Minimax Theorems and Cone Saddle Points of Uniformly Same-Order Vector-Valued Functions ${ }^{1}$

D. S. SHI^{2} AND C. LING^{3}

Communicated by P. L. Yu

Abstract

This paper is concerned with minimax theorems in vectorvalued optimization. A class of vector-valued functions which includes separated functions $f(x, y)=u(x)+v(y)$ as its proper subset is introduced. Minimax theorems and cone saddle-point theorems for this class of functions are investigated.

Key Words. Uniformly same-order functions, vector-valued functions, sequentially compact sets, cone saddle points, minimax theorems.

1. Introduction

Minimax problems for real-valued functions $f: X_{0} \times Y_{0} \rightarrow R$ have been investigated extensively. It is well known that the equality

$$
\operatorname{infsup}_{Y_{0}} f(x, y)=\operatorname{supinf}_{X_{0}} \operatorname{Yinf}_{Y_{0}} f(x, y)
$$

holds under suitable conditions (Refs. 1-2). In recent years, some authors have studied minimax theorems for vector-valued functions (Refs. 3-8). In Ref. 3, Nieuwenhuis first proved that

$$
\begin{array}{rl}
\min _{Y_{0}} \max _{X_{0}} \\
\max _{X_{0}} \min _{Y_{0}} & f(x, y) \subset \max _{X_{0}} \min _{Y_{0}} f(x, y) \subset \min _{Y_{0}} \max _{X_{0}} f(x, y)+K,
\end{array}
$$

where the vector-valued function $f(x, y)$ is limited to be of form

$$
f(x, y)=x+y .
$$

[^0]Then, in Ref. 4, Tanaka proved the above relationships for general separated vector-valued functions

$$
f(x, y)=u(x)+v(y)
$$

In this paper, we give a class of more general vector-valued functions, which includes that of separated functions as its proper subset, and establish relationships similar to the above. Also, some results on cone saddle points and values are established without hypotheses of convexity type; therefore, the results of Ref. 4 are improved.

2. Uniformly Same-Order Functions

Throughout this paper, X, Y, Z denote real normed linear spaces; K denotes the pointed, closed convex cone in Z. We always assume that K^{0} (interior of K) $\neq \varnothing$.

Let Z_{0} be a nonempty subset of $Z, \hat{z} \in Z_{0}$. If

$$
\begin{equation*}
\left(Z_{0}-\hat{z}\right) \cap K=\{\theta\} \tag{1}
\end{equation*}
$$

then \hat{z} is said to be a K-maximal point of Z_{0}. The set of all K-maximal points of Z_{0} is denoted by $\max Z_{0}$. If

$$
\begin{equation*}
\left(\hat{z}-Z_{0}\right) \cap K=\{\theta\} \tag{2}
\end{equation*}
$$

then \hat{z} is said to be a K-minimal point of Z_{0}. The set of all K-minimal points of Z_{0} is denoted by $\min Z_{0}$. If

$$
\begin{equation*}
\left(Z_{0}-\hat{z}\right) \cap K^{0}=\varnothing \tag{3}
\end{equation*}
$$

then \hat{z} is said to be a weak K-maximal point of Z_{0}. The set of all weak K-maximal points of Z_{0} is denoted by $\max _{W} Z_{0}$. If

$$
\begin{equation*}
\left(\hat{z}-Z_{0}\right) \cap K^{0}=\varnothing \tag{4}
\end{equation*}
$$

then \hat{z} is said to be a weak K-minimal point of Z_{0}. The set of all weak K-minimal points of Z_{0} is denoted by $\min _{W} Z_{0}$ (Ref. 6).

Lemma 2.1. If Z_{0} is a nonempty compact set, then $\max Z_{0} \neq \varnothing$ and $\min Z_{0} \neq \varnothing$.

Proof. The proof can be found in Ref. 6.

Lemma 2.2. If Z_{0} is a nonempty compact set, then

$$
Z_{0} \subset \max Z_{0}-K, \quad Z_{0} \subset \min Z_{0}+K .
$$

Proof. We only prove the first inclusion relationship; the second can be proved similarly.

