ON THE NORM OF ELEMENTARY OPERATORS IN A STANDARD OPERATOR ALGEBRAS AMEUR SEDDIK

Abstract. Let $\mathcal{B}(H)$ and \mathcal{A} be a C^* -algebra of all bounded linear operators on a complex Hilbert space H and a complex normed algebra, respectively. For

 $A, B \in \mathcal{A}$, define a basic elementary operator $M_{A,B} : \mathcal{A} \to \mathcal{A}$ by $M_{A,B}(X) = AXB$. An elementary operator is a finite sum $R_{A,B} = \prod_{i=1}^{P} M_{A_i,B_i}$ of the basic

ones, where $A = (A_1, ..., A_n)$ and $B = (B_1, ..., B_n)$ are two n-tuples of elements of \mathcal{A}

If \mathcal{A} is a standard operator algebra of $\mathcal{B}(H)$, it is proved that:

(i) [4] ${}^{\circ}M_{A,B} + M_{B,A}{}^{\circ} \geq 2(\sqrt{2}-1) ||A|| ||B||$, for any $A, B \in \mathcal{A}$ (ii) [1] ${}^{\circ}M_{A,B} + M_{B,A}{}^{\circ} \geq ||A|| ||B||$, for $A, B \in \mathcal{A}$, such that $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| =$

 $\begin{aligned} \|A\| \text{ or } \inf_{\lambda \in \Theta} \|B + \lambda A\| &= \|B\|, \\ (\text{iii})[3] \circ M_{A,B} + M_{B,A} \circ &= 2 \|A\| \|B\|, \text{ if } \|A + \lambda B\| = \|A\| + \|B\|, \text{ for some} \end{aligned}$ unit scalar λ .

In this note, we are interested in the general situation where $\mathcal A$ is a standard operator algebra acting on a normed space. We shall prove that ${}^{\circ}R_{A,B}{}^{\circ} \geq$

 $\sup_{f,g\in(\mathcal{A}^*)_1} \int_{i=1}^{i=1} f(A_i)g(B_i)^{-1}$, for any two n-tuples $A = (A_1, ..., A_n)$ and $B = f(A_i) = 0$ $(B_1,...,B_n)$ of elements of \mathcal{A} (where $(\mathcal{A}^*)_1$ is the unit sphere of \mathcal{A}^*). As a

consequence of this result, we show that the results (i), (ii) and (iii) remain true in this general situation.

1. Introduction

Let \mathcal{A} and $\mathcal{B}(H)$ be a complex normed algebra and a C^* -algebra of all bounded linear operators on a complex Hilbert space H, respectively. For $A, B \in \mathcal{A}$, define a basic elementary operator $M_{A,B}$: $\mathcal{A} \to \mathcal{A}$ by $M_{A,B}(X) = AXB$. An elementary operator is a finite sum $R_{A,B} = \prod_{i=1}^{n} M_{A_i,B_i}$ of the basic ones, where $A = (A_1, ..., A_n)$ and $B = (B_1, ..., B_n)$ are two n-tuples of elements of \mathcal{A} .

Many facts about the relation between the spectrum of $R_{A,B}$ and spectrums of A_i, B_i are known. For the case with the relation between the operator norm of $R_{A,B}$ and norms of A_i, B_i , the problem here is of course a useful lower estimate for the norm of $R_{A,B}$ because some upper estimates such as $||R_{A,B}|| \le \frac{\mathbb{P}}{\mathbb{P}} ||A_i|| ||B_i||$ are trivial. In a prime C^* -algebra (A prime C^* -algebra is a C^* -algebra which $M_{A,B} = 0$ implies A = 0 or B = 0), Mathieu [2] was proved that $||M_{A,B}|| =$

¹⁹⁹¹ Mathematics Subject Classification. 46L35, 47A12, 47B47.

Key words and phrases. Numerical range, numerical radius, standard operator algebra.

