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Abstract
In this paper we first introduce the concept of probabilistic interval space. Under
this framework, a new version of KKM theorem is obtained. As application, we utilize
this result to study some new minimax theorem, section theorem, matching theorem,
coincidence theorem and fixed paint_- theorem in probabilistic metric spaces. The results
présented in this paper not only contain the main result of von Neumann™ as its
special case but also extend the corresponding results of [1, 3, 4, 6, 8] to the case of

probabilistic metric spaces.

Key words probabilistic metric space, probabilistic interval space,
chainability, W-chainability, coincidence point

I. Introduction and Preliminaries

As it is known to all, the KKM theorem plays an important role in the theory of

nonlinear functional analysis.
Since 1929 the Polish mathematicians Knaster, Kuratowski and Mazurkiewicz established

the famous KKM theorem in finite dimensional space [5], in 1961, Ky Fan extended this
theorem to the case of infinité dimension spaces. Recently, KKM theorem: has been extended
and generalized in various directions by many mathematicians to study a large class of:
problems arising in variational inequalities, minimax and coincidence _pdint theory, etc.

The purpose of this paper is to introduce the concept of probabilistic interval space.
Under this framework, by using the chainability to replace the convexity, a new version of
KKM theorem is obtained. As applications, we utilize this result to study the minimax
problem, coincidence point problem, section theorem and matching theorem in probabilistic
interval space. Our results not only contain the following theorem which is the main result of
von Neumann! as its special case:

Theorem A Let M and N be wwo finite dimensional simplexes, f, M x N>R be a
continuous function such that x—f(x, y) Is quasi-concave and y—f(x, y) is quasi-
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convex. Then

sup inf f(x, y)=inf sup f(x, y)
zeM gEN ¥yEN ze€M

but also extend the corresponding results in Komorink!®, Fan™ %, Chang and Ma" and Park®
to the cases of probabilistic metric spaces.

Throughout this paper, the concepts, notations, terminologies and properties relating to
probabilistic metric spaces are adopted from [2, 9, 12].

In the sequel, we denote by _# (X ) the family of all nonempty finite subsets of X.

Definition 1.1 Let Z be a linear ordered space. (1) Z is called to be complete, if each
nonempty subset in Z has a least upper bound; (2) Z is called to be dense, if for any
a, PEZ, a<f,then thereexistsa SE€Z such that e<d< 4.

In the sequel, we alw;iys assume that Z is a complete dense linear ordered space.

Definition 1.2 . Let (X, &) bea probainilistic metric space, and DX be a subset. D
is called to be chainable, if for any a, beD and for any ¢ >0, A€(0, 1] there exists a
finite subset {@=p,, p1, '+, Paci, pa=b}cD such that Fp,, p; () >1-4 (i=1,
2, ++, n).Theset{p,, P, -+, Pa} iscalled a (.g,,l)-chainjoiﬁing aandb.

In what follows, we always assume that the empty set ¢ is chainable.

Definition 1.3 Let (X, &, <) be a Menger probabilistic metric space. (X, &, 4)
is called a probabilistic interval space, if there exists a mapping { -, -j: X x X >2% such
that for any x;, x,EX, [, x;]1=[xs, x,] is a chainable subset in X containing x, and x..
The set [x, x;] is called a probabilistic interval in X.

Definition 1.4 Let (X, &, ) be a probabilistic interval space. A subset DX is
called W-chainable, if for any xi, x:€D, then [x, x)]c D;' f. X—>_Zis called probabilistic
quasi convex (resp. concave), if the set {x€X. f(x)<<r} (4x€EX.f(x)>r}) is W-
chainable for all reZ.

Definition 1.59 Let X be a topological space. A mapping f. X —Z is called upper
(resp. lower) semi-continuous, if for any reZ, the set {x&X. f(x)>r} (tesp. {x€X,
fi{x)<r}) is closed; f. X—>2Z is called upper compact, if for any reZ, the set
{xEX:f(vx) >=r} is compact.

Remark If X is compact and f: X~ Zis upper semi-continuous, then f must be upper
compact. .

Definition 1.6 A probabilistic interval space (X, %, .4)is called to be Dadekind
complete, if for any x;, x,€Xand for any W-chainable subsets H,, H; in X withx€H,, x,C
H,; and [x, x) cH,UH, then there exists an xex such that either xeH,, [, x0):=
Ixs, x]\ix.}=H, or x,€H, and[x, x,)CH;.