Let $z \in Z_{0}$. If $z \in \max Z_{0}$, then $z \in \max Z_{0}-K$. If $z \notin \max Z_{0}$, let

$$
E_{z}:=\left\{z^{\prime} \in Z_{0} \mid z^{\prime}-z \in K\right\} .
$$

It is clear that $E_{z} \neq \varnothing$ and E_{z} is a closed set; therefore, E_{z} is a nonempty compact subset of Z_{0}. Let $z^{0} \in \max E_{z}$; then, $z \in z^{0}-K$. We claim that $z^{0} \in \max Z_{0}$. Indeed, if $z^{0} \notin \max Z_{0}$, then there exists $z^{\prime} \in Z_{0}$ such that $z^{\prime}-z^{0} \in K /\{\theta\}$, and so $z^{\prime}-z \in K$, that is, $z^{\prime} \in E_{z}$. This contradicts $z^{0} \in \max E_{z}$. Therefore, $z \in \max Z_{0}-K$.

Let $X_{0} \subset X, Y_{0} \subset Y$, and let $f: X_{0} \times Y_{0} \rightarrow Z$ be a vector-valued function. Now, we introduce a class of vector-valued functions.

Definition 2.1. A vector-valued function $f(x, y)$ is said to be $K\left(K^{0}\right)$ uniformly same-order on X_{0} with respect to ($\left.y^{\prime}, y^{\prime \prime}\right) \in Y_{0} \times Y_{0}$, if

$$
f\left(x, y^{\prime}\right)-f\left(x, y^{\prime \prime}\right) \in K /\{\theta\}\left(K^{0}\right)
$$

for all $x \in X_{0}$ when there exists $x_{0} \in X_{0}$ such that

$$
f\left(x_{0}, y^{\prime}\right)-f\left(x_{0}, y^{\prime \prime}\right) \in K /\{\theta\}\left(K^{0}\right) .
$$

Moreover, if f is $K\left(K^{0}\right)$-uniformly same-order on X_{0} with respect to any ($\left.y^{\prime}, y^{\prime \prime}\right) \in Y_{0} \times Y_{0}$, then f is said to be $K\left(K^{0}\right)$-uniformly same-order on X_{0}.

The definition that $f(x, y)$ is said to be $K\left(K^{0}\right)$-uniformly same-order on Y_{0} is similar. If $f(x, y)$ is both $K\left(K^{0}\right)$-uniformly same-order on X_{0} and Y_{0}, then $f(x, y)$ is said to be $K\left(K^{0}\right)$-uniformly same-order on $X_{0} \times Y_{0}$.

It is easy to see that the separated vector-valued function $f(x, y)=u(x)+v(y)$ must be $K\left(K^{0}\right)$-uniformly same-order on $X_{0} \times Y_{0}$. The following example illustrates that the set of $K\left(K^{0}\right)$-uniformly same-order vector-valued functions includes some unseparated vector-valued functions.

Example 2.1. Let

$$
\begin{aligned}
& X=Y=Z=R^{2} \\
& X_{0}=\left\{\left(x_{1}, x_{2}\right) \mid 1 \leq x_{i} \leq 2(i=1,2)\right\} \\
& Y_{0}=\left\{\left(y_{1}, y_{2}\right) \mid 1 \leq y_{i} \leq 2(i=1,2)\right\} \\
& K=\left\{\left(z_{1}, z_{2}\right) \mid z_{1} \geq 0, z_{2} \geq 0\right\} \\
& f(x, y)=\left(x_{1} y_{1}, x_{2} y_{2}\right)
\end{aligned}
$$

It is easy to show that the $f(x, y)$ is $K\left(K^{0}\right)$-uniformly same-order on $X_{0} \times Y_{0}$; however, it is an unseparated vector-valued function.

Lemma 2.3. Let $f: X_{0} \times Y_{0} \rightarrow Z$ be a vector-valued function. Then:
(i) if $f(x, y)$ is K-uniformly same-order on $Y_{0}, f(\hat{x}, \hat{y}) \in \max f\left(X_{0}, \hat{y}\right)$ [$\left.\min f\left(X_{0}, \hat{y}\right)\right]$ implies that $f(\hat{x}, y) \in \max f\left(X_{0}, y\right)\left[\min f\left(X_{0}, y\right)\right]$, for all $y \in Y_{0}$;
(ii) if $f(x, y)$ is K^{0}-uniformly same-order on $Y_{0}, f(\hat{x}, \hat{y}) \in \max _{W} f$ $\left(X_{0}, \hat{y}\right) \quad\left[\min _{W} f\left(X_{0}, \hat{y}\right)\right]$ implies that $f(\hat{x}, y) \in \max _{W} f\left(X_{0}, y\right)$ $\left[\min _{W} f\left(X_{0}, y\right)\right]$, for all $y \in Y_{0}$.