AMEUR SEDDIK

 $\|A\| \|B\|$ and $\|M_{A,B} + M_{B,A}\| \ge \frac{2}{3} \|A\| \|B\|$. The most abvious prime C^* -algebra are $\mathcal{B}(H)$ and $\mathcal{C}_{\infty}(H)$ (where $\mathcal{C}_{\infty}(H)$ is the C^* -algebra of all compact operators on H), respectively. In [4], Stacho and Zalar are interested in a standard operator algebra of $\mathcal{B}(H)$ (a standard operator algebra of $\mathcal{B}(H)$ is a subalgebra of $\mathcal{B}(H)$ containing all finite rank operators; it is not assumed that is seladjoint or closed with respect to any topology), where they proved that $||M_{A,B} + M_{B,A}|| \ge 2(\sqrt{2} - 1)$ 1) ||A|| ||B|| and they conjectured the following:

Conjecture 1.1. Let \mathcal{A} be a standard operator algebra of $\mathcal{B}(\mathcal{H})$. If $\mathcal{A}, \mathcal{B} \in \mathcal{A}$, then the estimate $||M_{A,B} + M_{B,A}|| \ge ||A|| ||B||$ holds.

Note that this conjecture was verified in the two following cases:

(i) [5], in the Jordan algebra of symmetric operators of $\mathcal{B}(H)$,

(ii) [1] for $A, B \in \mathcal{B}(H)$ such that $\inf_{\lambda \in C} ||A + \lambda B|| = ||A||$ or $\inf_{\lambda \in C} ||B + \lambda A|| = ||B||$. Here, we are interested in the case where \mathcal{A} is a standard operator algebra acting

for any two n-tuples $A = (A_1, ..., A_n), B = (B_1, ..., B_n)$ of elements of \mathcal{A} (where $(\mathcal{A}^*)_1$ is the unit sphere of \mathcal{A}^*). As a consequence of this main result in our general situation, we show that the Stacho-Zalar lower bound remains true, and the estimate $||M_{A,B} + M_{B,A}|| \ge ||A|| ||B||$ holds if one of the two conditions is satisfied: (1) $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| = ||A||$ or $\inf_{\lambda \in \mathbb{C}} ||B + \lambda A|| = ||B||$,

- (2) $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| \le \frac{||A||}{2}$ or $\inf_{\lambda \in \mathbb{C}} ||B + \lambda A|| \le \frac{||B||}{2}$. So the conjecture of Stacho-Zalar remains unknown only in the case where (3) $\frac{||A||}{2} < \inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| < ||A||$ and $\frac{||B||}{2} < \inf_{\lambda \in \mathbb{C}} ||B + \lambda A|| < ||B||$.

On the other hand, we are intersted to the following question:

Question. Let \mathcal{A} be a standard operator algebra acting on a normed space. For which $A, B \in \mathcal{A}$ such that $||R_{A,B}|| = \prod_{i=1}^{P} ||A_i|| ||B_i||$?

2. Prel iminaries

Definition 2.1. Let Ω be a complex Banach algebra with unity I. (1) The set of states on Ω is by definition:

$$P(\Omega) = \{ f \in \Omega^* : f(I) = 1 = ||f|| \}$$

(2) The numerical range of an element A in Ω is by definition:

$$W_0(A) = \{f(A) : f \in P(\Omega)\}$$

(3) The numerical radius of an element A in Ω is by definition:

$$w(A) = \sup \{ |\lambda| : \lambda \in W_0(A) \}$$

(4) The usual numerical range of an element A in B(H) is by definition:

$$W(A) = \{ \langle Ax, x \rangle : x \in H, \|x\| = 1 \}$$

(5) The joint numerical range of a n-tuple $A = (A_1, ..., A_n)$ of elements of Ω is by definition the set:

$$W_0(A) = \{ (f(A_1), ..., f(A_n)) : f \in P(\Omega) \}$$

It is known that for any $A \in B(H)$, then $W_0(A) = W(A)^-$, see [6] (where $W(A)^-$ is the closure of W(A)).

