G: )'--->2 x as follows: 

G ( y ) : = { x E X .  qa(x,, y ) ~ a } ,  for a l l y E Y  

By conditiorI (ii), for any BEY, G:(B.) is compact. By the choice of ~, for any y~Y,  
G(U):#~b- Again by condition (i), we know that the condition (i) in Theorem 2.1 is satisfied. 

o n  the other hand for any xEX we have 
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Y\G- ' (x)={BEY' .cp(x ,  y )<a}  

By the probabilistic quasi-convexity of q~(x, .) ,  Y\G- I ( x )  is W-chainable. This implies 

that the condition (ii) in Theorem 2.1 is satisfied. Besides, for any probabilistic interval 

[Yu Y~, G-~(x)(]  [Yb Y~J=lY~LY:, P ~ :  q~(x, y )~a} .  By the assumption that 
q0(x, .) is upper semi-continuous on any probabilistic interval in Y, we know tha t  

G-~(x) N [yl, Yz] is a relatively closed subset in[y t ,  y~]. This implies that the condition (iii) 

in Theorem 2.1 is satisfied. By Theorem 2.1, f] Gfy)4:qb • Therefore there exists an ~EG(y)  
y E Y  

for all 9EY', i. e., q)(.~, y ) ~ a  for all y eY. Hence infq~(e, Y ) ) a .  Therefore 
i, ral ,  

s u p  infq~(x, y ) ~ a ,  i .e . ,  z ~ a .  This contradicts the choice of ~. Therefore 
z ~ X  y ~ y  

z ~ z  ~ is proved. 

On the Other hand, it is easy to prove z'~z_~. Hence z~- .z  ~. 
This completes the proof. 

C o r o l l a r y  3.1. Let (X,  J - ,  ,d) b e a probabilistic interval space with a continuous t- 

norm z/, (Y, ~ ' ,  z~) be a strongly Dadekind complete probabilistic interval space with a 

continuous t-norm z~, and q0: X x Y-->Z be a mapping satisfying the following conditions: 

(i) for any yEY ,  cz(., y) is  upper compact and probabilistic quasi-concave; 

(ii) for any xEX,  qg(x, • ) is probabilistic quasi-convex and it is upper semi-continuous 
on any probabilistic interval of Y. 

Then 

s u p  infqJ(x,  y ) = i n f  supq~(x, y) 
z ~ X  y ,~Y ~CY x E X  

C o r o l l a r y  3.2 Let (X ,  f ,  z / ) b e  a probabilistic interval space with a continuous t- 

norm A, (/~, ~ ' ,  zJ) be a probabilistic normed linear space with a continuous t-norm ~ ,  Y 

be a nonempty convex subset in ~', and q~. X × Y-~Z  be a mapping satisfying the following 
conditions: 

(i) for any yE}"-, ~p( . ,  y) is upper compact and probabilistic quasi-concave; 

q~ (x, • ) is quasi-convex and is upper semi-continuous on any segment (ii) for any xEX,  
in ]z. 

Then 

s u p  infq) (x ,  y ) - . i n f  super(x ,  y) 
z ~ X  y E g  g E Y  z ~ r  

P r o o f  The conclusion can be obtained from Proposition 1.2 and Corollary 3.1 
imrnediately. 

R e m a r k  Corollary 3.2 (and so Theorem 3.1 and Coro!lary 3.1) not only contains the 

main result in Neumann fvj as a sFecial case but also extends Theorem 3 in V. Kom0rinik f6j to 
the case of probabilistic intervar" spaces. 

IV. S e c t i on  Theorem~ and Matching  T h e o r e m s  

The following section theorem is equavalent to Theorem 2.1. 