Proof.

(i) Let $f(\hat{x}, \hat{y}) \in \max f\left(X_{0}, \hat{y}\right)$. If there exists $y^{\prime} \in Y_{0}$, such that $f\left(\hat{x}, y^{\prime}\right) \notin \max f\left(X_{0}, y^{\prime}\right)$, then by (1), there exists $x^{0} \in X_{0}$ such that

$$
f\left(x^{0}, y^{\prime}\right)-f\left(\hat{x}, y^{\prime}\right) \in K /\{\theta\} .
$$

Since $f(x, y)$ is K-uniformly same-order on Y_{0}, we have

$$
f\left(x^{0}, \hat{y}\right)-f(\hat{x}, \hat{y}) \in K /\{\theta\}
$$

which contradicts $f(\hat{x}, \hat{y}) \in \max f\left(X_{0}, \hat{y}\right)$.
(ii) This can be proved similarly.

3. Minimax Theorems

Let $X_{0} \subset X$ and $Y_{0} \subset Y$ be nonempty sets, and let the vector-valued function $f(x, y)$ be continuous on $X_{0} \times Y_{0}$. It can be easily proved that $f\left(X_{0}, y\right)$ and $f\left(x, Y_{0}\right)$ are both compact subsets of Z for any $(x, y) \in X_{0} \times Y_{0}$. So, by Lemma 2.1, the sets

$$
\begin{align*}
& h(y):=\max _{W} f\left(X_{0}, y\right), \tag{5}\\
& g(x):=\min _{W} f\left(x, Y_{0}\right) \tag{6}
\end{align*}
$$

are both nonempty for any $(x, y) \in X_{0} \times Y_{0}$. Thus, h and g form two set-valued maps from Y_{0} to Z and from X_{0} to Z, respectively.

Now, we introduce a notion concerning set-valued maps and give several propositions.

Definition 3.1. A set-valued map h is said to be sequentially compact at $\hat{y} \in Y_{0}$ if, for any sequence $\left\{y_{n}\right\} \subset Y_{0}$ with $y_{n} \rightarrow \hat{y}$ and the sequence $\left\{z_{n}\right\}$ with $z_{n} \in h\left(y_{n}\right)$, there exists a subsequence $\left\{z_{j}\right\}$ of $\left\{z_{n}\right\}$ such that $z_{j} \rightarrow \hat{z}$ and $\hat{z} \in h(\hat{y})$. For any $y \in Y_{0}$, if h is sequentially compact at y, then h is said to be sequentially compact on Y_{0}.

Proposition 3.1. The graph of a set-valued map h on Y_{0}, which is denoted by

$$
\operatorname{graph}_{Y_{0}} h:=\left\{(y, z) \mid z \in h(y), y \in Y_{0}\right\},
$$

is a compact set in the space $Y \times Z$ if and only if the set Y_{0} is compact and the set-valued map h is sequentially compact on Y_{0}.

Proof. This follows directly from Definition 3.1 and the definition of $\operatorname{graph}_{Y_{0}} h$.

Proposition 3.2. If Y_{0} is a compact set and h is a sequentially compact set-valued map on Y_{0}, then

$$
h\left(Y_{0}\right):=\bigcup_{y \in Y_{0}} h(y)
$$

is a compact set.
Proof. Let the sequence $\left\{z_{n}\right\} \subset h\left(Y_{0}\right)$; then, there exists a sequence $\left\{y_{n}\right\} \subset Y_{0}$ such that $z_{n} \in h\left(y_{n}\right)$. Since Y_{0} is compact, we may assume, without loss of generality, that $y_{n} \rightarrow \hat{y} \in Y_{0}$. By the sequential compactness of h on Y_{0}, there exists a subsequence $\left\{z_{j}\right\}$ of $\left\{z_{n}\right\}$ such that $z_{j} \rightarrow \hat{z} \in h(\hat{y}) \subset h\left(Y_{0}\right)$. That is, $h\left(Y_{0}\right)$ is compact.