Definition 2.2. Let E be a complex normed space and let B(E) denote the complex normed algebra of all bounded linear operators on E.

(i) A is called a standard operator algebra of B(E), if it is a subalgebra of B(E) that contains all finite rank operators.

(ii) For $x \in E$ and $f \in E^*$, define the operator $x \otimes f$ on E by $(x \otimes f) y = f(y)x$.

Notation. (i) For any normed space Y, we denote by $(Y)_1$ the unite sphere of Y, i.e. $(Y)_1 = \{x \in Y : ||x|| = 1\}$.

(ii) For
$$A, B \in \mathsf{B}(E)$$
, we put $U_{A,B} = M_{A,B} + M_{B,A}$ and $V_{A,B} = M_{A,B} - M_{B,A}$.
(iii) For $K \subset \mathsf{C}$, we put $|K| = \sup_{\lambda \in K} |\lambda|$.

(iv) For
$$M, N \subset \mathbb{C}^n$$
, we put $M \circ N = \bigcap_{i=1}^{m} \alpha_i \beta_i : (\alpha_1, ..., \alpha_n) \in M, \ (\beta_1, ..., \beta_n) \in N$

Proposition 2.1. Assume A is a standard operator algebra on a normed space E. Then $||M_{A,B}|| = ||A|| ||B||$, for any $A, B \in A$.

Proof. It is clear that $||M_{A,B}|| \leq ||A|| ||B||$. Now, let $x, y \in (E)_1$ and $f \in (E^*)_1$. Since $x \otimes f \in \mathcal{A}$ and $||x \otimes f|| = 1$, then

$$|M_{A,B}\| \geq ||A(x \otimes f)B||$$

$$\geq ||A(x \otimes f)By||$$

$$\geq ||f(By)| ||Ax||$$

Hence $||M_{A,B}|| \ge ||Ax|| \sup_{f \in (E^*)_1} |f(By)| = ||Ax|| ||By||.$ So that $||M_{A,B}|| \ge ||A|| ||B||$. Therefore $||M_{A,B}|| = ||A|| ||B||.$

Theorem 2.2. [4] Assume \mathcal{A} is a standard operator algebra of $\mathcal{B}(H)$. Then $||U_{A,B}|| \ge 2(\sqrt{2}-1) ||A|| ||B||$, for all $A, B \in \mathcal{A}$.

Theorem 2.3. [1] Let $A, B \in B(H)$ such that $\inf_{\lambda \in C} ||A + \lambda B|| = ||A||$ or $\inf_{\lambda \in C} ||B + \lambda A|| = ||B||$. Then $||U_{A,B}|| \ge ||A|| ||B||$.

Theorem 2.4. [3] Assume \mathcal{A} is a standard operator algebra of $\mathcal{B}(H)$. Let $A, B \in \mathcal{A}$ such that $w(A^*B) = ||A|| ||B||$. Then $||U_{A,B}|| = 2 ||A|| ||B||$.

Definition 2.3. Let Y be a normed space and $x, y \in Y$. We say that x is orthogonal to $y (x \perp y)$, if $\inf_{\lambda \in C} ||\lambda x + y|| = ||y||$.

Note that if Y is a Hilbert space, then $x \perp y$ iff $\langle x, y \rangle = 0$.

Proposition 2.5. Let Y be a normed space and $x, y \in Y$. Then the following properties are equivalent:

(1)
$$x \perp y$$
,

(2) $\exists f \in (Y^*)_1$: f(x) = 0, f(y) = ||y||.

Proof. If x or y is zero, then the proof is trivial.

Now, assume x and y are not zero.

(1) implies (2).

It is clear that $\|\lambda x + \mu y\| \ge |\mu| \|y\|$, for all $\lambda, \mu \in \mathbb{C}$. Let F be the subspace of Y generated by x and y.

