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Abstract. Let B(H) and A be a C∗−algebra of all bounded linear operators
on a complex Hilbert space H and a complex normed algebra, respectively. For
A,B ∈ A, define a basic elementary operator MA,B : A→ A by MA,B(X) =

AXB. An elementary operator is a finite sum RA,B =
nP

i=1
MAi,Bi

of the basic

ones, where A = (A1, ..., An) and B = (B1, ..., Bn) are two n-tuples of elements
of A.

If A is a standard operator algebra of B(H), it is proved that:
(i) [4]

°°MA,B + MB,A

°° ≥ 2(
√

2− 1) kAk kBk , for any A,B ∈ A
(ii)[1 ]

°°MA,B + MB,A

°° ≥ kAk kBk , for A,B ∈ A, such that inf
λ∈C

kA + λBk =

kAk or inf
λ∈C

kB + λAk = kBk ,
(iii)[3]

°°MA,B + MB,A

°° = 2 kAk kBk , if kA + λBk = kAk+kBk , for some
unit scalar λ.
In this note, we are interested in the general situation where A is a standard

operator algebra acting on a normed space. We shall prove that
°°RA,B

°° ≥
sup

f,g∈(A∗)1

¯̄̄̄
nP

i=1
f(Ai)g(Bi)

¯̄̄̄
, for any two n-tuples A = (A1, ..., An) and B =

(B1, ...,Bn) of elements of A (where (A∗)1 is the unit sphere of A∗). As a
consequence of this result, we show that the results (i), (ii) and (iii) remain
true in this general situation.

1. Introduction

Let A and B(H) be a complex normed algebra and a C∗−algebra of all bounded
linear operators on a complex Hilbert space H, respectively. For A,B ∈ A, define
a basic elementary operator MA,B : A→ A by MA,B(X) = AXB. An elementary

operator is a finite sum RA,B =
nP

i=1
MAi,Bi

of the basic ones, where A = (A1, ..., An)

and B = (B1, ..., Bn) are two n-tuples of elements of A.
Many facts about the relation between the spectrum of RA,B and spectrums

of Ai, Bi are known. For the case with the relation between the operator norm of
RA,B and norms of Ai, Bi, the problem here is of course a useful lower estimate for

the norm of RA,B because some upper estimates such as kRA,Bk ≤
nP

i=1
kAik kBik

are trivial. In a prime C∗−algebra (A prime C∗−algebra is a C∗−algebra which
MA,B = 0 implies A = 0 or B = 0), Mathieu [2] was proved that kMA,Bk =
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kAk kBk and kMA,B +MB,Ak ≥ 2
3 kAk kBk . The most abvious prime C∗−algebra

are B(H) and C∞(H) ( where C∞(H) is the C∗−algebra of all compact operators
on H), respectively. In [4] ,Stacho and Zalar are interested in a standard operator
algebra of B(H)(a standard operator algebra of B(H) is a subalgebra of B(H)
containing all finite rank operators; it is not assumed that is seladjoint or closed
with respect to any topology), where they proved that kMA,B +MB,Ak ≥ 2(

√
2−

1) kAk kBk and they conjectured the following:
Conjecture 1.1. Let A be a standard operator algebra of B(H). If A,B ∈ A, then
the estimate kMA,B +MB,Ak ≥ kAk kBk holds.
Note that this conjecture was verified in the two following cases:
(i) [5] , in the Jordan algebra of symmetric operators of B(H),
(ii) [1] for A,B ∈ B(H) such that inf

λ∈C
kA+ λBk = kAk or inf

λ∈C
kB + λAk = kBk .

Here, we are interested in the case where A is a standard operator algebra acting
on a complex normed space. We shall prove that kRA,Bk ≥ sup

f,g∈(A∗)1

¯̄̄̄
nP

i=1
f(Ai)g(Bi)

¯̄̄̄
,

for any two n-tuples A = (A1, ..., An), B = (B1, ..., Bn) of elements of A (where
(A∗)1 is the unit sphere of A∗). As a consequence of this main result in our gen-
eral situation, we show that the Stacho-Zalar lower bound remains true, and the
estimate kMA,B +MB,Ak ≥ kAk kBk holds if one of the two conditions is satisfied:
(1) inf

λ∈C
kA+ λBk = kAk or inf

λ∈C
kB + λAk = kBk ,

(2) inf
λ∈C

kA+ λBk ≤ kAk
2 or inf

λ∈C
kB + λAk ≤ kBk

2 .