Now, we reconsider the set-valued maps in (5) and (6).
Lemma 3.1. If $X_{0} \subset X$ and $Y_{0} \subset y$ are nonempty compact sets, and if $f: X_{0} \times Y_{0} \rightarrow Z$ is a continuous vector-valued function, then:
(i) the set-valued maps $h(y)$ and $g(x)$, which are defined by (5) and (6), are sequentially compact on Y_{0} and X_{0}, respectively;
(ii) $h\left(Y_{0}\right)$ and $g\left(X_{0}\right)$ are compact sets.

Proof.

(i) Let $\hat{x} \in X_{0}$; then, $g(\hat{x}) \neq \varnothing$. Let $\left(x_{n}\right\} \subset X_{0}$ be any sequence with $x_{n} \rightarrow \hat{x}$, and let $z_{n}=f\left(x_{n}, y_{n}\right) \in g\left(x_{n}\right)$, with $y_{n} \in Y_{0}$ for all $n \geq 1$. Since Y_{0} is compact, there exists a subsequence $\left\{y_{j}\right\}$ of $\left\{y_{n}\right\}$ such that $y_{j} \rightarrow \hat{y} \in Y_{0}$. From the continuity of f, we have $z_{j}=f\left(x_{j}, y_{j}\right) \rightarrow \hat{z}=f(\hat{x}, \hat{y})$. It can be shown that $\hat{z} \in g(\hat{x})$. In fact, if $\hat{z} \notin g(\hat{x})$, then, by (6), (4), and $\hat{z}=f(\hat{x}, \hat{y}) \in f\left(\hat{x}, Y_{0}\right)$, there exists $y_{0} \in Y_{0}$ such that

$$
f(\hat{x}, \hat{y})-f\left(\hat{x}, y_{0}\right)=k^{0} \in K^{0} .
$$

Hence, from

$$
f\left(x_{j}, y_{j}\right)-f\left(x_{j}, y_{0}\right) \rightarrow f(\hat{x}, \hat{y})-f\left(\hat{x}, y_{0}\right)
$$

we have

$$
f\left(x_{j}, y_{j}\right)-f\left(x_{j}, y_{0}\right) \in K^{0}, \quad \text { for } j \text { large enough. }
$$

This implies that

$$
f\left(x_{j}, y_{j}\right) \notin g\left(x_{j}\right), \quad \text { for } j \text { large enough. }
$$

This leads to a contradiction. Thus, we have proved that g is sequentially compact at \hat{x}. Therefore, g is sequentially compact on X_{0}.

Similarly, we can prove that $h(y)$ is sequentially compact on Y_{0}.
(ii) This follows directly from (i) and Proposition 3.2.

By Lemma 3.1 and Lemma 2.1, we get immediately the following theorem.

Theorem 3.1. Let X_{0} and Y_{0} be nonempty compact sets, and let $f(x, y)$ be a continuous vector-valued function on $X_{0} \times Y_{0}$. Then,

$$
\begin{aligned}
& \min _{Y_{0}} \max _{X_{0}} f(x, y):=\min h\left(Y_{0}\right) \neq \varnothing \\
& \max _{X_{0}} \min _{Y_{0}} f(x, y):=\max g\left(X_{0}\right) \neq \varnothing
\end{aligned}
$$

Lemma 3.2. Let X_{0} and Y_{0} be nonempty compact sets, and let $f(x, y)$ be a continuous vector-valued function on $X_{0} \times Y_{0}$. Then:
(i) if $f(x, y)$ is K^{0}-uniformly same-order on Y_{0},

$$
\min _{Y_{0}} \max _{X_{0}} f(x, y) \subset g\left(X_{0}\right) \cap h\left(Y_{0}\right) ;
$$

(ii) if $f(x, y)$ is K^{0}-uniformly same-order on X_{0},

$$
\max _{X_{0}} \min _{Y_{0}} f(x, y) \subset g\left(X_{0}\right) \cap h\left(Y_{0}\right) .
$$

Proof.