Define the functional linear g on F by g(x) = 0 and g(y) = ||y||. Then, $|g(\lambda x + \mu y)| = |\mu| ||y|| \leq ||\lambda x + \mu y||$, for all $\lambda, \mu \in \mathbb{C}$. Since $g(\frac{y}{||y||}) = 1$, and $\frac{y}{\|y\|} \in (F)_1$, we have $\|g\| = 1$. Therefore, the condition (2) follows immediately by using the prolongement theorem of Hahn-Banach theorem.

(2) implies (1) is trivial. \blacksquare

Remark 2.1. By using the previous theorem, Theorem 2.3 may be reformulated as follows: If $A \perp B$ or $B \perp A$, then $||U_{A,B}|| \ge ||A|| ||B||$.

Proposition 2.6. Let Y be a normed space and $x_1, ..., x_n \in Y$. Then the following properties are equivalent:

$$(1) \overset{\circ}{\overset{\circ}{\circ}} \overset{\mu \sigma}{\overset{\circ}{\circ}} \overset{\circ}{\overset{\circ}{\circ}} = \overset{\mu \sigma}{\overset{\circ}{\circ}} \|x_i\|, \\ (2) \exists f \in (Y^*)_1 : f(x_i) = \|x_i\|, \ i = 1, ..., n$$

Proof. (1) implies (2).

By Hahn-Banach theorem, there exist $f \in (Y^*)_1$ such that $f(\underset{i=1}{\overset{\circ}{\underset{i=1}{p}}} x_i) = \overset{\circ}{\overset{\circ}{\underset{i=1}{p}}} x_i \overset{\circ}{\overset{\circ}{\underset{i=1}{p}} x_i \overset{\circ}{\overset{\circ}{\underset{i=1}{p}}} x_i \overset{\circ}{\overset{\circ}{\underset{i=1}{p}}} x_i \overset{\circ}{\overset{\circ}{\underset{i=1}{p}} x_i \overset{\circ}{\overset{\circ}{\underset{i=1}{p}} x_i \overset{\circ}{\underset{i=1}{p}} x_i \overset{\circ}{\underset{i=1$

Then, $\underset{i=1}{\overset{i}{\atopi}{\overset{i=1}{\overset{i}{\overset$ (2) implies (1).

It is clear that:

Theorem 2.7. Let \mathcal{B} be a C^* -algebra and let $A, B \in \mathcal{B}$. Then ||A + B|| = ||A|| + ||A||||B|| holds iff $||A|| ||B|| \in W_0(A^*B)$.

Proof. We can assume A and B are not zero.

Assume that ||A + B|| = ||A|| + ||B||. Then we have $||(A + B)^*(A + B)|| =$ $||A||^{2} + ||B||^{2} + 2||A|| ||B||.$ On the other hand, there exist $f \in P(\mathcal{B})$ such that $||(A+B)^{*}(A+B)|| = f(A^{*}A) + f(B^{*}B) + 2Ref(A^{*}B),$ and since $f(A^{*}A) \le ||A||^{2},$ $f(B^*B) \le \|B\|^2$ and $Ref(A^*B) \le \|A\| \|B\|$, then we have $Ref(A^*B) = \|A\| \|B\|$ and since $|f(A^*B)| \leq ||A|| ||B||$, then we obtain $f(A^*B) = ||A|| ||B||$, so that $||A|| ||B|| \in W_0(A^*B).$

4

Now assume that $||A|| ||B|| \in W_0(A^*B)$. Then there exist $f \in P(\mathcal{B})$ such that $f(A^*B) = ||A|| ||B||$, and since $|f(A^*B)|^2 \leq f(A^*A)f(B^*B)$, $f(A^*A) \leq ||A||^2$ and $f(B^*B) \leq ||B||^2$, then we obtain $f(A^*A) = ||A||^2$, $f(B^*B) = ||B||^2$, therefore $f(A^*A) + f(B^*B) + 2Ref(A^*B) = (||A|| + ||B||)^2$, thus $(||A|| + ||B||)^2 = f((A + B)^*(A + B)) \leq ||(A + B)^*(A + B)|| = ||A + B||^2 \leq (||A|| + ||B||)^2$, we can deduce that ||A + B|| = ||A|| + ||B||.