T h e o r e m  4.1 (Section Theorem) Let (.X:, J ,  z l)  b e a  probabilistic interval space 

with a cdntinuous t-norm zJ; (F', ~ ' ,  Z~') be a strongly Dadekind complete probabilistic 

intei-val space with a continuous t-norm 2:  and . A c X  × Y be a subset. If the following 
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conditions are satisfied: 

(i) for any11,~Y, the section .A(y)'={xE.X: (x, y ) E A }  is nonempty compact, and 

for any S E J ( Y ) ,  N A(V) is chainable; 
l/E,~ 

(ii) for any xEX~ A ( x ) : = { y E Y : ( x , v ) E A }  is interval closed, and Y \ A ( x )  is W- 

chainable, then there exists an g E X  such that {~} × y ~ A .  

P r o o f  Theorem 2.1 ~ Theorem4.1. 

For any yEY, let G(11)---A(11), then for any xeX we have G - l ( x ) = A ( x ) .  It is easy to 

claim that under the conditions in Theorem 4.1, all conditions in Theorem 2.1 are satisfied. By 

Theorem 2.1, there exists an ~EG(V') for all ,11EY'. This implies that there exists an ~EX 

such that { ~} × Y c A .  

Theorem 4.1 ~ Theorem 2.1. 

Under the conditions in Theorem 2.1, letting A----{(x, v ) E X x Y ,  xEG(B)}~ then 

A(11)----G(11) ~ A(x)----G -~ (x) for all x~X, V EY. Hence it is easy to prove that all conditions 

in Theorem 4.1 are satisfied. By Theorem 4.1, there exists an ~EX such that {$} × Y e A ,  
i.e. (~, B)EA for all 11EY. This implies that g E N G ( y ) .  Hence N G ( y ) q : ~ ,  

IrEF IEY 

C o r o l l a r y  4.1 Let ( X ,  ~ ,  z / ) ,  (Y, ~ ' ,  ~ )  and A be the same as in Theorem 
4.1. If  the following conditions are satisfied: 

(i) for any 11 ~Y, the section A( U ) is nonempty compact, W-ch.ainable; 

(ii) for any xeX, the section A( x ) is interval closed and Y \ A ( x )  is W-chainable~ 

t h e n  there exists an g E X  such that {~} × Y ~ A .  

R e m a r k  Corollary 4.1 generalizes the section theorem in Ky Fan t3j to the case of  

probabilistic interval space. 

C o r o l l a r y  4.$ Let" (X,  .9", ,d)  be a strongly Dadekind complete probabilistic 

interval space with a continuous t-norm A and A c X  × X be a subset. If  the following 

conditions are satisfied." 

(i) for any y ~X, the section At(11) : = { x E X :  ( x ,  y)EA~ is compact W-chainable; 

(ii) for any x~X, the section Az~,,jr~:={yEX: (x~, y)EA} is interval c l o s e d a n d  

X\A2(x)  is W-chainable, then either there exists an  gEX such that ($, ~) ~ A or there 

exists an ~ E X  such that{.~} × X ~ A  . 
P r o o f  If  for any xEX,  (x, x )EA,  then all conditions in Corollary 4.1 are satisfied. It 

follows from Corollary 4.1 that there exists an ~eX such that {~} × × c A .  
T h e o r e m  4.9. Let ( X ,  .St, L/) be a strongly Dadekind complete compact 

probabilistic interval space with a continuous t-n0rm'A , (Y,  ~ ' ,  /A) be a probabilistic 

interval space and H:X-->2  r be a set-valued mapping with compactly open values. If the 

following conditions are satisfied: 

(i) for any. xEX,  I-I~(x) : = Y \ H ( x )  is W-chainable; 

(ii) for any vEY, Ig -~ (!I) is interval open; 

(iii) H(X)= Y, 
then for any s E g * ( X ,  v)e i ther  there exists an ~EX such that s(X)  f')/-/-~(.~)-----qb , or 

there exist x~, x2eX and an xoE[xt, xz] such that 

~-~ (H'(x0)  fl H (x~) N H (x~ ) 4= + 

P r o o f  For any given sGg*(X ,  Y),  if for any xeX, s (X)  f-IH'(x)--/=d~, then 
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letting G(x)=HV(x), we know that s - 'G .X~2  x is a set-valued mapping with nonempty 

closed vaues. By condition (i) and sE~*(X,  Y),  it is easy to know that s-'G satisfies the 

condition (i) in Theorem 2.1. Besides, for any xEX,  (s- lG)- l (x)=G-1(s(x))=X\  
H- '(s(x)) .  By condition (ii), we ,know that ( s - ' G ) - ' ( x )  is interval closed. This implies that 

s-'G satisfies the condition (iii) in Theorem 2.1. 