(i) We first have

$$
\min _{Y_{0}} \max _{X_{0}} f(x, y) \neq \varnothing
$$

from Theorem 3.1. Let

$$
\hat{z} \in \min _{Y_{0}} \max _{X_{0}} f(x, y)
$$

Then, there exists \hat{y}, \hat{x} such that $\hat{z} \in \max _{W} f\left(X_{0}, \hat{y}\right)$ and $\hat{z}=f(\hat{x}, \hat{y})$. Thus, $f(\hat{x}, \hat{y}) \in h(\hat{y})$ by (5). We further claim that $f(\hat{x}, \hat{y}) \in \min _{W} f\left(\hat{x}, Y_{0}\right)=g(\hat{x})$. Indeed, if $f(\hat{x}, \hat{y}) \notin g(\hat{x})$, there exists $f\left(\hat{x}, y_{0}\right)$ such that

$$
\begin{equation*}
f(\hat{x}, \hat{y})-f\left(\hat{x}, y_{0}\right) \in K^{0} . \tag{7}
\end{equation*}
$$

Since $f(\hat{x}, \hat{y}) \in \max _{W} f\left(X_{0}, \hat{y}\right), f\left(\hat{x}, y_{0}\right) \in \max _{W} f\left(X_{0}, y_{0}\right)$ by Lemma 2.3(i). This implies that

$$
f(\hat{x}, \hat{y}) \notin \min _{Y_{0}} \max _{X_{0}} f(x, y),
$$

which leads to a contradiction.
(ii) This can be proved similarly.

We now show one of the main results of this paper.
Theorem 3.2. Let X_{0} and Y_{0} be nonempty compact sets, and let $f(x, y)$ be a continuous vector-valued function on $X_{0} \times Y_{0}$. Then:
(i) if $f(x, y)$ is K^{0}-uniformly same-order on Y_{0},

$$
\min _{Y_{0}} \max _{X_{0}} f(x, y) \subset \max _{X_{0}} \min _{Y_{0}} f(x, y)-K
$$

(ii) if $f(x, y)$ is K^{0}-uniformly same-order on X_{0},

$$
\max _{X_{0}} \min _{Y_{0}} f(x, y) \subset \min _{Y_{0}} \max _{X_{0}} f(x, y)+K .
$$

Proof.

(i) By Lemma 3.2, we have

$$
\min _{Y_{0}} \max _{X_{0}} f(x, y) \subset g\left(X_{0}\right) .
$$

Since $g\left(X_{0}\right)$ is a compact set by Lemma 3.1(ii), we have

$$
\min _{Y_{0}} \max _{X_{0}} f(x, y) \subset \max _{X_{0}} \min _{Y_{0}} f(x, y)-K,
$$

by Lemma 2.2.
(ii) This can be proved similarly.

The following example shows that the assumption of $f(x, y)$ as uniformly same-order is important in Theorem 3.2.

Example 3.1. Let

$$
\begin{aligned}
& X=Y=R^{1}, \quad Z=R^{2} \\
& X_{0}=\{x \mid 0 \leq x \leq 2\}, \quad Y_{0}=\{y \mid-1 \leq y \leq 1\}
\end{aligned}
$$

$$
\begin{aligned}
& K=\left\{\left(z_{1}, z_{2}\right)| | z_{1} \mid \leq z_{2} / 2\right\}, \\
& f(x, y)=\left(y, y^{2} x\right)
\end{aligned}
$$

It is easy to show that $f(x, y)$ is K^{0}-uniformly same-order on Y_{0}, but it is not K^{0}-uniformly same-order on X_{0}. We observe with a simple geometric analysis that

$$
\begin{aligned}
\min _{Y_{0}} \max _{X_{0}} f(x, y)= & \left\{\left(y, 2 y^{2}\right) \mid-1 / 2 \leq y \leq 1 / 2\right\}, \\
\max _{X_{0}} \min _{Y_{0}} f(x, y)= & \left\{\left(y, 2 y^{2}\right) \mid-1 / 2 \leq y \leq 1 / 2\right\} \\
& \cup\{(y, y) \mid 1 / 2<y \leq 1\} \\
& \cup\{(y,-y) \mid-1 \leq y \leq-1 / 2\} .
\end{aligned}
$$

Hence,

$$
\min _{Y_{0}} \max _{X_{0}} f(x, y) \subset \max _{X_{0}} \min _{Y_{0}} f(x, y)
$$

but

$$
\max _{X_{0}} \min _{Y_{0}} f(x, y) \not \subset \min _{Y_{0}} \max _{X_{0}} f(x, y)+K .
$$

4. Cone Saddle Points

In this section, we establish the existence theorem for cone saddle points. The following definition of cone saddle point is equivalent to that in Ref. 9.