Corollary 2.8. Let \mathcal{B} be a C^* -algebra and let $A, B \in \mathcal{B}$. Then the following properties are equivalent:

 $(1) \ w(A^*B) = \|A\| \, \|B\|,$

(2) $\exists \lambda \in (\mathbb{C})_1 : ||A + \lambda B|| = ||A|| + ||B||.$

Proof. (1) implies (2).

Since $W_0(A^*B)$ is compact, then there exist $\mu \in (\mathbb{C})_1$ such that $||A|| ||B|| \mu \in W_0(A^*B)$. Put $C = \overline{\mu}B$, then $||A|| ||C|| \in W_0(A^*C)$. Then, by the Theorem2.7, ||A + C|| = ||A|| + ||C||. Therefore $||A + \lambda B|| = ||A|| + ||B||$, where $\lambda = \overline{\mu}$. (2) implies (1).

It is clear, if $C = \lambda B$, then, by the Theorem 2.7, $||A|| ||B|| = ||A|| ||C|| \in W_0(A^*C)$. So we obtain, $||A|| ||B|| \le w(A^*C) = w(A^*B)$. Since $w(A^*B) \le ||A^*B|| \le ||A|| ||B||$, the condition (1) follows immediately.

Remark 2.2. By using the above theorem, Theorem 2.4 may be reformulated as follows:

If $||A + \lambda B|| = ||A|| + ||B||$, for some unit scalar λ , then $||U_{A,B}|| = 2 ||A|| ||B||$.

3. A lower bound of the norm of $R_{A,B}$

In this section, we consider the case where \mathcal{A} is a standard operator algebra acting on a complex normed space E.

Theorem 3.1. Let $A = (A_1, ..., A_n)$ and $B = (B_1, ..., B_n)$ are two n-tuples of elements of A. Then

$$\|R_{A,B}\| \ge \sup_{f,g \in (\mathcal{A}^*)_1} \left[\bigwedge_{i=1}^{\infty} f(A_i)g(B_i) \right]$$

Proof. Let $x, y \in (E)_1$, $f, g \in (\mathcal{A}^*)_1$ and $h \in (E^*)_1$. Then, we have:

AMEUR SEDDIK

Corollary 3.2. Assume E is a Banach space and $\mathcal{A} = \mathcal{B}(E)$. Let $A = (A_1, ..., A_n)$ and $B = (B_1, ..., B_n)$ are two n-tuples of operators on E. Then

$$||R_{A,B}|| \ge |W_0(A) \circ W_0(B)|$$

Proof. Since $P(\mathcal{A}) \subset (\mathcal{A}^*)_1$, then

$$\sup_{f,g\in(\mathcal{A}^*)_1} \left[\begin{array}{c} \mathbf{X}^{\mathbf{i}} \\ f(A_i)g(B_i) \end{array} \right] \geq \sup_{f,g\in P(\mathcal{A})} \left[\begin{array}{c} \mathbf{X}^{\mathbf{i}} \\ f(A_i)g(B_i) \end{array} \right] \\ = |W_0(A) \circ W_0(B)|$$

So the resul follows immediately.

Corollary 3.3. Let $A, B \in A$. then, we have:

$$||U_{A,B}|| \ge \sup_{f,g\in(\mathcal{A}^*)_1} |f(A)g(B) + f(B)g(A)|$$

Proof. This result follows immediately, by Theorem 3.1, since $U_{A,B} = R_{(A,B), (B,A)}$.

Corollary 3.4. Let $A = (A_{\P}, ..., A_n)$ and $B = (B_1, ..., B_n)$ are two n-tuples of elements of \mathcal{A} such that $\circ \stackrel{\circ}{\underset{i=1}{\circ}} A_i \circ \stackrel{\blacksquare}{\underset{i=1}{\circ}} \|A_i\|$ and $\circ \stackrel{\circ}{\underset{i=1}{\circ}} B_i \circ \stackrel{\blacksquare}{\underset{i=1}{\circ}} \|B_i\|$. Then $\|R_{A,B}\| = \mathbb{P}_{i=1} \|A_i\| \|B_i\|$.

