
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 84, No. 3, pp. 575 587, MARCH 1995 
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Uniformly Same-Order Vector-Valued Functions 1 

D. SI SHI 2 AND C. LING 3 

Communicated by P. L. Yu 

Abstract. This paper is concerned with minimax theorems in vector- 
valued optimization. A class of vector-valued functions which includes 
separated functions f ( x ,  y) = u(x) + v(y) as its proper subset is intro- 
duced. Minimax theorems and cone saddle-point theorems for this 
class of functions are investigated. 
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1. Introduction 

Minimax problems for real-valued functions f :  X o x Yo--* R have been 
investigated extensively. It is well known that the equality 

infsupf(x, y) = supinff(x, y) 
Yo Xo Xo Y0 

holds under suitable conditions (Refs. 1-2). In recent years, some authors 
have studied minimax theorems for vector-valued functions (Refs. 3-8). In 
Ref. 3, Nieuwenhuis first proved that 

minmax wf(x ,  y) ~ maxminwf(x ,  y) - K, 
YO XO XO YO 

maxminwf(x ,  y) c minmaxwf(x ,  y) + K, 
XO YO Yo XO 

where the vector-valued function f ( x ,  y) is limited to be of form 

f ( x ,  y) = x + y. 
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Then, in Ref. 4, Tanaka proved the above relationships for general 
separated vector-valued functions 

f ( x ,  y) = u(x) + v(y). 

In this paper, we give a class of more general vector-valued functions, 
which includes that of separated functions as its proper subset, and 
establish relationships similar to the above. Also, some results on cone 
saddle points and values are established without hypotheses of convexity 
type; therefore, the results of Ref. 4 are improved. 

2. Uniformly Same-Order Functions 

Throughout this paper, X, Y, Z denote real normed linear spaces; K 
denotes the pointed, closed convex cone in Z. We always assume that K ~ 
(interior of K) # ~ .  

Let Zo be a nonempty subset of Z, ~ eZo. If 

( Z o -  2) c~K= {O}, (1) 

then ~ is said to be a K-maximal point of Zo. The set of all K-maximal 
points of Zo is denoted by max Zo. If 

- Zo)  n K  = {0} ,  (2)  

then 2 is said to be a K-minimal point of Zo. The set of all K-minimal 
points of Zo is denoted by rain Zo. If 

(Zo  - n K ~ = S3, (3 )  

then ~ is said to be a weak K-maximal point of Zo. The set of all weak 
K-maximal points of Zo is denoted by maxw Zo. If 

(2 - Zo) n K ~ = ~ ,  (4) 

then ~ is said to be a weak K-minimal point of Zo. The set of all weak 
K-minimal points of Zo is denoted by minwZo (Ref. 6). 

Lemma 2.1. If Zo is a nonempty compact set, then max Zo # ~ and 
min Zo # ~ .  

Proof. The proof can be found in Ref. 6. �89 

Lemma 2.2. If Zo is a nonempty compact set, then 

Zo c max Zo -- K, Zo c min Zo + K. 
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Proof. We only prove the first inclusion relationship; the second can 
be proved similarly. 

Let z ~Zo. If  z emax Zo, then z ~max Zo - K. If z Cmax Zo, let 

e : = { z ' ~ Z o l z ' - ~ e K } .  

It is clear that E. r ~ and E~ is a closed set; therefore, E~ is a nonempty 
compact subset of Zo. Let z~ E.;  then, z ez ~  K. We claim that 
z~  . Indeed, if z~162 Zo, then there exists z'eZo such that 
z ' - z~  and so z ' - z e K ,  that is, z'eE~. This contradicts 
z~ E__. Therefore, z emax Zo - K. [] 

Let Xo c X, Yo c Y, and let f :  Xo x Yo ~ Z be a vector-valued func- 
tion. Now, we introduce a class of vector-valued functions. 

Definition 2.1. A vector-valued function f (x ,  y) is said to be K(K~ - 
uniformly same-order on Xo with respect to (y', y") ~ Yo x Yo, if 

f (x ,  y') - f ( x ,  y") eK/{O} (K ~ 

for all xeXo when there exists xoeXo such that 

f(xo, y') - f(xo, y") eK/{O} (K~ 

Moreover, if f is K(K~ same-order on Xo with respect to any 
(y', y")e Yo x Yo, then f is said to be K(K~ same-order on Xo. 

