ON THE NORM OF ELEMENTARY OPERATORS IN A STANDARD OPERATOR ALGEBRAS AMEUR SEDDIK

A bst ract. Let $\mathcal{B}(H)$ and \mathcal{A} be a C^{*}-algebra of all bounded linear operators on a complex Hilbert space H and a complex normed algebra, respectively. For $A, B \in \mathcal{A}$, define a basic elementary operator $M_{A, B}: \mathcal{A} \rightarrow \mathcal{A}$ by $M_{A, B}(X)=$ $A X B$. An elementary operator is a finite sum $R_{A, B}={ }_{i=1}^{\mathrm{P}_{2}} M_{A_{i}, B_{i}}$ of the basic ones, where $A=\left(A_{1}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, \ldots, B_{n}\right)$ are two n-tuples of elements of \mathcal{A}.

If \mathcal{A} is a standard operator algebra of $\mathcal{B}(H)$, it is proved that:
(i) $[4] \stackrel{\circ}{\circ} M_{A, B}+M_{B, A} \stackrel{\circ}{\circ} \geq 2(\sqrt{2}-1)\|A\|\|B\|$, for any $A, B \in \mathcal{A}$
(ii) $[1]^{\circ} M_{A, B}+M_{B, A}{ }^{\circ} \geq\|A\|\|B\|$, for $A, B \in \mathcal{A}$, such that $\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\|=$
$\|A\|$ or $\inf _{\lambda \in \mathscr{C}}\|B+\lambda A\|=\|B\|$,
(iii)[3] ${ }^{\circ} M_{A, B}+M_{B, A} \stackrel{\circ}{\circ}=2\|A\|\|B\|$, if $\|A+\lambda B\|=\|A\|+\|B\|$, for some unit scalar λ.

In this note, we are interested in the general situation where \mathcal{A} is a standard operator algebra acting on a normed space. We shall prove that ${ }^{\circ} R_{A, B}{ }^{\circ} \geq$ $\sup ^{{ }^{-\mathrm{P}}} \mathrm{F}\left(A_{i}\right) g\left(B_{i}\right)^{-}$, for any two n-tuples $A=\left(A_{1}, \ldots, A_{n}\right)$ and $B=$ $f, g \in\left(\mathcal{A}^{*}\right)_{1} \quad i=1$
$\left(B_{1}, \ldots, B_{n}\right)$ of elements of \mathcal{A} (where $\left(\mathcal{A}^{*}\right)_{1}$ is the unit sphere of $\left.\mathcal{A}^{*}\right)$. As a consequence of this result, we show that the results (i), (ii) and (iii) remain true in this general situation.

1. Introduction

Let \mathcal{A} and $\mathcal{B}(H)$ be a complex normed algebra and a C^{*}-algebra of all bounded linear operators on a complex Hilbert space H, respectively. For $A, B \in \mathcal{A}$, define a basic elementary operator $M_{A_{P_{2}}}: \mathcal{A} \rightarrow \mathcal{A}$ by $M_{A, B}(X)=A X B$. An elementary operator is a finite sum $R_{A, B}={ }_{i=1}^{\mathbf{p}_{i}} M_{A_{i}, B_{i}}$ of the basic ones, where $A=\left(A_{1}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, \ldots, B_{n}\right)$ are two n-tuples of elements of \mathcal{A}.

Many facts about the relation between the spectrum of $R_{A, B}$ and spectrums of A_{i}, B_{i} are known. For the case with the relation between the operator norm of $R_{A, B}$ and norms of A_{i}, B_{i}, the problem here is of course a useful lower estimate for the norm of $R_{A, B}$ because some upper estimates such as $\left\|R_{A, B}\right\| \leq{ }_{i=1}^{\mathrm{P}}\left\|A_{i}\right\|\left\|B_{i}\right\|$ are trivial. In a prime C^{*}-algebra (A prime C^{*}-algebra is a C^{*}-algebra which $M_{A, B}=0$ implies $A=0$ or $B=0$), Mathieu [2] was proved that $\left\|M_{A, B}\right\|=$