Definition 4.1. A point $\left(x_{0}, y_{0}\right) \in X_{0} \times Y_{0}$ is said to be a K-saddle point of the vector-valued function $f(x, y)$ with respect to $X_{0} \times Y_{0}$ if

$$
f\left(x_{0}, y_{0}\right) \in \max f\left(X_{0}, y_{0}\right) \cap \min f\left(x_{0}, Y_{0}\right) .
$$

The set of all K-saddle points of $f(x, y)$ with respect to $X_{0} \times Y_{0}$ is denoted by S.

The following definition of weak K-saddle point is from Ref. 4.
Definition 4.2. A point $\left(x_{0}, y_{0}\right) \in X_{0} \times Y_{0}$ is said to be a weak K saddle point of the vector-valued function $f(x, y)$ with respect to $X_{0} \times Y_{0}$ if

$$
f\left(x_{0}, y_{0}\right) \in \max _{W} f\left(X_{0}, y_{0}\right) \cap \min _{W} f\left(x_{0}, Y_{0}\right) .
$$

The set of all weak K-saddle points of $f(x, y)$ with resepct to $X_{0} \times Y_{0}$ is denoted by S^{W}.

It is obvious that $S \subset S^{W}$.

Remark 4.1. Note that an existence theorem for a weak K-saddle point has actually been given in the proof of Lemma 3.2.

We further establish the existence theorem for K-saddle points. In Ref. 3, Nieuwenhuis proved that, if X_{0} and Y_{0} are nonempty convex compact sets, and if $f(x, y)$ is continuous on $X_{0} \times Y_{0}$, is convex in x for every $y \in Y_{0}$, and is concave in y for every $x \in X_{0}$, then $f(x, y)$ has at least one saddle point on $X_{0} \times Y_{0}$.

We prove that the conditions in Theorem 3.2 are sufficient to ensure the existence of the K-saddle points. To this end, we introduce the following symbols:

$$
\begin{aligned}
& A:=\left\{x \in X_{0} \mid f(x, y) \in \max f\left(X_{0}, y\right), \text { for all } y \in Y_{0}\right\}, \\
& B:=\left\{y \in Y_{0} \mid f(x, y) \in \min f\left(x, Y_{0}\right), \text { for all } x \in X_{0}\right\}, \\
& A^{W}:=\left\{x \in X_{0} \mid f(x, y) \in \max _{W} f\left(X_{0}, y\right), \text { for all } y \in Y_{0}\right\}, \\
& B^{W}:=\left\{y \in Y_{0} \mid f(x, y) \in \min _{W} f\left(x, Y_{0}\right), \text { for all } x \in X_{0}\right\} .
\end{aligned}
$$

Theorem 4.1. Let X_{0} and Y_{0} be nonempty compact sets, and let $f(x, y)$ be a continuous vector-valued function on $X_{0} \times Y_{0}$. Then:
(i) if f is K-uniformly same-order on $X_{0} \times Y_{0}$,

$$
A \neq \varnothing, \quad B \neq \varnothing, \quad S=A \times B
$$

(ii) if f is K^{0}-uniformly same-order on $X_{0} \times Y_{0}$, A^{W} and B^{W} are both nonempty compact sets, $S^{W}=A^{W} \times B^{W}$.

Proof.

(i) For any $y_{0} \in Y_{0}$, there exists $x_{0} \in X_{0}$ such that $f\left(x_{0}, y_{0}\right) \in$ $\max f\left(X_{0}, y_{0}\right)$. By Lemma 2.3(i), we have

$$
f\left(x_{0}, y\right) \in \max f\left(X_{0}, y\right), \quad \text { for all } y \in Y_{0} .
$$

Therefore, $x_{0} \in A$; that is, $A \neq \varnothing$. The proof of $B \neq \varnothing$ is analogous.
Now, we turn to the proof of $S=A \times B$. Let $\left(x_{0}, y_{0}\right) \in S$. Then,

$$
f\left(x_{0}, y_{0}\right) \in \max f\left(X_{0}, y_{0}\right) \cap \min f\left(x_{0}, Y_{0}\right)
$$

from Definition 4.1. It follows that

$$
f\left(x_{0}, y\right) \in \max f\left(X_{0}, y\right), \quad \text { for all } y \in Y_{0}
$$

by Lemma 2.3(i). Thus, $x_{0} \in A$. Similarly, $y_{0} \in B$. Therefore, $S \subset A \times B$. The converse inclusion relationship is clear. Hence, we have $S=A \times B$.
(ii) We can prove that $A^{W} \neq \varnothing, B^{W} \neq \varnothing$, and $S^{W}=A^{W} \times B^{W}$. It remains to show that A^{W} and B^{W} are compact.