Next we prove that there exist x~, x~eX and XoE[Xl, x~] such that s-t(H~(xo)fl 
H(xx)lq H(x2))q=d?. Suppose the contrary, for any x~, x~X and for any xE[xl, x~] we 

have 

s-l( H~(x) N H (x~) fl H ( x ~ ) ) = +  

Hence we have s(z)~H(xl)fqH(x~) for all z6s-l(l~:c(X)), a n d  so s(z)E 
He(x1) U He(x2) ,  i. e., zEs-tG(xl) lJ s-~G(x2). Therefore we have s-lG(x) ~s - lG(x f )  U 

s-~G(x~). By Lemma 2.1, we know that s- 'G satisfies the condition (ii) in Theorem 2.1. It 

follows from Theorem 2,1 that fls-tG(x)~d~, and so fqG(x)4:qb,  i~ e., Y\H(X)4=+. 
z E X  z E . Y  

This contradicts condition (iii). Therefore the conclusion of Theorem 4.2 is true. 

C o r o l l a r y  4.8 Let (X ,  j r  A)  be a strongly Dadekind complete compact 
probabilistic interval space with a continuous t-norm ,d and H : X ~ 2  x be a set-valued 

mapping with open values. If. the following conditions are satisfied: 

(i) for any x~X, H~(x) is W-chainable; 

(ii) for any/1 e~Y, H-I ( / / ) i s  interval open; 

(iii) .H(X) = X and for any xEX, H(x) ~ X, 
then there exist x,, x:~X and xoE[xl, x~] such that He( xo) [q H (xl ) N H (H2)~d? . 

P r o o f  Taking s=I (the identity mapping on X) in Theorem 4.2 and letting Y=X, then 

all conditions in Theorem 4.2 are satisfied. Besides since for any xeX, H(x)~X, we know that 

s(X)~He(x)4=+ for all xeX. By Theorem 4.2, there exists x,, x~X and xo~ [xa, x~] such 
that 

H°(xo) N H(x x )  N H (x~)--I= + 

R e m a r k  Theorem 4.2 is a new version of matching theorem in probahUistic interval 

space. It can be compared with the matching theorems in Park t81, Fan 14j and Chang and Ma [q. 

V. C o i n c i d e n c e  P o i n t  T h e o r e m s  a n d  F i x e d  P o i n t  T h e o r e m s  

T h e o r e m  5.1 Let (X ,  . ~ r  z/)  be a strongly Dadekind complete  compact 

probabilistic interval space with a continuous t-norm z~, (Y, ~ )  be a probabilistic metric 

space, sEg'*(X,  Y) be a given mapping and G:X--~2 r be a mapping with compactly 
closed values. I f  the following conditions are satisfied: 

(i) for any AE~P ' (X) ,  0 G(x) is chainable; 
z E A  

(ii) for any y eY, G-I(y) is interval closed; 

(iii) s(X) f) G ( x ) ~  for all xeX; 
(iv).for any xEX, X\G-l(s(x))  is W-chainable. 

:then there exists an ~EX such that s (~)EG(~) .  