[^0]$\|A\|\|B\|$ and $\left\|M_{A, B}+M_{B, A}\right\| \geq \frac{2}{3}\|A\|\|B\|$. The most abvious prime C^{*}-algebra are $\mathcal{B}(H)$ and $\mathcal{C}_{\infty}(H)$ (where $\mathcal{C}_{\infty}(H)$ is the C^{*}-algebra of all compact operators on H), respectively. In [4],Stacho and Zalar are interested in a standard operator algebra of $\mathcal{B}(H)$ (a standard operator algebra of $\mathcal{B}(H)$ is a subalgebra of $\mathcal{B}(H)$ containing all finite rank operators; it is not assumed that is seladjoint or closed with respect to any topology), where they proved that $\left\|M_{A, B}+M_{B, A}\right\| \geq 2(\sqrt{2}-$ 1) $\|A\|\|B\|$ and they conjectured the following:

Conjecture 1.1. Let \mathcal{A} be a standard operator algebra of $\mathcal{B}(H)$. If $A, B \in \mathcal{A}$, then the estimate $\left\|M_{A, B}+M_{B, A}\right\| \geq\|A\|\|B\|$ holds.

Note that this conjecture was verified in the two following cases:
(i) [5] , in the Jordan algebra of symmetric operators of $\mathcal{B}(H)$,
(ii) [1] for $A, B \in \mathcal{B}(H)$ such that $\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\|=\|A\|$ or $\inf _{\lambda \in \mathrm{C}}\|B+\lambda A\|=\|B\|$.

Here, we are interested in the case where \mathcal{A} is a standard operator algebra acting on a complex normed space. We shall prove that $\left\|R_{A, B}\right\| \geq \sup _{f, g \in\left(\mathcal{A}^{*}\right)_{1}} \overline{-}_{i=1}^{-\mathrm{P}_{r}} f\left(A_{i}\right) g\left(B_{i}\right)^{-}$, for any two n-tuples $A=\left(A_{1}, \ldots, A_{n}\right), B=\left(B_{1}, \ldots, B_{n}\right)$ of elements of \mathcal{A} (where $\left(\mathcal{A}^{*}\right)_{1}$ is the unit sphere of $\left.\mathcal{A}^{*}\right)$. As a consequence of this main result in our general situation, we show that the Stacho-Zalar lower bound remains true, and the estimate $\left\|M_{A, B}+M_{B, A}\right\| \geq\|A\|\|B\|$ holds if one of the two conditions is satisfied:
(1) $\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\|=\|A\|$ or $\inf _{\lambda \in \mathrm{C}}\|B+\lambda A\|=\|B\|$,
(2) $\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\| \leq \frac{\|A\|}{2}$ or $\inf _{\lambda \in \mathrm{C}}\|B+\lambda A\| \leq \frac{\|B\|}{2}$.

So the conjecture of Stacho-Zalar remains unknown only in the case where
(3) $\frac{\|A\|}{2}<\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\|<\|A\|$ and $\frac{\|B\|}{2}<\inf _{\lambda \in \mathrm{C}}\|B+\lambda A\|<\|B\|$.

On the other hand, we are intersted to the following question:
Question. Let \mathcal{A} be a standard operator algebra acting on a normed space. For which $A, B \in \mathcal{A}$ such that $\left\|R_{A, B}\right\|={ }_{i=1}^{\mathbf{P}_{i}}\left\|A_{i}\right\|\left\|B_{i}\right\|$?

2. Preliminaries

Definition 2.1. Let Ω be a complex Banach algebra with unity I.
(1) The set of states on Ω is by definition:

$$
P(\Omega)=\left\{f \in \Omega^{*}: f(I)=1=\|f\|\right\}
$$

(2) The numerical range of an element A in Ω is by definition:

$$
W_{0}(A)=\{f(A): f \in P(\Omega)\}
$$

(3) The numerical radius of an element A in Ω is by definition:

$$
w(A)=\sup \left\{|\lambda|: \lambda \in W_{0}(A)\right\}
$$

(4) The usual numerical range of an element A in $\mathbf{B}(H)$ is by definition:

$$
W(A)=\{\langle A x, x\rangle: x \in H,\|x\|=1\}
$$

(5) The joint numerical range of a n-tuple $A=\left(A_{1}, \ldots, A_{n}\right)$ of elemnts of Ω is by definition the set:

$$
W_{0}(A)=\left\{\left(f\left(A_{1}\right), \ldots, f\left(A_{n}\right)\right): f \in P(\Omega)\right\}
$$