A Dadekind complete probabilistic interval space (X, #, 4) is called a strongly
Dadekind complete, if for any x,, x:eX and for any » points u;, -, u,E[x1, xs) , then
z_r_hl [us, xz) #* s

Proposition 1.1 The intersection of any family of W-chainable subsets in probabilistic
interval space is still W-chainable (we stipulate that the empty set ¢ is W-chainable).

Proposition 1.2 Let (£, #,4) be a probabilistic normed linear space and X be a
nonempty convex subset of E. Then X is a strongly Dadekind complete probabilistic interval
space, where [x,, x;): =co{x,, x2} for all x;, ».,€X .

-

Proof It is obvious that (X, &, 4) is a probabilistic metric space, where
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F(a, b):=F(a—b),i.e., Faos:=F,_, foralla beX.

Next, we prove that any connected subset M in X is chainable.

‘Suppose the contrary, there exist ¢>0 and A€(0,1] and x, y € M such that there is no any
(¢, 4)-chain joining x and y in M. Let 4 be the subset of all points in M such that each point
in A can be joined with X using a (g, A)-chain. Denote B= M\4, then Xed and y €B.

If there exists a - p€AN B , then there exists a geB such that F,, (e)>1—4 , and so
geA. Hence g€ AN B, a contradiction (since A} B=¢ ). This shows 4N B=¢.

Similarly, we can prove that A B==¢. This implies that 4 and B are separated.
However M =AU B. This contradicts M being connected. The desired conclusion is proved.

Because [x:, X»2]:=CO0{x|, x,} , therefore [xi, x;] is a chainable subset in X containing
xi and x,. This implies that (X, 5, ) is a probabilistic interval space. By Lemma 1 in
[11], we know that X is Dadekind complete, and hence (X, &, 4) is Dadekind complete
probabilistic interval space.

Besides, for any x;, x.X and for any' 2z, ., z.€[%;, x,) letting z;=(1—
l;)xZ"‘ﬂ-ixl . then O<Ai<1- Let A ‘.—_-min{/h: i=1, -, n} , then O<A<1-
Taking x,=(1-—4)x,4-4x; , we have %,E€[x1, x;). Again taking ¢,= 4[4y, we have0<<a;<1,

i=1, 2, .., nand x;= (1 —as)x;+a;z;,i=1, 2, +--; n. This impliés that anU'I [2:) Xx3) -
i=l

Therefore (X, &, 4) isa strongly Dadekind complete probabilistic interval space.

This completes the proof.

As pointed out in [10] that if (X, &, ) isa Menger probabilistic metric space with
a continuous f-norm 4, then X is a Hausdorff topological space in the topology induced by the
family of (e, 2)-neighborhoods {U,(e, A): p€EX, £>0, 4>0}, where U,(e, A)=
{x€X: F,,,(8)>1—/2»}. ‘

A subset D in a probabilistic interval space (X, 4, 1) is called to be interval closed
(resp. open) if for any interval [x;, x,] <X, DN [x, x,]is a relatively closed (resp.
open) set in [xi, x2]. ’

A subset D in a topological space X is called compactly open (resp. closed), if for
any compact subset M in X, Py M is.a relatively open (resp. closed) set in M.

Let X and Y be two topological spaces, we denote by & (X, Y') the set of all continuous
mappings from X into ¥, and we denote

g*¥(X, V):={s€% (X, V). s !makes any connected subset in ¥

a connected subset in X}.

II. New Versions of KKM Theorem in Probabilistic Interval Spaces

In order to prove our main results, we need the following lemmas:
Lemma 2.1 Let (X, ¥, A ) oe a probabilistic interval space, ¥ be a nonempty set
and G:X-—>2' be a mapping. Then for any y€V, X\G~!(y) is W-chainable if and only
2z
if for x1, x,€X, we have GG (x) < |JG(x) for all xE[x1, x,].
=1 - :

Proof If for any y €Y, the set X\G='(y) is. W-chainable, then for any x, x,€X and
for any x€[x1, x,] when y@G(x) U G(x), we have {x;, xs}cX\G~'(y), an 50
[x1,%]CX\G ' (y). Therefore x¢G7'(y) , i e, y¢G(x). This implies that G (x)

GG(%) for all x€{x;s x.].
i=1
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2
Conversely, if for any x;, x,€X and for any x€.[x,, x;], G(x)C UJG (x:) . Hence for
s

any y €Y, any a, b €EX\G!(y) and for any x€[a, b] , since g, b¢ G '(y), we know.
that y¢ G(a) UG(b). Since G(x) c G(a) UG(b), we have yéG(x), i e,
x€X\G"'(y), and so (@, 6] X\G"!(y). This implies that X\G~!(y) is W-chainable. This
completes the proof.