The definition that f (x ,  y) is said to be K(K ~ same-order on 
Yo is similar, If  f (x, y) is both K(K~ same-order on Xo and Iio, 
then f (x ,  y) is said to be K(K~ same-order on Xo x Yo- 

It is easy to see that the separated vector-valued function 
f (x ,  y) = u(x) + v(y) must be K(K~ same-order on Xo x Yo. The 
following example illustrates that the set of K(K~ same-order 
vector-valued functions includes some unseparated vector-valued functions. 

Example 2.1. Let 

X =  Y = Z  = R  2, 

Xo={(xl ,x2)  l l < x  i < 2  ( i = 1 , 2 ) } ,  

Yo = {(yl,y2) I 1 < y l  < 2  (i = 1, 2)}, 

K = {(z,,z2) I zl > O, z2>O}, 

f(x,  y) = (x~y,, x2y2). 

It is easy to show that the f ( x , y )  is K(K~ same-order on 
Xo x Yo; however, it is an unseparated vector-valuedfunction. 
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Lemma 2.3. Let f :  Xo x Yo ~ Z be a vector-valued function. Then: 

(i) i f f (x ,y)  is K-uniformly same-order on Yo,f(.~,)3)emaxf(Xo,)3) 
[minf(X0, 3~)] implies that f (2 ,  y) emaxf (Xo,  y) [minf(X0, y)], 
for all y e Y0; 

(ii) if f (x ,y)  is K~ same-order on Yo, f(.~,)3)Emaxwf 
(Xo,)3) [minwf(Xo,)3)] implies that f (2,y)emaxwf(Xo,y)  
[minwf(Xo,y)], for all y e  Yo- 

Proof. 

(i) Let f (~ ,  )~) emaxf (Xo,  )3). If  there exists y ' e  Yo, such that 
f (~ ,  y')Cmaxf(Xo, y'), then by (1), there exists x~ such that 

f ( x  ~ y') - f ( 2 ,  y') sK/{O}. 

Since f (x,  y) is K-uniformly same-order on Yo, we have 

f (x ~ )3) -- f (2, )3) eK]{O}, 

which contradicts f(2, )3) emaxf (Xo ,  )3). 
(ii) This can be proved similarly. [] 

3. Minimax Theorems 

Let Xo c Y and Y0 c Y be nonempty sets, and let the vector-valued 
function f (x,  y) be continuous on 2"o x Yo. It can be easily proved that 
f(Xo, y) and f (x ,  Yo) are both compact subsets of  Z for any 
(x,y)~Xo x Yo. So, by Lemma 2.1, the sets 

h(y). '= max w f ( Xo, Y), 

g(x) :=minwf (x, I1o) 

(5) 

(6) 

are both nonempty for any (x,y)~Xo x Yo. Thus, h and g form two 
set-valued maps from Yo to Z and from X o to Z, respectively. 

Now, we introduce a notion concerning set-valued maps and give 
several propositions. 

Definition 3.1. A set-valued map h is said to be sequentially compact 
at )3e Yo if, for any sequence {Yn} c Yo with Yn "~)3 and the sequence {zn} 
with z,,eh(y,,), there exists a subsequence {zj} of  {zn} such that zj--.2 and 
~eh()3). For any y e  Yo, if h is sequentially compact at y, then h is said to 
be sequentially compact on Yo. 
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Proposition 3.1. The graph of a set-valued map h on Yo, which is 
denoted by 

graphro h ..= {(y, z) I z eh(y), y e Yo}, 

is a compact set in the space Y • Z if and only if the set ]To is compact and 
the set-valued map h is sequentially compact on ]Io. 

Proof. This follows directly from Definition 3.1 and the definition of  
graph ro h. [] 

Proposition 3.2. If  Yo is a compact set and h is a sequentially compact 
set-valued map on Yo, then 

h(Yo) := U h(y) 
ye Yo 

is a compact set. 

Proof. Let the sequence {z,} ~ h(Yo); then, there exists a sequence 
{Y,} ~ I1o such that z, eh(y,,). Since I1o is compact, we may assume, 
without loss of generality, that Yn--'33 e Yo. By the sequential compactness 
of  h on }70, there exists a subsequenee {zj} of {zn} such that 
zj--.~eh(33) ~ h(Yo). That is, h(Yo) is compact. [] 

Now, we reconsider the set-valued maps in (5) and (6). 