It is known that for any $A \in \mathbf{B}(H)$, then $W_{0}(A)=W(A)^{-}$, see $[6]$ (where $W(A)^{-}$ is the closure of $W(A)$).
Definition 2.2. Let E be a complex normed space and let $\mathbf{B}(E)$ denote the complex normed algebra of all bounded linear operators on E.
(i) \mathcal{A} is called a standard operator algebra of $\mathrm{B}(E)$, if it is a subalgebra of $\mathrm{B}(E)$ that contains all finite rank operators.
(ii) For $x \in E$ and $f \in E^{*}$, define the operator $x \otimes f$ on E by $(x \otimes f) y=f(y) x$.

Notation. (i) For any normed space Y, we denote by $(Y)_{1}$ the unite sphere of Y, i.e. $(Y)_{1}=\{x \in Y:\|x\|=1\}$.
(ii) For $A, B \in \mathrm{~B}(E)$, we put $U_{A, B}=M_{A, B}+M_{B, A}$ and $V_{A, B}=M_{A, B}-M_{B, A}$.
(iii) For $K \subset C$, we put $|K|=\sup _{\lambda \in K}|\lambda|$.
(iv) For $M, N \subset \mathrm{C}^{n}$, we put $M \circ N={ }_{i=1} \alpha_{i} \beta_{i}:\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in M,\left(\beta_{1}, \ldots, \beta_{n}\right) \in N$.

Proposition 2.1. Assume \mathcal{A} is a standard operator algebra on a normed space E. Then $\left\|M_{A, B}\right\|=\|A\|\|B\|$, for any $A, B \in \mathcal{A}$.
Proof. It is clear that $\left\|M_{A, B}\right\| \leq\|A\|\|B\|$.
Now, let $x, y \in(E)_{1}$ and $f \in\left(E^{*}\right)_{1}$. Since $x \otimes f \in \mathcal{A}$ and $\|x \otimes f\|=1$, then

$$
\begin{aligned}
\left\|M_{A, B}\right\| & \geq\|A(x \otimes f) B\| \\
& \geq\|A(x \otimes f) B y\| \\
& \geq|f(B y)|\|A x\|
\end{aligned}
$$

Hence $\left\|M_{A, B}\right\| \geq\|A x\| \sup _{f \in\left(E^{*}\right)_{1}}|f(B y)|=\|A x\|\|B y\|$.
So that $\left\|M_{A, B}\right\| \geq\|A\|\|B\|$. Therefore $\left\|M_{A, B}\right\|=\|A\|\|B\|$.
Theorem 2.2. [4] Assume \mathcal{A} is a standard operator algebra of $\mathbf{B}(H)$. Then $\left\|U_{A, B}\right\| \geq$ $2(\sqrt{2}-1)\|A\|\|B\|$, for all $A, B \in \mathcal{A}$.
Theorem 2.3. [1] Let $A, B \in \mathrm{~B}(H)$ such that $\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\|=\|A\|$ or $\inf _{\lambda \in \mathrm{C}}\|B+\lambda A\|=$ $\|B\|$. Then $\left\|U_{A, B}\right\| \geq\|A\|\|B\|$.
Theorem 2.4. [3] Assume \mathcal{A} is a standard operator algebra of $\mathrm{B}(H)$. Let $A, B \in \mathcal{A}$ such that $w\left(A^{*} B\right)=\|A\|\|B\|$. Then $\left\|U_{A, B}\right\|=2\|A\|\|B\|$.
Definition 2.3. Let Y be a normed space and $x, y \in Y$. We say that x is orthogonal to $y(x \perp y)$, if $\inf _{\lambda \in \mathrm{C}}\|\lambda x+y\|=\|y\|$.

Note that if Y is a Hilbert space, then $x \perp y$ iff $\langle x, y\rangle=0$.
Proposition 2.5. Let Y be a normed space and $x, y \in Y$. Then the following properties are equivalent:
(1) $x \perp y$,
(2) $\exists f \in\left(Y^{*}\right)_{1}: f(x)=0, f(y)=\|y\|$.