Let $\left\{x_{n}\right\} \subset A^{W}$ with $x_{n} \rightarrow \hat{x}$. We take an arbitrary sequence $\left\{y_{n}\right\} \subset Y_{0}$ with $y_{n} \rightarrow \hat{y} \in Y_{0}$. From the definition of A^{W} and the continuity of $f(x, y)$, we have

$$
z_{n}=f\left(x_{n}, y_{n}\right) \in h\left(y_{n}\right)
$$

and

$$
z_{n} \rightarrow \hat{z}=f(\hat{x}, \hat{y}) .
$$

Since the set-valued map h is sequentially compact at y by Lemma 3.1(i), $f(\hat{x}, \hat{y}) \in h(\hat{y})$. That is,

$$
f(\hat{x}, \hat{y}) \in \max _{W} f\left(X_{0}, \hat{y}\right) .
$$

Thus, for any $y \in Y_{0}$, one has

$$
f(\hat{x}, y) \in \max _{W} f\left(X_{0}, y\right)
$$

by Lemma 2.3 (ii); hence, $\hat{x} \in A^{W}$. Thus, A^{W} is a closed subset of the compact set X_{0}, and hence A^{W} is compact.

Similarly, we can prove that B^{W} is compact.
Remark 4.2. Note that Theorem 4.1 also depicts the structures of the sets S and S^{W}.

The value $f\left(x_{0}, y_{0}\right)$, for which (x_{0}, y_{0}) is a (weak) K-saddle point of $f(x, y)$ on $X_{0} \times Y_{0}$, is called the (weak) K-saddle value of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$.

We denote by V^{W} the set of all weak K-saddle values of $f(x, y)$ with respect to $X_{0} \times Y_{0}$. That is,

$$
V^{W}:=\left\{f\left(x_{0}, y_{0}\right) \mid\left(x_{0}, y_{0}\right) \in S^{W}\right\} .
$$

By Theorem 4.1, we have

$$
V^{W}=f\left(A^{W}, B^{W}\right),
$$

and V^{W} is compact under the conditions in Theorem 4.1.
Theorem 4.2. Let X_{0} and Y_{0} be nonempty compact sets, and let $f(x, y)$ be a continuous vector-valued function on $X_{0} \times Y_{0}$. Then:
(i) if $f(x, y)$ is K^{0}-uniformly same-order on Y_{0},

$$
\begin{aligned}
& \min _{Y_{0}} \max _{X_{0}} f(x, y)=\min _{W} V^{W} \\
& \min _{Y_{0}} \max _{X_{0}} f(x, y)=\min V^{W}
\end{aligned}
$$

(ii) if $f(x, y)$ is K^{0}-uniformly same-order on X_{0},

$$
\begin{gathered}
\max _{X_{0}} \min _{Y_{0}} f(x, y)=\max _{W} V^{W} \\
\max _{X_{0}} \min _{Y_{0}} f(x, y)=\max V^{W}
\end{gathered}
$$

Proof.

(i) We only prove the first equation. Let $f(\hat{x}, \hat{y}) \in \min _{W} V^{W}$; then, $f(\hat{x}, \hat{y}) \in h\left(Y_{0}\right)$. If $f(\hat{x}, \hat{y}) \notin \min _{W} \max _{W} f(x, y)$, then there exists $f\left(x^{\prime}, y^{\prime}\right) \in h\left(Y_{0}\right)$ such that

$$
\begin{equation*}
f(\hat{x}, \hat{y})-f\left(x^{\prime}, y^{\prime}\right) \in K^{0} . \tag{8}
\end{equation*}
$$

Since $h\left(Y_{0}\right)$ is compact by Lemma 3.1(ii), we have

$$
f\left(x^{\prime}, y^{\prime}\right) \in \min _{Y_{0}} \max _{X_{0}} f(x, y)+K
$$

by Lemma 2.2. That is,

$$
\begin{equation*}
f\left(x^{\prime}, y^{\prime}\right)=f\left(x_{0}, y_{0}\right)+k^{\prime} \tag{9}
\end{equation*}
$$

where

$$
f\left(x_{0}, y_{0}\right) \in \min _{Y_{0}} \max _{X_{0}} f(x, y), \quad k^{\prime} \in K .
$$