Lemma 3.1. If  X o c X and Yo c Y are nonempty compact sets, and if 
f :  Xo • Yo ~ Z is a continuous vector-valued function, then: 

(i) the set-valued maps h(y) and g(x), which are defined by (5) and 
(6), are sequentially compact on I7o and Xo, respectively; 

(ii) h(Yo) and g(Xo) are compact sets. 

Proof. 

(i) Let s  then, g(s # ~ .  Let (x.} c X 0  be any sequence with 
x. ~ s  and let z,, =f(x . ,y . )eg(x . ) ,  with y.eYo for all n > 1. Since Yo is 
compact, there exists a subsequence {yj} of {y.} such that yj~33eYo. 
From the continuity o f f ,  we have zj =f(xj,  y j ) ~  =f(~,33). It can be 
shown that 2eg(~). In fact, if ~r then, by (6), (4), and 

= f ( s  33)ef(s Yo), there exists yoe Yo such that 

f (:~, 33) - f (:~, Yo) = k~176 
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f (xj, yj ) - f (xj, Yo) ~ f (-~, .~) - f (2, Yo), 

we have 

f(x], y]) - f(xj ,  Yo) oK~ 

This implies that 

for j large enough. 

f(xj ,  yj) Cg(x]), for j large enough. 

This leads to a contradiction. Thus, we have proved that g is sequentially 
compact at 2. Therefore, g is sequentially compact on Xo.  

Similarly, we can prove that h(y) is sequentially compact on Yo. 
(ii) This follows directly from (i) and Proposition 3.2. [] 

By Lemma 3.1 and Lemma 2.1, we get immediately the following 
theorem. 

Theorem 3.1. Let Xo and Yo be nonempty compact sets, and let 
f (x ,  y) be a continuous vector-valued function on Xo x Yo- Then, 

minmaxwf (x, y),=rain h( Yo) ~e ~ ,  
Yo Xo 

maxmin w f  (X, y) -'= max g(Xo) ~ S,?J. 
XO YO 

Lemma 3.2. Let Xo and Yo be nonempty compact sets, and let f (x ,  y) 
be a continuous vector-valued function on Xo x Y0. Then: 

(i) if f (x, y) is K~ same-order on Yo, 

(ii) 

minwmaxwf(x,  y) ~ g(Xo) c~ h(Yo); 
Yo Xo 

if f (x, y) is K~ same-order on Xo, 

maxwminwf  (x, y) c g(Xo) c~ h( Yo). 
XO YO 

ProoL 

(i) We first have 

minwmaxwf(x, y) ~ ~ ,  
YO XO 

from Theorem 3.1. Let 

emin wmax w f  (x, y). 
YO Xo 
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A A ^ ~ / ~  Ax 
Then, there exists y, ~ such that z~maxwf(Xo, y) and 3 = J r  ,Y). Thus, 
f(~,  33)eh(33) by (5). We further claim that f(~, p)Cminwf(~, Yo) = g(~)- 
Indeed, i f f (~ ,  33)~g(.r there exists f(~,  Yo) such that 

f (x ,  33) - f ( x ,  Yo) eK~ (7) 

Since f (~,  33) ~maxwf(Xo, 33), f(:~, Yo) emaxwf(Xo, Yo) by Lemma 2.3(i). 
This implies that 

f (~, 33) Cminwmaxwf (X, y), 
YO XO 

which leads to a contradiction. 
(ii) This can be proved similarly. [] 

We now show one of the main results of this paper. 

Theorem 3.2. Let Xo and Yo be nonempty compact sets, and let 
f (x ,  y) be a continuous vector-valued function on Xo x Yo- Then: 

(i) if f (x, y) is K~ same-order on Yo, 

minwmaxwf(x, y) c maxwminwf(x , y) - K; 
Y0 X0 X0 Y0 

(ii) if f (x, y) is K~ same-order on Xo, 

maxwminwf(x, y) c minwmaxwf(x , y) + K. 
Xo YO YO Xo 

Proof. 

(i) By Lemma 3.2, we have 

minwmaxwf(x, y) c g(Xo). 
Y0 X0 

Since g(Xo) is a compact set by Lemma 3.1(ii), we have 

minwmaxwf(x, y) c maxwminwf(x, y) - K, 
Y0 XO XO YO 

by Lemma 2.2. 
(ii) This can be proved similarly. [] 

The following example shows that the assumption o f f (x ,  y) as uni- 
formly same-order is important in Theorem 3.2.  