Proof. If x or y is zero, then the proof is trivial.
Now, assume x and y are not zero.
(1) implies (2).

It is clear that $\|\lambda x+\mu y\| \geq|\mu|\|y\|$, for all $\lambda, \mu \in \mathrm{C}$. Let F be the subspace of Y generated by x and y.

Define the functional linear g on F by $g(x)=0$ and $g(y)=\|y\|$. Then, $|g(\lambda x+\mu y)|=|\mu|\|y\| \leq\|\lambda x+\mu y\|$, for all $\lambda, \mu \in$ C. Since $g\left(\frac{y}{\|y\|}\right)=1$, and $\frac{y}{\|y\|} \in(F)_{1}$, we have $\|g\|=1$. Therefore, the condition (2) follows immediately by using the prolongement theorem of Hahn-Banach theorem.
(2) implies (1) is trivial.

Remark 2.1. By using the previous theorem, Theorem 2.3 may be reformulated as follows: If $A \perp B$ or $B \perp A$, then $\left\|U_{A, B}\right\| \geq\|A\|\|B\|$.
Proposition 2.6. Let Y be a normed space and $x_{1}, \ldots, x_{n} \in Y$. Then the following properties ar* equivalent:
(1) $\stackrel{\circ}{\circ} \stackrel{\mathrm{P}_{r}}{i=1} \stackrel{x_{i}}{\circ} \stackrel{\circ}{\mathrm{P}_{r}}\left\|x_{i}\right\|$,
(2) $\exists f \in\left(Y^{*}\right)_{1}: f\left(x_{i}\right)=\left\|x_{i}\right\|, i=1, \ldots, n$.

Proof. (1) implies (2).

Then, ${ }_{i=1}^{\mathbf{P}_{l}} \operatorname{Ref}\left(x_{i}\right)={ }_{i=1}^{\mathbf{P}_{l}}\left\|x_{i}\right\|$. Since $\operatorname{Ref}\left(x_{i}\right) \leq\left\|x_{i}\right\|, i=1, \ldots, n$, then, we have $\operatorname{Ref}\left(x_{i}\right)=\left\|x_{i}\right\|, i=1, \ldots, n$. Therefore $f\left(x_{i}\right)=\left\|x_{i}\right\|, i=1, \ldots, n$.
(2) implies (1).

It is clear that:

$$
\begin{aligned}
& i=1 \\
& \leq{ }_{i=1}^{X_{n}^{n}}\left\|x_{i}\right\|
\end{aligned}
$$

Theorem 2.7. Let \mathcal{B} be a C^{*}-algebra and let $A, B \in \mathcal{B}$. Then $\|A+B\|=\|A\|+$ $\|B\|$ holds iff $\|A\|\|B\| \in W_{0}\left(A^{*} B\right)$.
Proof. We can assume A and B are not zero.
Assume that $\|A+B\|=\|A\|+\|B\|$. Then we have $\left\|(A+B)^{*}(A+B)\right\|=$ $\|A\|^{2}+\|B\|^{2}+2\|A\|\|B\|$. On the other hand, there exist $f \in P(\mathcal{B})$ such that $\left\|(A+B)^{*}(A+B)\right\|=f\left(A^{*} A\right)+f\left(B^{*} B\right)+2 \operatorname{Ref}\left(A^{*} B\right)$, and since $f\left(A^{*} A\right) \leq\|A\|^{2}$, $f\left(B^{*} B\right) \leq\|B\|^{2}$ and $\operatorname{Ref}\left(A^{*} B\right) \leq\|A\|\|B\|$, then we have $\operatorname{Ref}\left(A^{*} B\right)=\|A\|\|B\|$ and since $\left|f\left(A^{*} B\right)\right| \leq\|A\|\|B\|$, then we obtain $f\left(A^{*} B\right)=\|A\|\|B\|$, so that $\|A\|\|B\| \in W_{0}\left(A^{*} B\right)$.