Lemma 2.2 Let (X, #, 4) be a Menger probabilistic metric space (M-PM space),

let {p=}» {g.} X be two sequences such that b b, and g.—>q . If Fp“q_(’ll— >1 _ni
for all neN (the set of all natural numbers), then p=gq.
Proof For any ¢>0 and 1>0, it follows from the continuity of . that there exists a

A7(0, 1] such that A(1—A’, 1—A’)>1--1 . Hence there exists n,EN large enough
1 . e s e .,
such that whenever n>>n, we have —,-1—<m1n{—2-, A} and Fp,,ﬁ(_z)>l“'/‘:.

Therefore for any n>n°. we have

Fp.q.(e) >‘(4Fr. p.(%) » Fo., q(%))

SA(1—=Ay 1-17)
>1-4

This implies that g,.— p . Since q,~>q , we have b=q

This completes the proof.

Theorem 2.1 Let (X, &, 4) be a probabilistic interval space with a continuous -
nomd, (¥, &, A) be a strongly Dadekind complete probabilistic interval space with a
continuous 7-norm J and G: Y—2" be a mapping with nonempty compact values. If the
following conditions are satisfied:

(i) For any A€ _#(Y), , Q‘G (y) is chainable;

(i) For any x€X » Y\G!(x) is W-chainable;
(iii) For any x€X, G~'(x) is interval closed;

then N G(y)#d.
JE€Y

Proof First we prove that{G'(y): y€Y} has the finite intersection property. We use
induction to prove.

Since G has the nonempty values, for any y€V, G(y)+ . Suppose that for any n
elements of {G(y). y€V} their intersection is nonempty. Now we prove that for any n+1
elements of {G(y); y€Y} their intersection is also nonempty. Suppose the contrary, then

a4+l m4l
there exists {y;, ---, Yo} Y such that ﬂlG(y¢)=d>. Letting H'= G(y;), then we
. f= : i=3
have -

(HNGW)) N (HNG(y))=6 (2.1)

By the assumption of induction and condition (i) we know that
H N G(y) is nonempty and chainable for all y e}
By condition (ii) and Lemma 2.1, for any u, v €Y we have

G(y) =G(u) UG(v) forall YE[u, o] (2.3)
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Especially we have

G (y) cG(y1) UG(y,) for all yEly:, y.] (2.4)
Therefore we have
HNGyc(HNG W) U(HNG(Ys) for all ¥€EY1, ¥a)
It follows from the chainability of H N G(y) and (2.1) that for any y.ei[yu Y:], we must
have that
either HNG{y)cHNGWorHNG(Y)cHNG(ya) (2.5)
In fact, if there exist x,, x,€H N G(y) such that xi € HNG(y,) , and x, € HN
G (y1) - Hence x,€ H N G(y:), i=1, 2. Since HNG(y) is chainable for all neN (the set of all
natural numbers), there exists a (% ’ —nl—)- chain joining x: and x, in H (1 G(y). Therefore

there exist a,€H N G(y:) and b,€H N G(y,) such that
1 1
Fo b(5)>1—7

On the other hand, since H (\G{y:) is compact (i=1, 2), without loss of generality we can
assume that 8,->e¢€H NG(y1) , b,>bEH (NG (y,) - By Lemma 2.2 we have a=b. This
contradicts (2.1). Thus (2.5) is true.

Denote £;={y€Y. HNG(y)cHNG(v)}, i=1, 2. 1t is obvious that y;€E;, i=1, 2
and [y15 Y2]CE1UE,. Again by (2.3), we know that E, and E; both are W-chaniable subsets
in Y. By the Dadekin completeness of Y, there exist k€{i,2} and y,EE; such that
(Yyss Yo) CF,, where i€} ,2}\{ k}, without loss of generality we can assume that k=1, and
0 Yo€E; (Y2 »y,) CE, . Hence we get

HNGy)CHNG )
HOGWCHNG W), for all €U v.) 2.6)

Besides, since [¥25 Y.] is chainable, for any neN there exists p.€[¥;, y,) such that