Example 3.1. Let 

X =  Y = R  1, Z =R  2, 

X o = { x l O < x < 2 } ,  Yo = {y I - 1  < y < l } ,  
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g = lie, I - 

f (x ,  y) = (y, y2x). 

It is easy to show that f (x ,  y) is K~ same-order on ]To, but it is 
not K~ same-order on Xo. We observe with a simple geometric 
analysis that 

minwmaxwf(x,y) = {(y, 2y 2) [ - 1 / 2  < y  < 1/2}, 
YO XO 

maxwminwf(X, y) = {(y, 2y z) I - 1/2 < y < 1/2} 
Xo Yo 

u{(y,y)  l l/2 < y <_ 1} 

u {(y, - y )  [ - 1 _< y _< - 1/2}. 

Hence, 

but 

minwmaxwf (X, y) c maxwminwf (X, y), 
YO "YO XO YO 

maxwminwf (x, y) r minwmaxwf (X, y) + K. 
XO YO YO XO 

4. Cone Saddle Points 

In this section, we establish the existence theorem for cone saddle 
points. The following definition of cone saddle point is equivalent to that 
in Ref. 9. 

Definition 4.1. A point (Xo, yo)~Xo • Yo is said to be a K-saddle 
point of the vector-valued function f (x,  y) with respect to Xo • Yo if 

f(xo, Yo) Emaxf(Xo, Y0) c~ minf(xo,  Yo). 

The set of  all K-saddle points o f f ( x ,  y) with respect to Xo • Yo is denoted 
by S. 

The following definition of weak K-saddle point is from Ref. 4. 

Definition 4.2. A point (xo,Yo)~Xo x Yo is said to be a weak K- 
saddle point of the vector-valued funct ionf(x ,  y) with respect to Xo x Iio if 

f(xo, Yo) ~maxwf(Xo, Yo) c~ minwf(Xo, Yo). 
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The set of all weak K-saddle points of  f(x, y) with resepct to X o x Yo is 
denoted by S w. 

It is obvious that S c S w. 

Remark 4.1. Note that an existence theorem for a weak K-saddle 
point has actually been given in the proof of Lemma 3.2. 

We further establish the existence theorem for K-saddle points. In Ref. 
3, Nieuwenhuis proved that, if X0 and Y0 are nonempty convex compact 
sets, and if f (x, y) is continuous on tlo • Y0, is convex in x for every y ~ Yo, 
and is concave in y for every x~Xo, then f(x,y) has at least one saddle 
point on -go x Yo. 

We prove that the conditions in Theorem 3.2 are sufficient to ensure 
the existence of the K-saddle points. To this end, we introduce the 
following symbols: 

A ,-- {x eXo If(x, y) emaxf(Xo,  y), for all y e Yo}, 

B .'= {y e Yo If(x,  y) emin f (x ,  Yo), for all x eXo}, 

A w,= {xsX ~ ]f(x,y) emaxwf(Xo, y), for all y s  Yo}, 

Bw"={Y E Yo [f (x,y)~minwf (X, Yo), for all XSXo}. 

Theorem 4.1. Let X0 and Yo be nonempty compact sets, and let 
f(x, y) be a continuous vector-valued function on X o • Yo- Then: 

(i) i f f  is K-uniformly same-order on -go x Yo, 

A~;2~, B~(25, S = A x B ;  

(ii) i f f  is K~ same-order on I" 0 x Y0, 

A w and B w are both nonempty compact sets, S w = A w x B ~. 

Proof. 

(i) For any yo, Yo, there exists Xo~Xo such that f(xo, Yo)~ 
maxf(Xo, Yo). By Lemma 2.3(i), we have 

f(xo,  y) ~maxf(Xo, y), for all y ~ ]1o. 

Therefore, xoEA; that is, A ~ ~ .  The proof of B ~ ~ is analogous. 
Now, we turn to the proof of S -- A x B. Let (Xo, Yo) ~S. Then, 

f(xo,  Yo) ~maxf(Xo,  Yo) n m i n f ( x o ,  Yo), 
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from Definition 4.1. It follows that 

f(xo, y) emaxf(Xo,  y), for all y ~ Yo, 

by Lemma 2.3(i). Thus, xoGA. Similarly, yoGB. Therefore, S ~ A x B. The 
converse inclusion relationship is clear. Hence, we have S = A • B. 