Now assume that $\|A\|\|B\| \in W_{0}\left(A^{*} B\right)$. Then there exist $f \in P(\mathcal{B})$ such that $f\left(A^{*} B\right)=\|A\|\|B\|$, and since $\left|f\left(A^{*} B\right)\right|^{2} \leq f\left(A^{*} A\right) f\left(B^{*} B\right), f\left(A^{*} A\right) \leq\|A\|^{2}$ and $f\left(B^{*} B\right) \leq\|B\|^{2}$, then we obtain $f\left(A^{*} A\right)=\|A\|^{2}, f\left(B^{*} B\right)=\|B\|^{2}$, therefore $f\left(A^{*} A\right)+f\left(B^{*} B\right)+2 \operatorname{Ref}\left(A^{*} B\right)=(\|A\|+\|B\|)^{2}$, thus $(\|A\|+\|B\|)^{2}=f((A+$ $\left.B)^{*}(A+B)\right) \leq\left\|(A+B)^{*}(A+B)\right\|=\|A+B\|^{2} \leq(\|A\|+\|B\|)^{2}$, we can deduce that $\|A+B\|=\|A\|+\|B\|$.

Corollary 2.8. Let \mathcal{B} be a C^{*}-algebra and let $A, B \in \mathcal{B}$. Then the following properties are equivalent:
(1) $w\left(A^{*} B\right)=\|A\|\|B\|$,
(2) $\exists \lambda \in(\mathrm{C})_{1}:\|A+\lambda B\|=\|A\|+\|B\|$.

Proof. (1) implies (2).
Since $W_{0}\left(A^{*} B\right)$ is compact, then there exist $\mu \in(\mathrm{C})_{1}$ such that $\|A\|\|B\| \mu \in$ $W_{0}\left(A^{*} B\right)$. Put $C=\bar{\mu} B$, then $\|A\|\|C\| \in W_{0}\left(A^{*} C\right)$. Then, by the Theorem2.7, $\|A+C\|=\|A\|+\|C\|$. Therefore $\|A+\lambda B\|=\|A\|+\|B\|$, where $\lambda=\bar{\mu}$.
(2) implies (1).

It is clear, if $C=\lambda B$, then, by the Theorem2.7, $\|A\|\|B\|=\|A\|\|C\| \in W_{0}\left(A^{*} C\right)$. So we obtain, $\|A\|\|B\| \leq w\left(A^{*} C\right)=w\left(A^{*} B\right)$. Since $w\left(A^{*} B\right) \leq\left\|A^{*} B\right\| \leq\|A\|\|B\|$, the condition (1) follows immediately.

Remark 2.2. By using the above theorem, Theorem 2.4 may be reformulated as follows:

If $\|A+\lambda B\|=\|A\|+\|B\|$, for some unit scalar λ, then $\left\|U_{A, B}\right\|=2\|A\|\|B\|$.

3. A lower bound of the norm of $\mathrm{R}_{A, B}$

In this section, we consider the case where \mathcal{A} is a standard operator algebra acting on a complex normed space E.
Theorem 3.1. Let $A=\left(A_{1}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, \ldots, B_{n}\right)$ are two n-tuples of elements of \mathcal{A}. Then

$$
\left\|R_{A, B}\right\| \geq \sup _{f, g \in\left(\mathcal{A}^{*}\right)_{1}} \overline{-}_{i=1}^{\overline{-X}_{n}^{n}} f\left(A_{i}\right) g\left(B_{i}\right)_{\overline{-}}^{\bar{\vdots}}
$$

Proof. Let $x, y \in(E)_{1}, f, g \in\left(\mathcal{A}^{*}\right)_{1}$ and $h \in\left(E^{*}\right)_{1}$. Then, we have:

$$
\begin{aligned}
& \left\|R_{A, B}\right\| \geq \stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ} \mathrm{X}^{n}} \stackrel{\stackrel{\circ}{\circ}}{\circ}{ }_{\circ}{ }_{\circ}(x \otimes h) B_{i} \stackrel{\circ}{\circ}_{\circ}^{\circ} \\
& \geq \quad \stackrel{\circ}{ } \quad \stackrel{\circ}{\circ} \quad{ }^{\circ} X^{n} \quad{ }^{\circ} A_{i}(x \otimes h) B_{i} y_{\circ}^{\circ} \stackrel{\circ}{\circ} \\
& \begin{array}{ll}
& \circ i=1 \\
\stackrel{\circ}{\circ} X^{n} \\
\stackrel{\circ}{\circ} & h\left(B_{i} y\right) A_{i} x_{\circ}^{\circ} \\
\stackrel{\circ}{\circ} \\
\circ
\end{array}
\end{aligned}
$$