= 1 1
Fps Ur.(—ﬂ—)> 1=
This implies that pa—>Y,.
: n
Since Y is strongly Dadekind complete, for any{u;y -y um}C (%9 Yo), [ lz6:40) N
i=1

(Y2, Yo)#¢ . Therefore there exists a FE€[ugy Yo) N (¥2s ¥o) , i=1, 2, .., m, It follows
from (2.3) and (2.6) that '

HNG® CHN(Gu) UGN (HNG(%:) SHNG(w), i=1, 2, .. m
Since H NG(F)+#¢, ﬁlHﬂ G (ui)+¢ . This implies that {H NG(y): y€[y,, y,)} has the
=
finite intersection property: Since H N G(¥) is compact for any y€Y, [ﬂ HNG(y)+# 4.
u€lya,ye)

Therefore there exists an x,€X such that x,€ N HNG(y)C ﬁH NG(pa).
€Ly, ye) m=

This implies for any nEN, xE€G (pa), i. €., tor any n€EN, pa€G~'(x,). Hence {pa}C
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G (%) [1[y2s Y] . It follows from p,—~>y, and condition (iii) that y,€EG~'(x,), i. e.,
x,€G(Ys)- . :
On the other hand, in view of x,€H ﬂG(yz)‘ and condition (2.1), we know that
% & HN G(y1) - By (2.6), xEHNG(Y), and so x, ¢ G (y.) . a contradiction. This shows
that the intersection of any n+1 elements in {G(y). y€Y} is nonempty.
This implies that {G(y); y€Y} has the finite intersection property. Since G( y ) is
compact for all y €Y, 'I;]PG(y)q&d).

Corollary 2.1 Let (X, & , 4) be a probabilistic interval space with a continuous ¢
nom (Y, &, A)bea strongly Dadekind complete probabilistic interval space with a
continuous t-norm J and G, ¥Y—>2* be a mapping with a nonempty compact W-chainable
values. If for any x€X, G~'(x) is interval closed, and ¥\G~'(x) is W-chainable, then

NGy, #4¢.
y€Y

Corollary 2.2 Let (X, &, 4) be a probabilistic interval space with a continuous z-
norm 4, (E, ¥, Z) be a probabulistic normed linteat space with a continuous f-norm 4,
Y be a nonempty convex subset in E;, and G, Y—>2¥ be a mapping with nonempty W-
chainable values. If for any x€X, G-'(x) () co{y, #,} is a relatively closed set in co{y,,
y.} for ally,,y,eY and Y\G~'(x} is convex. Then N G(y)#9¢.

¥EY
Proof For anyy: ,i: €Y, letting [y, y,]:==co{y, ys}, by Proposition 1.2, we know

that Y is a strongly Dadeking complete probabilistic interval space. Therefore the conclusion is
obtained from Proposition 2.4. 7 '

Remark Theorem 2.1, Corollaries 2.1 and 2.2 are all the ve_rSions of KKM theorem
which are first established in probabilistic metric spaces. These results generalize and unify

many recent results related to KKM theorem.
III. Minimax Inequalities in .Probabilistic Interval Spaces

Theorem 3.1 Let (X, %, ) be a probabilistic interval space with a continuous -
nomd, (V, &, A) be a strongly Dadekind complete probabilistic interval space with a
continuous ¢-norm 4 and ¢: X XY >Z be a mapping satisfying the following conditions:

(i) For any A€_£(¥) and for any r€Z, Q {x€X}. @ix, y)>r} is chainable;
y&d )

(ii) For any y€Y, @(-, y)is upper compact;
(iii). For any x€X, @{x, -) is probabilistic quasi-convex and is upper semi-continuous
on any probabilistic interval of Y.

Then

zy:=sup infe(x, y)=Inf supe(x, y):=2*
zEX yEY 7Y 22X

Proof First we prove that zg>z%.
Suppose the contrary, then 25<2% . By the density of Z, there exists an xeZ such that

2y Za<z¥ Now we define a set-valued mapping G: V2% as follows:

G(y):={x€X. p(x, y)=at, forall y€¥
By conditiort (ii), for any y€Y, G(y) Is compact. By the choice of a, for any y€V.
G(y)+¢ . Agan by condition (i), we know that the condition (i) in Theorem 2.1 is satisfied.
On the other hand for any x€X  we have
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YNG™ (x)={y€EY :0(x, y)<la}