Thus, we have

$$
f(\hat{x}, \hat{y})-f\left(x_{0}, y_{0}\right) \in K^{0}
$$

from (8) and (9), and

$$
f\left(x_{0}, y_{0}\right) \in V^{W}
$$

by Lemma $3.2(\mathrm{i})$. This contradicts $f(\hat{x}, \hat{y}) \in \min _{W} V^{W}$. Therefore,

$$
\min _{W} V^{W} \subset \min _{Y_{0}} \max _{X_{0}} f(x, y) .
$$

Next, we show the converse inclusion relationship. Let

$$
f(\hat{x}, \hat{y}) \in \min _{Y_{0}} \max _{X_{0}} f(x, y)
$$

From Lemma 3.2, we have $f(\hat{x}, \hat{y}) \in V^{W}$. If $f(\hat{x}, \hat{y}) \notin \min _{W} V^{W}$, there exists $f\left(x_{0}, y_{0}\right) \in V^{W}$ such that

$$
f(\hat{x}, \hat{y})-f\left(x_{0}, y_{0}\right) \in K^{0} .
$$

However,

$$
f\left(x_{0}, y_{0}\right) \in \max _{W} f\left(X_{0}, y_{0}\right) \cap \min _{W} f\left(x_{0}, Y_{0}\right) .
$$

This contradicts

$$
f(\hat{x}, \hat{y}) \in \min _{Y_{0}} \max _{X_{0}} f(x, y) .
$$

Therefore,

$$
\min _{Y_{0}} \max _{X_{0}} f(x, y) \subset \min _{W} V^{W}
$$

(ii) This can be proved similarly.

Since V^{W} is compact, the following corollary is a direct consequence of Lemma 2.2 and Theorem 4.2.

Corollary 4.1. If the assumptions in Theorem 4.2 hold, then

$$
\begin{aligned}
& V^{W} \subset \max _{X_{0}} \min _{Y_{0}} f(x, y)-K, \\
& V^{W} \subset \min _{Y_{0}} \max _{X_{0}} f(x, y)+K .
\end{aligned}
$$

That is,

$$
V^{W} \subset\left(\min _{Y_{0}} \max _{X_{0}} f(x, y)+K\right) \cap\left(\max _{x_{0}} \min _{Y_{0}} f(x, y)-K\right) .
$$

References

1. FAN, K., Minimax Theorems, Proceedings of the National Academy of the USA, Vol. 39, pp. 42-47, 1953.
2. Stacho, L. L., Minimax Theorems beyond Topological Vector Spaces, Acta Scientiarum Mathematicarum, Szeged, Hungary, Vol. 42, pp. 157-164, 1980.
3. Nieuwenhuis, J. W., Some Minimax Theorems in Vector-Valued Functions, Journal of Optimization Theory and Applications, Vol. 40, pp. 463-475, 1983.
4. Tanaka, T., Some Minimax Problems of Vector-Valued Functions, Journal of Optimization Theory and Applications, Vol. 59, pp. 505-524, 1988.
5. Tanaka, T., Existence Theorems for Cone Saddle Points of Vector-Valued Functions in Infinite-Dimensional Space, Journal of Optimization Theory and Applications, Vol. 62, pp. 127-138, 1989.
6. Ferro, F., A Minimax Theorem for Vector-Valued Functions, Journal of Optimization Theory and Applications, Vol. 60, pp. 19-31, 1989.
7. Ferro, F., A Minimax Theorem for Vector-Valued Functions, Part 2, Journal of Optimization Theory and Applications, Vol. 68, pp. 35-48, 1991.
8. YU, P. L., Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives, Journal of Optimization Theory and Applications, Vol. 14, pp. 319-377, 1974.
9. Rodder, W., A Generalized Saddle-Point Theory: Its Application to Duality Theory for Linear Vector Optimum Problems, European Journal of Operations Research, Vol. 1, pp. 55-59, 1977.

[^0]: 'The authors would like to thank two anonymous referees for helpful comments.
 ${ }^{2}$ Professor, Department of Mathematical Economics, Zhejiang Institute of Finance and Economics, Hangzhou, China.
 ${ }^{3}$ Instructor, Department of Mathematical Economics, Zhejiang Institute of Finance and Economics, Hangzhou, China.