Corollary 3.2. Assume E is a Banach space and $\mathcal{A}=\mathcal{B}(E)$. Lat $A=\left(A_{1}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, \ldots, B_{n}\right)$ are two n-tuples of operators on E. Then

$$
\left\|R_{A, B}\right\| \geq\left|W_{0}(A) \circ W_{0}(B)\right|
$$

Proof. Since $P(\mathcal{A}) \subset\left(\mathcal{A}^{*}\right)_{1}$, then

$$
\begin{aligned}
& =\left|W_{0}(A) \circ W_{0}(B)\right|
\end{aligned}
$$

So the resul follows immediately.
Corollary 3.3. Let $A, B \in \mathcal{A}$. then, we have:

$$
\left\|U_{A, B}\right\| \geq \sup _{f, g \in\left(\mathcal{A}^{*}\right)_{1}}|f(A) g(B)+f(B) g(A)|
$$

Proof. This result follows immediately, by Theorem 3.1, since $U_{A, B}=R_{(A, B),(B, A)}$.
Corollary 3.4. Let $A_{\circ}=\left(A_{9}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, . \circ, B_{n}\right)$ are two n-tuples of elements of \mathcal{A} such that $\stackrel{\circ}{\circ}{ }_{i=1}^{\mathrm{P}_{n}} A_{i} \stackrel{\circ}{\circ}={ }_{i=1}^{\mathrm{P}_{n}}\left\|A_{i}\right\|$ and $\stackrel{\circ}{\circ}{ }_{i=1}^{\mathrm{P}_{l}} B_{i} \stackrel{\circ}{\circ}={ }_{i=1}^{\mathrm{P}_{l}}\left\|B_{i}\right\|$. Then $\left\|R_{A, B}\right\|=$ ${ }_{i=1}^{\mathrm{P}}\left\|A_{i}\right\|\left\|B_{i}\right\|$.
Proof. By Proposition 2.6, there exist $f, g \in\left(\mathcal{A}^{*}\right)_{1}$ such that $f\left(A_{i}\right)=\left\|A_{i}\right\|$ and $g\left(B_{i}\right)=\left\|B_{i}\right\|$, for $i=1, \ldots, n$.
 $\left\|R_{A, B}\right\|$.

Corollary 3.5. Let $A, B \in \mathcal{A}$ such that $\|A+B\|=\|A\|+\|B\|$. Then $\left\|U_{A, B}\right\|=$ $2\|A\|\|B\|$.

Proof. Since $U_{A, B}=M_{A, B}+M_{B, A}$, this corollary is a particular case of the previous Corollary.

Remark 3.1. In the previous corollary, we can replace the condition $\|A+B\|=$ $\|A\|+\|B\|$, by $\|A+\lambda B\|=\|A\|+\|B\|$, for some unit scalar λ, since $\left\|U_{A, B}\right\|=$ $\left\|U_{A, \lambda B}\right\|=2\|A\|\|\lambda B\|=2\|A\|\|B\|$. Using Corollary 2.8, this give a general form of Theorem 2.4.

Theorem 3.6. Let $A, B \in \mathcal{A}$. Then $\left\|U_{A, B}\right\| \geq 2(\sqrt{2}-1)\|A\|\|B\|$, for any A, B $\in \mathcal{A}$.

Proof. We may assume without lost of the generality that $\|A\|=\|B\|=1$.
By Corollary 3.3, we have,

$$
\begin{equation*}
\left\|U_{A, B}\right\| \geq|f(A) g(B)+f(B) g(A)| \tag{1}
\end{equation*}
$$

for any $f, g \in\left(\mathcal{A}^{*}\right)_{1}$.
Apply (1), for $g=f$, we obtain:

$$
\begin{equation*}
\left\|U_{A, B}\right\| \geq 2|f(A) f(B)| \tag{2}
\end{equation*}
$$

By Hahn-Banach theorem, there exist $f_{0}, g_{0} \in\left(\mathcal{A}^{*}\right)_{1}$, such that $f_{0}(B)=1=$ $g_{0}(A)$. Put $f_{0}(A)=\alpha$ and $g_{0}(B)=\beta$.