By the probabilistic quasi-convexity of @(x, -), Y\G '(x} is W-chainable. This implies

that the condition (ii) in Theorem 2.1 is satisfied. Besides, for any probabilistic interval

(41 221 G (x)N [y wi=A{y€lys, v:]: @(x, y)=>a}. By the assumption that

p(x, ) 1S upper semi-continuous on any probabilistic interval in Y, we know ‘that

G (x)N [y1, y=] is a relatively closed subset in [yi, Y2]. This implies that the condition (iii)

in Theorem 2.1 is satisfied. By Theorem 2.1, ﬂyG’ {y)# ¢ . Therefore there exists an z€G (y)
. e .

for all y€V, i. e, @(Z, y)>=a for all y €Y. Hence inf¢(f’ y)>=qa . Therefore
¥yeY

sup 1nf¢(x, Y)z=a, 1 e, z¥=q. This contradicts the choice of «. Therefore
z:X g% .

2y >2z* is proved.

On the other hand, it is easy to prove z*>z,., Hence z,=2z%,

This completes the proof.

Corollary 3.1. Let (X, %, A) be a probabilistic interval space with a continuous -
norm A, (V, &, A) be a strongly Dadekind complete probabilistic interval space with a
continuous 7-norm A, and p. X XY ->_Z be a mapping satisfying the following conditions:

@) for any y€V, o, y) is upper compact and probabilistic quasi-concave;

(i) for any x€X, ¢(x, ) is probabilistic quasi-convex and it is upper semi-continuous
on any probabilistic interval of Y.

Then

sup lynqu(x, y)—lnf sup<p(x Y)

Corollary 3.2 Let (X, &, A) be a probabilistic interval space with a continuous -
norm A4, (E, %, A} be a probabilistic normed linear space with a continuous t-norm 4, ¥
be a nonempty convex subset in B, and ¢. X XY ->Z be a mapping satisfying the following
conditions:

(i) for any y€V, (-, y)is upper compact and probabilistic quasi-concave;

(1) for any x€X, @(x, .)is quasi-convex and is upper semi-continuous on any segment
in Y. '

Then
sup 1nf<p(x y)_lnf suptp(x, 7y

z£X gc

Proof The conclusion can be obtained from. Proposition 1.2 and Corollary 3.1
immediately. '

Remark. Corollary 3.2 (and so Theorem 3.1 and Corollary 3.1) not only contains the
main result in Neumann' as a special case but also extends Theorem 3 in V. Komorinik® to
the case of probabilistic intervar spaces.

IV. Section Theorems and Matching Theorems

The following section theorem is equavalent to Theorem 2.1.

Theorem 4.1 (Section Theorem) Let (X » &, ) be a probabilistic interval space
with a cdntinuous r-norm A, (Y, &, J) be a strongly Dadekind complete probabilistic
interval space with a continuous r-norm Jand ACX XY be a subset. If the following
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conditions are satisfied: i
(i) for any ye?, the section A(y):={x€X, (x, y)€EA} is nonempty compact, and

forany S€_#£(Y),N A(y) is chainable;
yES

(i) for any x€X, A(x):={y€Y:(x;y)EA} is interval closed, and Y\A(x) is W-
chainable, then there exists an FEX -such that {Z} x ¥V — A4.

Proof Theorem 2.1 = Theorem 4.1.

For any y€YV, let G(y)=A(y), then for any xeX we have G *(x)=A(x). It is easy to
claim that under the conditions in Theorem 4.1, all conditions in Theorem 2.1 are satisfied. By
Theorem 2.1, there exists an zEG (y) for all y€V" This implies that there exists an zEX
such that {Z} XV < 4.

Theorem 4.1 = Theorem 2.1.

Under the conditions in Theorem 2.1, letting A={(x, y)E€EX XY . x€G{(y)}; then
A{y)=G(y), A(x)=G~*(x) for all xeX, y €Y. Hence it is easy to prove that all conditions
in Theorem 4.1 are satisfied. By Theorem 4.1, there exists an z€X such that {Z} XV 4,
ie (%, y)€4 for all y€V. This implies that ZE G(y). Hence [ G(y)+#4$.