So the conjecture of Stacho-Zalar remains unknown only in the case where
(3) kAk2 < inf

λ∈C
kA+ λBk < kAk and kBk

2 < inf
λ∈C

kB + λAk < kBk .
On the other hand, we are intersted to the following question:

Question. Let A be a standard operator algebra acting on a normed space. For
which A,B ∈ A such that kRA,Bk =

nP
i=1
kAik kBik?

2. Preliminaries

Definition 2.1. Let Ω be a complex Banach algebra with unity I.
(1) The set of states on Ω is by definition:

P (Ω) = {f ∈ Ω∗ : f(I) = 1 = kfk}
(2) The numerical range of an element A in Ω is by definition:

W0(A) = {f(A) : f ∈ P (Ω)}
(3) The numerical radius of an element A in Ω is by definition:

w(A) = sup {|λ| : λ ∈W0(A)}
(4) The usual numerical range of an element A in B(H) is by definition:

W (A) = {hAx,xi : x ∈ H, kxk = 1}



3

(5) The joint numerical range of a n-tuple A = (A1, ..., An) of elemnts of Ω is
by definition the set:

W0(A) = {(f(A1), ..., f(An)) : f ∈ P (Ω)}
It is known that for any A ∈B(H), thenW0(A) =W (A)−, see [6] (whereW (A)−

is the closure of W (A)).

Definition 2.2. Let E be a complex normed space and let B(E) denote the complex
normed algebra of all bounded linear operators on E.

(i) A is called a standard operator algebra of B(E), if it is a subalgebra of B(E)
that contains all finite rank operators.
(ii) For x ∈ E and f ∈ E∗, define the operator x⊗f on E by (x⊗ f) y = f(y)x.

Notation. (i) For any normed space Y, we denote by (Y )1 the unite sphere of Y,
i.e. (Y )1 = {x ∈ Y : kxk = 1} .
(ii) For A,B ∈ B(E), we put UA,B =MA,B +MB,A and VA,B =MA,B −MB,A.

(iii) For K ⊂ C, we put |K| = sup
λ∈K

|λ| .

(iv) ForM,N ⊂ Cn, we putM◦N =

½
nP

i=1
αiβi : (α1, ..., αn) ∈M, (β1, ..., βn) ∈ N

¾
.

Proposition 2.1. Assume A is a standard operator algebra on a normed space E.

Then kMA,Bk = kAk kBk , for any A,B ∈ A.
Proof. It is clear that kMA,Bk ≤ kAk kBk .
Now, let x, y ∈ (E)1 and f ∈ (E∗)1. Since x⊗ f ∈ A and kx⊗ fk = 1, then

kMA,Bk ≥ kA(x⊗ f)Bk
≥ kA(x⊗ f)Byk
≥ |f(By)| kAxk

Hence kMA,Bk ≥ kAxk sup
f∈(E∗)1

|f(By)| = kAxk kByk .
So that kMA,Bk ≥ kAk kBk . Therefore kMA,Bk = kAk kBk .

Theorem 2.2. [4] Assume A is a standard operator algebra ofB(H). Then kUA,Bk ≥
2(
√
2− 1) kAk kBk , for all A,B ∈ A.

Theorem 2.3. [1] Let A,B ∈ B(H) such that inf
λ∈C

kA+ λBk = kAk or inf
λ∈C

kB + λAk =
kBk . Then kUA,Bk ≥ kAk kBk .
Theorem 2.4. [3] Assume A is a standard operator algebra of B(H). Let A,B ∈ A
such that w(A∗B) = kAk kBk . Then kUA,Bk = 2 kAk kBk .
Definition 2.3. Let Y be a normed space and x, y ∈ Y.We say that x is orthogonal
to y (x ⊥ y), if inf

λ∈C
kλx+ yk = kyk .

Note that if Y is a Hilbert space, then x ⊥ y iff hx, yi = 0.
Proposition 2.5. Let Y be a normed space and x, y ∈ Y. Then the following prop-
erties are equivalent:
(1) x ⊥ y,

(2) ∃f ∈ (Y ∗)1 : f(x) = 0, f(y) = kyk .
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Proof. If x or y is zero, then the proof is trivial.
Now, assume x and y are not zero.
(1) implies (2).
It is clear that kλx+ µyk ≥ |µ| kyk , for all λ, µ ∈ C. Let F be the subspace of

Y generated by x and y.