Proof. By Proposition 2.6, there exist $f, g \in (\mathcal{A}^*)_1$ such that $f(A_i) = ||A_i||$ and $g(B_i) = ||B_i||$, for i = 1, ..., n.

By using Theorem 3.1, we obtain $||R_{A,B}|| \ge \frac{1}{i=1} ||R_{A,B}|| = \frac{1}{i=1} ||A_i|| ||B_i|| \ge ||R_{A,B}||$.

Corollary 3.5. Let $A, B \in \mathcal{A}$ such that ||A + B|| = ||A|| + ||B||. Then $||U_{A,B}|| = 2 ||A|| ||B||$.

Proof. Since $U_{A,B} = M_{A,B} + M_{B,A}$, this corollary is a particular case of the previous Corollary.

Remark 3.1. In the previous corollary, we can replace the condition ||A + B|| = ||A|| + ||B||, by $||A + \lambda B|| = ||A|| + ||B||$, for some unit scalar λ , since $||U_{A,B}|| = ||U_{A,\lambda B}|| = 2 ||A|| ||\lambda B|| = 2 ||A|| ||B||$. Using Corollary 2.8, this give a general form of Theorem 2.4.

Theorem 3.6. Let $A, B \in \mathcal{A}$. Then $||U_{A,B}|| \geq 2(\sqrt{2}-1) ||A|| ||B||$, for any $A, B \in \mathcal{A}$.

Proof. We may assume without lost of the generality that ||A|| = ||B|| = 1. By Corollary 3.3, we have,

$$||U_{A,B}|| \ge |f(A)g(B) + f(B)g(A)|$$
 (1)

for any $f, g \in (\mathcal{A}^*)_1$.

Apply (1), for g = f, we obtain:

$$||U_{A,B}|| \ge 2 |f(A)f(B)|$$
 (2)

By Hahn-Banach theorem, there exist $f_0, g_0 \in (\mathcal{A}^*)_1$, such that $f_0(B) = 1 =$ $g_0(A)$. Put $f_0(A) = \alpha$ and $g_0(B) = \beta$.

Inequality (1) yields for $f = f_0$ and $g = g_0$, $||U_{A,B}|| \ge |1 + \alpha\beta| \ge 1 - |\alpha\beta|$. Apply inequality (2) twice, for $f = f_0$ and for $g = g_0$, we obtain $||U_{A,B}|| \ge 2 |\alpha|$ and $||U_{A,B}|| \ge 2 |\beta|$.

Therefore $||U_{A,B}||^2 + 4 ||U_{A,B}|| \ge 4 |\alpha\beta| + 4(1 - |\alpha\beta|) = 4$. We deduce $||U_{A,B}|| \ge 4$ $2(\sqrt{2}-1) \|A\| \|B\|$.

Corollary 3.7. Let
$$A, B \in \mathcal{A}$$
 such that $A \perp B$ or $B \perp A$, then:
(i) $||U_{A,B}|| \ge ||A|| ||B||$,
(ii) $||V_{A,B}|| \ge ||A|| ||B||$.

Proof. (i) Assume $A \perp B$. By Proposition 2.5, there exist $f \in (\mathcal{A}^*)_1$, such that f(A) = 0 and f(B) = ||B||. Then for all $g \in (\mathcal{A}^*)_1$, we have $||U_{A,B}|| \ge |f(A)g(B) + f(B)g(A)| =$ $||B|| ||g(A)| \cdot \text{Therefore, } ||U_{A,B}|| \ge ||B|| \sup_{g \in (\mathcal{A}^*)_1} (|g(A)|) = ||A|| ||B||.$

By the same, we obtain the second implication. By a similar proof, we obtain (ii).