¥EY

113 4

Corollary 4.1 Let (X, &, ), (Y, &, A) and A be the same as in Theorem
4.1. If the following conditions are satisfied:

(i) for any y €Y, the section A( y ) is nonempty compact, W-chainable;

(i) for any xeX, the section 4( x ) is interval closed and ¥\ 4(x) is W-chainable,
then there exists an ZEX such that{Z} XYV 4. »

Remark Corollary 4.1 generalizes the section theorem in Ky Fan® to the case of
probabilistic interval space. ,

Corollary 4.2 Let (X, &, 4) be a strongly Dadekind complete probabilistic
interval space with a continuous #norm A4 and AcX XX be a subset. If the following
conditions are satisfied: .

(i) for any y €X, the section A,(y):={x€EX, (x, y)C€A} is compact W-chainable;

(ii) for any xeX, the section A,{x}:={y€X. (x, y)€EA} Iis interval closed and
X\A4:(x)is W-chainable, then either there exists an ZEX such that (z, %) &A or there
exists an £ €X such that{Z} X X 4 .

Proof If for any x€X, (x, x)EA, then all conditions in Corollary 4.1 are satisfied. It
follows from Corollary 4.1 that there exists an XeX such that {Z} X X cA4.

Theorem 4.2 Let (X, &, 4) be a strongly Dadekind complete compact
probabilistic interval space with a continuous r-norm'd, (Y, %, A ) be a probabilistic
interval space and H ;X —>2Y be a set-valued mapping with compactly open values. If the
following conditions are satisfied:

(i) for any x€ X, H”(x) =I=Y\H(x) is W-chainable;

(i) for any y€Y, H!(y) is interval open;

(ii)) H(X)=7,
then for any s€ g *(X, V)either there exists an ZEX such that s(X)NH°(Z)=¢ , or
there exist xi, x.€X and an x,E{x1, %:] such that

sTHH () NH (x) N H (x2)) #¢
Proof For any given s€g*(X, V), if for any xeX, s(X)NH(x)#¢, then
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letting G'(x)=H¢(x), we know that §7'G,X—>2¥isa set—valued‘mapping with nonempty
closed vaues. By condition (i) and s€E&*(X, ¥), it is easy to know that s7'G satisfies the
condition (i) in Theorem 2.1. Besides, for any x€X, (s7'G)7!(x)=G!(s(x))=X\
H™'(s(x)). By condition (ii), we know that (s™'G)~!(x) is interval closed. This implies that
5 'G satisfies the condition (iii) in Theorem 2.1,

Next we prove that there exist xi, x.€X and x,€[x;, x,] such that s™'(H°(x,)N
H(x1)N H(xy))+*¢. Suppose the contrary, for any x,, x:€X and for any x€[x;, X2] we
have

sTHHS(x) NV H (%)) NH(x:))=4¢

Hence we ‘have s(z) QEH(x}) NH(x,) for all 2€s7'(FH°x)), and so s(2)€
He(x1) UH®(%y),i. €., 2€s7'G(x1) Us ™G (x,) Therefore we have s7'G(x)cs™'G( xr) U
s7!G(x,). By Lemma 2.1, we know that s~'G satisfies the condition (ii) in Theorem 2.1. It

follows from Theorem 2.1 that {}s 'G(x)+ ¢, and so ﬂXG(x)#&dJ, e, VN\H(X)#¢.
zcX z€

This contradicts condition (iii). Therefore the conclusion of Theorem 4.2 is true.

Corollary 4.3 Let (X, &, 4) ©be a strongly Dadekind complete compact
probabilistic interval space with a continuous f-norm A and H,X->2% be a set-valued
mapping with open values. If the following conditions are satisfied:

(i) for any xeX, H*°(x) is W-chainable;

(ii) for any y €X, H ~!(y)is interval open;

(iii) ‘H(X)= X and for any xeX, H(x)# X,
then there exist x,, x:€X and x,E[x;, %] such that Ho(x,) N H ()N H(H)#¢ .

Proof Taking s=1I (the identity mapping on X) in Theorem 4.2 and letting Y=2X, then
all conditions in Theorem 4.2 are satisfied. Besides since for any xeX, H(x)# X, we know that
s(X)CH(x)+4¢ for all xeX. By Theorem 4.2, there exists x,, x:cX and x,€ [x;, X,] such
that

Hf(xn) NH(x:)N H(xz)#d)

Remark Theorem 4.2 is a new version of matching theorem in probabilistic interval
space. It can be compared with the matching theorems in Park®, Fan® and Chang and Mal".