Define the functional linear g on F by g(x) = 0 and g(y) = kyk . Then,
|g(λx+ µy)| = |µ| kyk ≤ kλx+ µyk , for all λ, µ ∈ C. Since g( y

kyk) = 1, and
y
kyk ∈ (F )1, we have kgk = 1. Therefore, the condition (2) follows immediately by
using the prolongement theorem of Hahn-Banach theorem.
(2) implies (1) is trivial.

Remark 2.1. By using the previous theorem, Theorem 2.3 may be reformulated as
follows: If A ⊥ B or B ⊥ A, then kUA,Bk ≥ kAk kBk .
Proposition 2.6. Let Y be a normed space and x1, ..., xn ∈ Y. Then the following
properties are equivalent:

(1)
°°°° nP
i=1

xi

°°°° = nP
i=1
kxik ,

(2) ∃f ∈ (Y ∗)1 : f(xi) = kxik , i = 1, ..., n.
Proof. (1) implies (2).

By Hahn-Banach theorem, there exist f ∈ (Y ∗)1 such that f(
nP

i=1
xi) =

°°°° nP
i=1

xi

°°°° .

Then,
nP

i=1
Ref(xi) =

nP
i=1
kxik . Since Ref(xi) ≤ kxik ,i = 1, ..., n, then, we have

Ref(xi) = kxik , i = 1, ..., n. Therefore f(xi) = kxik , i = 1, ..., n.
(2) implies (1).
It is clear that:

nX
i=1

kxik =
nX

i=1

f(xi)

=

¯̄̄̄
¯f(

nX
i=1

xi)

¯̄̄̄
¯

≤
°°°°°

nX
i=1

xi

°°°°°
≤

nX
i=1

kxik

Theorem 2.7. Let B be a C∗−algebra and let A,B ∈ B. Then kA+Bk = kAk+
kBk holds iff kAk kBk ∈W0(A

∗B).

Proof. We can assume A and B are not zero.
Assume that kA+Bk = kAk + kBk . Then we have k(A+B)∗(A+B)k =

kAk2 + kBk2 + 2 kAk kBk . On the other hand, there exist f ∈ P (B) such that
k(A+B)∗(A+B)k = f(A∗A)+f(B∗B)+2Ref(A∗B), and since f(A∗A) ≤ kAk2

,

f(B∗B) ≤ kBk2 and Ref(A∗B) ≤ kAk kBk , then we have Ref(A∗B) = kAk kBk
and since |f(A∗B)| ≤ kAk kBk , then we obtain f(A∗B) = kAk kBk , so that
kAk kBk ∈W0(A

∗B).
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Now assume that kAk kBk ∈ W0(A
∗B). Then there exist f ∈ P (B) such that

f(A∗B) = kAk kBk , and since |f(A∗B)|2 ≤ f(A∗A)f(B∗B), f(A∗A) ≤ kAk2 and
f(B∗B) ≤ kBk2

, then we obtain f(A∗A) = kAk2
, f(B∗B) = kBk2

, therefore
f(A∗A) + f(B∗B) + 2Ref(A∗B) = (kAk + kBk)2, thus (kAk + kBk)2 = f((A +

B)∗(A + B)) ≤ k(A+B)∗(A+B)k = kA+Bk2 ≤ (kAk + kBk)2, we can deduce
that kA+Bk = kAk+ kBk .
Corollary 2.8. Let B be a C∗−algebra and let A,B ∈ B. Then the following prop-
erties are equivalent:
(1) w(A∗B) = kAk kBk ,
(2) ∃λ ∈ (C)1 : kA+ λBk = kAk+ kBk .

Proof. (1) implies (2).
Since W0(A

∗B) is compact, then there exist µ ∈ (C)1 such that kAk kBkµ ∈
W0(A

∗B). Put C = µB, then kAk kCk ∈ W0(A
∗C). Then, by the Theorem2.7,

kA+Ck = kAk+ kCk . Therefore kA+ λBk = kAk+ kBk , where λ = µ.