(ii) We can prove that A W ~ ,  B W ~ ,  and S W = A W x B W .  It 
remains to show that A w and B w are compact. 

Let {x, } c A w with x, ~ 2. We take an arbitrary sequence {y, } c I1o 
with Yn ->.9 ~ Yo- From the definition of A w and the continuity o f f ( x ,  y), 
we have 

and 

z. = f ( x . ,  y .)  eh(yn) 

z, --* ~ = f(.~, )~). 

Since the set-valued map h is sequentially compact at y by Lemma 3.1(i), 
f (2 ,  ))  eh()) .  That is, 

f (2, )) Emaxwf (Xo, S'). 

Thus, for any y G Yo, one has 

f (2, y) emaxwf  (Xo, y) 

by Lemma 2.3(ii); hence, 2eA w. Thus, A TM is a closed subset of the 
compact set Xo, and hence A w is compact. 

Similarly, we can prove that B w is compact. [] 

Remark 4.2. Note that Theorem 4.1 also depicts the structures of the 
sets S and S w. 

The value f(xo, Yo), for which (Xo, Y0) is a (weak) K-saddle point of  
f (x ,  y) on Xo • Yo, is called the (weak) K-saddle value o f f ( x ,  y) at (xo, Yo)- 

We denote by V w the set of all weak K-saddle values o f f ( x ,  y) with 
respect to Xo x I1o. That is, 

V w,= {f(x0, Yo) [ (Xo, Yo) sSW}. 

By Theorem 4.1, we have 

VW=f(A w, BW), 

and V w is compact under the conditions in Theorem 4.1. 

Theorem 4.2. Let Xo and Yo be nonempty compact sets, and let 
f (x ,  y) be a continuous vector-valued function on Xo x Yo. Then: 
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(i) if f (x, y) is K~ same-order on Yo, 

minwmaxwf  (X, y) = minw V TM, 
YO XO 

minmaxwf(x, y) = min VW; 
Yo Xo 

(ii) if f (x, y) is K~ same-order on Xo, 

maxwminwf  (x, y) = maxw V w, 
XO YO 

maxminwf(x, y) = max V W. 
XO YO 

Proo~ 

(i) We only prove the first equation. Let f (~ ,p)Eminw Vw; then, 
f(~,P)eh(Yo). If f(:~,p)~minwmaxwf(x,y),  then there exists 
f (x', y') ~h( Yo) such that 

f (~, .9) - f (x', y') eK ~ (8) 

Since h(Yo) is compact by Lemma 3.1(ii), we have 

f (x ' ,  y') eminwmaxwf(X, y) + K, 
YO XO 

by Lemma 2.2. That is, 

where 

f (x', y') = f (xo, Yo) + k', 

f(xo, Yo) ~minwmaxwf(x,  y), k' ~K. 
YO XO 

Thus, we have 

f (x, )) -- f (xo, Yo) eK~ 

from (8) and (9), and 

f(xo, yo) e v W, 

by Lemma 3.2(i). This contradicts f(~,  )))eminw V w. Therefore, 

minw VW c minwmaxwf  (x, y). 
Yo XO 

Next, we show the converse inclusion relationship. Let 

f(~,  P) ~ min wmax y f ( x ,  y). 
Yo Xo 

(9) 
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From Lemma 3.2, we have f (~ ,  ~) ~ V W. If  f (~ ,  )~) Cminw V w, there exists 
f ( xo ,  Yo) ~ VW such that 

f (2, fi) - f (xo, Yo) eK~ 

However, 

f (xo,  Yo) e m a x w f  (Xo, Yo) n m i n w f  (xo, Yo). 

This contradicts 

f (x ,  Y) e m i n w m a x w f  (x, y). 
Y0 XO 

Therefore, 

m i n w m a x w f  (x, y) c minw V W. 
Yo Xo 

(ii) This can be proved similarly. [] 

Since V w is compact, the following corollary is a direct consequence of 
Lemma 2.2 and Theorem 4.2. 

Corollary 4.1. If  the assumptions in Theorem 4.2 hold, then 

VW c m a x w m i n w f  (X, y) - K, 
XO YO 

VW = m i n w m a x w f ( x ,  y) + K. 
Yo Xo 

That is, 

VW c ( m i n w m a x w f ( x ,  y) + K ] c ~ ( m a x w m i n w f ( x ,  y) - K). 
\ ro Xo / \ Xo ro 
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