Theorem 3.8. Let $A, B \in \mathcal{A}$, such that $\inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| \le \frac{||A||}{2}$ or $\inf_{\lambda \in \mathbb{C}} ||B + \lambda A|| \le \frac{||A||}{2}$ $\frac{\|B\|}{2}$. Then $\|U_{A,B}\| \ge \|A\| \|B\|$.

Proof. By a simple computation, we obtain, $V_{A,B} = V_{A+\lambda B,B}$, for all complex λ . Then $||V_{A,B}|| \leq 2 \inf_{\lambda \in \mathbb{C}} ||A + \lambda B|| ||B||.$

If $\inf_{\lambda \in C} \|A + \lambda B\| \leq \frac{\|A\|}{2}$, then $\|V_{A,B}\| \leq \|A\| \|B\|$. By Proposition 2.1, we have $||U_{A,B}|| + ||V_{A,B}|| \ge 2 ||M_{A,B}|| = 2 ||A|| ||B||$. It follows that $||U_{A,B}|| \ge ||A|| ||B||$. By the same, we obtain the inequality with the second condition. \blacksquare

Remark 3.2. 1- The Theorem 3.6 is a general form of Theorem 2.2.

2- The Corollary 3.7.i is a general form of Theorem 2.3.

3- By Corollary 3.7.i and Theorem 3.8, the conjecture of Stacho-Zalar is satisfied in the two following cases:

(i) $\inf_{\lambda \in \mathcal{C}} \|A + \lambda B\| = \|A\| \text{ or } \inf_{\lambda \in \mathcal{C}} \|B + \lambda A\| = \|B\|,$ (ii) $\inf_{\lambda \in \mathcal{C}} \|A + \lambda B\| \le \frac{\|A\|}{2} \text{ or } \inf_{\lambda \in \mathcal{C}} \|B + \lambda A\| \le \frac{\|B\|}{2}.$

Then, it remains unknown only in the case where $\frac{\|A\|}{2} < \inf_{\lambda \in C} \|A + \lambda B\| < \|A\|$

and $\frac{\|B\|}{2} < \inf_{\lambda \in \mathbb{C}} \|B + \lambda A\| < \|B\|$.

Note that, the conjecture of Stacho-Zalar is given in particular case of Hilbert space, but our partial results are given in a general situation of normed space.

AMEUR SEDDIK

Theorem 3.9. Let $A, B \in A$. Then $||U_{A,B}|| \ge \frac{1}{2} ||V_{A,B}||$.

Proof. We may assume that ||A|| = ||B|| = 1.

By Hahn-Banach theorem, there exist $f \in (\mathcal{A}^*)_1$ such that f(B) = 1. Put $f(A) = \mu.$

It follows, from Corollary 3.3, that $||U_{A,B}|| \ge \sup_{g \in (\mathcal{A}^*)_1} |f(A)g(B) + f(B)g(A)| =$ $||A + \mu B||$. Since $||V_{A,B}|| = ||V_{A+\mu B,B}|| \le 2 ||A + \mu B||$, it follows that $||U_{A,B}|| \ge 1$

 $\frac{1}{2} \| V_{A,B} \| . \blacksquare$

References

- [1] M. Barraa and M. Boumazgour, A lower bound for the norm operator $X \to AXB + BXA$, Extracta, No. 16, to appear.
- [2] M. Mathieu, More properties of the product of two derivations of a C^* -algebra, Bull. Austrl. Math. Soc., 42(1990), 115-120.
- [3] A. Seddik, A lower bound for the numerical radius and the norm of the operator $X \to AXB +$ BXA, submitted for publication.
- [4] L. L. Stacho and B. Zalar, On the norm of Jordan operator algebra in standard operator algebra, Debrecen, 49(1996), 127-134.
- [5] L. L. Stacho and B. Zalar, Uniform primeness of the Jordan algebra of symmetric operators, Proc. Amer. Math. Soc., 126(1998), 2241-2247.
- [6] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tohoku Math. Journ., 20(1968), 417-424.

Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia. E-mail address: seddi kameur@hotmail.com

E-mail address: seddi kameur@hotmail.com

8