(2) implies (1).
It is clear, if C = λB, then, by the Theorem2.7, kAk kBk = kAk kCk ∈W0(A

∗C).
So we obtain, kAk kBk ≤ w(A∗C) = w(A∗B). Since w(A∗B) ≤ kA∗Bk ≤ kAk kBk ,
the condition (1) follows immediately.

Remark 2.2. By using the above theorem, Theorem 2.4 may be reformulated as
follows:
If kA+ λBk = kAk+kBk , for some unit scalar λ, then kUA,Bk = 2 kAk kBk .

3. A lower bound of the norm of RA,B

In this section, we consider the case where A is a standard operator algebra
acting on a complex normed space E.

Theorem 3.1. Let A = (A1, ..., An) and B = (B1, ..., Bn) are two n-tuples of
elements of A. Then

kRA,Bk ≥ sup
f,g∈(A∗)1

¯̄̄̄
¯

nX
i=1

f(Ai)g(Bi)

¯̄̄̄
¯

Proof. Let x, y ∈ (E)1, f, g ∈ (A∗)1 and h ∈ (E∗)1. Then, we have:

kRA,Bk ≥
°°°°°

nX
i=1

Ai(x⊗ h)Bi

°°°°°
≥

°°°°°
nX

i=1

Ai(x⊗ h)Biy

°°°°°
=

°°°°°
nX

i=1

h(Biy)Aix

°°°°°
Thus, kRA,Bk ≥ sup

kxk=1

°°°° nP
i=1

h(Biy)Aix

°°°° = °°°° nP
i=1

h(Biy)Ai

°°°° .

So that, kRA,Bk ≥
°°°° nP
i=1

h(Biy)f(Ai)

°°°° = °°°°h( nP
i=1

f(Ai)Biy)

°°°° .
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Then, kRA,Bk ≥ sup
h∈(E∗)1

°°°°h( nP
i=1

f(Ai)Biy)

°°°° = °°°° nP
i=1

f(Ai)Biy

°°°° , therefore kRA,Bk ≥

sup
kyk=1

°°°° nP
i=1

f(Ai)Biy

°°°° = °°°° nP
i=1

f(Ai)Bi

°°°° . Therefore kRA,Bk ≥
¯̄̄̄

nP
i=1

f(Ai)g(Bi)

¯̄̄̄
.

Corollary 3.2. Assume E is a Banach space and A = B(E). Lat A = (A1, ..., An)
and B = (B1, ..., Bn) are two n-tuples of operators on E. Then

kRA,Bk ≥ |W0(A) ◦W0(B)|
Proof. Since P (A) ⊂ (A∗)1, then

sup
f,g∈(A∗)1

¯̄̄̄
¯

nX
i=1

f(Ai)g(Bi)

¯̄̄̄
¯ ≥ sup

f,g∈P (A)

¯̄̄̄
¯

nX
i=1

f(Ai)g(Bi)

¯̄̄̄
¯

= |W0(A) ◦W0(B)|
So the resul follows immediately.

Corollary 3.3. Let A,B ∈ A. then, we have:

kUA,Bk ≥ sup
f,g∈(A∗)1

|f(A)g(B) + f(B)g(A)|

Proof. This result follows immediately, by Theorem 3.1, since UA,B = R(A,B), (B,A).

Corollary 3.4. Let A = (A1, ..., An) and B = (B1, ..., Bn) are two n-tuples of ele-

ments of A such that
°°°° nP
i=1

Ai

°°°° = nP
i=1
kAik and

°°°° nP
i=1

Bi

°°°° = nP
i=1
kBik . Then kRA,Bk =

nP
i=1
kAik kBik .

Proof. By Proposition 2.6, there exist f, g ∈ (A∗)1 such that f(Ai) = kAik and
g(Bi) = kBik , for i = 1, ..., n.
By using Theorem 3.1, we obtain kRA,Bk ≥

¯̄̄̄
nP

i=1
f(Ai)g(Bi)

¯̄̄̄
=

nP
i=1
kAik kBik ≥

kRA,Bk .
Corollary 3.5. Let A,B ∈ A such that kA+Bk = kAk + kBk . Then kUA,Bk =
2 kAk kBk .
Proof. Since UA,B =MA,B+MB,A, this corollary is a particular case of the previous
Corollary.

Remark 3.1. In the previous corollary, we can replace the condition kA+Bk =
kAk + kBk , by kA+ λBk = kAk + kBk , for some unit scalar λ, since kUA,Bk =
kUA,λBk = 2 kAk kλBk = 2 kAk kBk . Using Corollary 2.8, this give a general form
of Theorem 2.4.