V. Coincidence Point Theorems and Fixed Poiht Theorems

Theorem 5.1 Let (X sy F, 4) be a strongly Dadekind complete compact
probabilisﬁc interval space with a continuous z-norm 4, v, &) be a probabilistic metric
space, s€& *(X, V) be a given miapping and G:X->2" be a mapping with compactly
closed values. If the following conditions are satisfied:

@) for any A€_F(X), N G(x) is chainable;
zC A

(ii) for any y €Y, G '(y) is interval closed;

(iii) s(X )N G(x)= ¢ for all xeX;

(iv).for any x€X, X\G~'(s(x)) is W-chainable.
‘then there exists an ZEX such that s(z2)EG (%), .

Proof Now we consider the set-valued mapping s-!G,X->2¥ . Since G is compactly
closed values, by (iii), s™'G has nonempty compact values. Again by condition (i) and s€Eg *(X,
V'), s7'G satisfies the condition (i) in Theorem 2.1. From conditions (i) and (iv), we know
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sT'\G{x)#¥¢, and

s~'G satisfies conditions (iii) and (ii) in Theorem 2.1. Therefore we have

m
by

so there exists an ZEX such that 2E€s7'G (x) for all xeX, i. e. s(2)EG(Z).

This completes the proof.

Theorem 5.2 Let (X, & , A) be a strongly Dadekind complete compact
probabilistic interval space with a continuous r-norm 4, (¥, 5, J) be a probabilistic
interval space, G, X—>2" be a set-valued mapping with compactly open values, s€ & *(X,
V). If the following conditions are satisfied:

(i) for any x€X, G°(x):=V\G(x} is W-chainable;

(i) for any x€X, G~'(s(x))interval open and W-chainable;

(i) G(X)=7Y,
there exists an zeX such that s{Z)EG(z).

Proof Considering the proof of Theorem 4.2, we know that for given s€& *(X, V),
if the condition (ii) in Theorem 4.2 is replaced by “for any x€X, H =!(s(x)) is interval open”
then the conclusion of Theorem 4.2 is still true.

On the other hand, for any x,, x:€X and for any x€ [x1, %51, if 2Es7'G(x1) N s 'G(xy),
then s(z)EG (x1) N G(x;), and so {x1, %,}cG~'(s(z)) . Since G~'(s(z))is W-chainable,
[x1, 2x]CG 's(z}), and hence x€ G~1(s(2)), i e.,s(2)EG(x). Hence z€Es™'G(x),
This implies that s™'G(x1)Ns7'G(x.) s 'G(x). Besides, since s™' (G°(x)) =X \s"'G(x)
we have

£l

G (%) N G{x) NG lxa)) > b

By Theorem 4.2, there exists an €X such that s( X' ) G(z)=0d,ie,s(X)=G(F), and so
$(Z)€G(%). This completes the proof. :

Especially, if s is an identity mapping on X, and Y=2X, we can obtain the following fixed
point theorem:

Corollary 5.1 Let (X, &, A4) be a strongly Dadekind completc compact
probabilistic interval space with a continuous -norm 4, and G: X —>2%* be a 'mapping with
opeﬁ values. If the following conditions are satistied:

@) for any x€X, G°(x):=X\G(x)is W-chainable;

(i) for any x€X, G~'(x) is interval open and W-chainable;

(iii) GO =X,
then G has a fixed point in X. ‘

 Theorem 5.3 Let (X, &, A) be a strongly Dadekind complete probabilistic
interval space and G, X —>2% . If the following conditions are satisfied:

(@) for any y€X, G°(i):=X\G{y)is compact W-chainable;

(i) for any x€X, G '(x) is noﬁempty and interval open, and X\G~!(x) is W-
chainable,
then G has a fixed poin in X.

Proof Letting A={(x, y}€EXxX. x¢ G{y)} , then

Ai(y) s ={x€X. (x, Y)€A}={xC€X; x¢ G(y)}=6°(y)

Az ()i ={y€X: (x, y)EA}= X\G ' (x)
It follows from conditions (i) and (ii) that all conditions in Corollary 4.2 are satisfied. On the
other hand, since G~!(x)%¢ for all xeX, there exists a yEG!(x), and xEG(Y), i. e.
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y) ¢ A . Hence for any xeX, we have {x} x X ¢&A. By Corollary 4.2, there exists an zeX’

éuch that (2, z) ¢ A,i. e. ZEG(Z) . This implies that G has a fixed point in z.
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