P r o o f  Now we consider the set-valued mapping s-IG.X-->2 x . Since G is compactly 

closed values, by (iii), s- 'G has nonempty compact values. Again by coiladition (i) and sE ~' * ( X ,  

Y), s-lG satisfies the condition (i) in Theorem 2.1~ From conditions (ii) and (iv), we know 
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s-'G satisfies conditions (iii) and (ii) in Theorem 2.1. Therefore we have n s-tG(x)4=+, and 
• ~ 

so there exists an ~EX such that eEs-lG(x) for all x~X, i. e. s (~)EG(~ ' ) .  

This completes the proof. 

T h e o r e m  5.2 Let ( X ,  ~'-, z/)  be a strongly Dadekind complete compact 

probabilistic interval space with a continuous t-norm z/, (Y, ~ ' ,  z2J) be a probabilistic 

interval space, G.X--->2 r be a set-valued mapping with compactly open values, sES"c~(X, 
Y).  If the following conditions are satisfied: 

(i) for any xEX,  G°(x) :----Y\G(x) is W-chainable; 

(ii) for any xEX,  G-l(s(x))interval open and W-chainable~ 

(iii) G(X)= Y, 

t here exists an $~X such that s (~") EG (~). 

P r o o f  Considering the proof of Theorem 4.2, we know that for given s E ~  ~(X,  Y) , 

if the condition (ii) in Theorem 4.2 is replaced by "for any xEX, H- t ( s ( x ) )  is interval open", 

then the conclusion of Theorem 4.2 is still true. 

On the othe r hand, for any x~, x2~X and for any xE[xj, x~], if zEs-~G(xl) N s-~G(xz), 
then s(z)EG(xl) (1G(xz), and so {xi, x2~cG-l(s(z))  . Since G-l(s(z))  is W-chainable, 

[xl, x2~cG-l(s(z))  , and hence xE G-l(s(z)), i. e. ,s(z)EG(x).  Hencez~.s-lG(x). 
This implies that s-*G(xl) fl s-~G(x2)~s-~G(x). Besides, since s-*(GO(x) ) =X\s-~G(x),  
we have 

s-I(G°(x) N G(x,,) N G(xzl )~-+ 

By Theorem 4.2, there exists an e E X  such that s(X) ('1G~(~,) ----+, i. e., s (X)~G(~,) ,  and so 

s(e)EG(~").  This completes the proof. 

Especially, if s is an identity mapping on • X~ and Y= X, we can obtain the following fixed 

point theorem: 
C o r o l l a r y  5.1' Let (X ,  ~ ' ,  A)  be a strongly Dadekind complete compact 

probabilistic interval space with a continuous t-normA, and G. X o 2  x be amapping  with 

open values. If the following conditions are sat]stied: 

(i) for any xEX, G~(x) :----X\G(x)is W-chainable; 

(ii) for any x E X ,  G-~(x) is interval open and W-chainable; 

(iii) G(X) =X, 

then G has a fixed point in X. 
• T h e o r e m  ft.8' Let (X ,  3", A)  be a strongly Dadekind complete probabilistic 

interval space and G:X ~2 x • If the following conditions are satisfied: 

(i) for any vGX, G~(9) : =X\G(N)  is compact W-chainable; 

(ii) for any xEX,  G-~(x) - is noneml:/ty and interval open, and X\G-a(x)  is W- 

chainable, 

then G has a fixed poin in X. 

P r o o f  Letting A = { ( x ,  v } E X × X ,  x ~ G ( v  } , t h e n  

-A,_(B):={xEX: (x, 9 ) E A } = l x E X ,  x~G(V)}_=G*(V) 

A~(x)'={vEX.. (x, v)EA}= X\G-'(x) 

It follows from conditions (i) and (ii) that all conditions in Corollary 4.2 are satisfied. On the 

other hand, since G-t(x)--/=dp • for all xeX, there exists a 9EG'-t(x) , and xEG(v) ,  i. e. 
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(x, y) ~ ~i . Hence for any x~X, we have {x} × X ~ A .  By Corollary 4.2, there exists an ~ X  

such that (~, ~) ~ A , i .  e. ~EG(~) • This implies that G has a fixed point in ~. 
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