Theorem 3.6. Let A,B ∈ A. Then kUA,Bk ≥ 2(
√
2 − 1) kAk kBk , for any A,B

∈ A.
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Proof. We may assume without lost of the generality that kAk = kBk = 1.
By Corollary 3.3, we have,

kUA,Bk ≥ |f(A)g(B) + f(B)g(A)| (1)

for any f, g ∈ (A∗)1.
Apply (1), for g = f, we obtain:

kUA,Bk ≥ 2 |f(A)f(B)| (2)

By Hahn-Banach theorem, there exist f0, g0 ∈ (A∗)1, such that f0(B) = 1 =
g0(A). Put f0(A) = α and g0(B) = β.

Inequality (1) yields for f = f0 and g = g0, kUA,Bk ≥ |1 + αβ| ≥ 1− |αβ| .
Apply inequality (2) twice, for f = f0 and for g = g0, we obtain kUA,Bk ≥ 2 |α|

and kUA,Bk ≥ 2 |β| .
Therefore kUA,Bk2

+ 4 kUA,Bk ≥ 4 |αβ|+ 4(1− |αβ|) = 4. We deduce kUA,Bk ≥
2(
√
2− 1) kAk kBk .

Corollary 3.7. Let A,B ∈ A such that A⊥B or B⊥A, then:
(i) kUA,Bk ≥ kAk kBk ,
(ii) kVA,Bk ≥ kAk kBk .

Proof. (i) Assume A⊥B. By Proposition 2.5, there exist f ∈ (A∗)1, such that
f(A) = 0 and f(B) = kBk .Then for all g ∈ (A∗)1, we have kUA,Bk ≥ |f(A)g(B) + f(B)g(A)| =
kBk |g(A)| . Therefore, kUA,Bk ≥ kBk sup

g∈(A∗)1

(|g(A)|) = kAk kBk .
By the same, we obtain the second implication.
By a similar proof, we obtain (ii).

Theorem 3.8. Let A,B ∈ A, such that inf
λ∈C

kA+ λBk ≤ kAk
2 or inf

λ∈C
kB + λAk ≤

kBk
2 . Then kUA,Bk ≥ kAk kBk .
Proof. By a simple computation, we obtain, VA,B = VA+λB,B, for all complex λ.

Then kVA,Bk ≤ 2 inf
λ∈C

kA+ λBk kBk .
If inf

λ∈C
kA+ λBk ≤ kAk

2 , then kVA,Bk ≤ kAk kBk . By Proposition 2.1, we have
kUA,Bk+kVA,Bk ≥ 2 kMA,Bk = 2 kAk kBk . It follows that kUA,Bk ≥ kAk kBk . By
the same, we obtain the inequality with the second condition.

Remark 3.2. 1- The Theorem 3.6 is a general form of Theorem 2.2.
2- The Corollary 3.7.i is a general form of Theorem 2.3.
3- By Corollary 3.7.i and Theorem 3.8, the conjecture of Stacho-Zalar is satisfied

in the two following cases:
(i) inf

λ∈C
kA+ λBk = kAk or inf

λ∈C
kB + λAk = kBk ,

(ii) inf
λ∈C

kA+ λBk ≤ kAk
2 or inf

λ∈C
kB + λAk ≤ kBk

2 .

Then, it remains unknown only in the case where kAk
2 < inf

λ∈C
kA+ λBk < kAk

and kBk
2 < inf

λ∈C
kB + λAk < kBk .

Note that, the conjecture of Stacho-Zalar is given in particualar case of Hilbert
space, but our partial results are given in a general situation of normed space.
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Theorem 3.9. Let A,B ∈ A. Then kUA,Bk ≥ 1
2 kVA,Bk .

Proof. We may assume that kAk = kBk = 1.
By Hahn-Banach theorem, there exist f ∈ (A∗)1 such that f(B) = 1. Put

f(A) = µ.

It follows, from Corollary 3.3, that kUA,Bk ≥ sup
g∈(A∗)1

|f(A)g(B) + f(B)g(A)| =
kA+ µBk . Since kVA,Bk = kVA+µB,Bk ≤ 2 kA+ µBk , it follows that kUA,Bk ≥
1
2 kVA,Bk .
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