Inequality (1) yields for $f=f_{0}$ and $g=g_{0},\left\|U_{A, B}\right\| \geq|1+\alpha \beta| \geq 1-|\alpha \beta|$.
Apply inequality (2) twice, for $f=f_{0}$ and for $g=g_{0}$, we obtain $\left\|U_{A, B}\right\| \geq 2|\alpha|$ and $\left\|U_{A, B}\right\| \geq 2|\beta|$.

Therefore $\left\|U_{A, B}\right\|^{2}+4\left\|U_{A, B}\right\| \geq 4|\alpha \beta|+4(1-|\alpha \beta|)=4$. We deduce $\left\|U_{A, B}\right\| \geq$ $2(\sqrt{2}-1)\|A\|\|B\|$.
Corollary 3.7. Let $A, B \in \mathcal{A}$ such that $A \perp B$ or $B \perp A$, then:
(i) $\left\|U_{A, B}\right\| \geq\|A\|\|B\|$,
(ii) $\left\|V_{A, B}\right\| \geq\|A\|\|B\|$.

Proof. (i) Assume $A \perp B$. By Proposition 2.5, there exist $f \in\left(\mathcal{A}^{*}\right)_{1}$, such that $f(A)=0$ and $f(B)=\|B\|$. Then for all $g \in\left(\mathcal{A}^{*}\right)_{1}$, we have $\left\|U_{A, B}\right\| \geq|f(A) g(B)+f(B) g(A)|=$ $\|B\||g(A)|$. Therefore, $\left\|U_{A, B}\right\| \geq\|B\| \sup _{g \in\left(\mathcal{A}^{*}\right)_{1}}(|g(A)|)=\|A\|\|B\|$.

By the same, we obtain the second implication.
By a similar proof, we obtain (ii).
Theorem 3.8. Let $A, B \in \mathcal{A}$, such that $\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\| \leq \frac{\|A\|}{2}$ or $\inf _{\lambda \in \mathrm{C}}\|B+\lambda A\| \leq$ $\frac{\|B\|}{2}$. Then $\left\|U_{A, B}\right\| \geq\|A\|\|B\|$.
Proof. By a simple computation, we obtain, $V_{A, B}=V_{A+\lambda B, B}$, for all complex λ. Then $\left\|V_{A, B}\right\| \leq 2 \inf _{\lambda \in \mathrm{C}}\|A+\lambda B\|\|B\|$.

If $\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\| \leq \frac{\|A\|}{2}$, then $\left\|V_{A, B}\right\| \leq\|A\|\|B\|$. By Proposition 2.1, we have $\left\|U_{A, B}\right\|+\left\|V_{A, B}\right\| \geq 2\left\|M_{A, B}\right\|=2\|A\|\|B\|$. It follows that $\left\|U_{A, B}\right\| \geq\|A\|\|B\|$. By the same, we obtain the inequality with the second condition.

Remark 3.2. 1- The Theorem 3.6 is a general form of Theorem 2.2.
2- The Corollary 3.7.i is a general form of Theorem 2.3.
3- By Corollary 3.7.i and Theorem 3.8, the conjecture of Stacho-Zalar is satisfied in the two following cases:
(i) $\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\|=\|A\|$ or $\inf _{\lambda \in \mathrm{C}}\|B+\lambda A\|=\|B\|$,
(ii) $\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\| \leq \frac{\|A\|}{2}$ or $\inf _{\lambda \in \mathrm{C}}\|B+\lambda A\| \leq \frac{\|B\|}{2}$.

Then, it remains unknown only in the case where $\frac{\|A\|}{2}<\inf _{\lambda \in \mathrm{C}}\|A+\lambda B\|<\|A\|$ and $\frac{\|B\|}{2}<\inf _{\lambda \in \mathrm{C}}\|B+\lambda A\|<\|B\|$.

Note that, the conjecture of Stacho-Zalar is given in particualar case of Hilbert space, but our partial results are given in a general situation of normed space.

Theorem 3.9. Let $A, B \in \mathcal{A}$. Then $\left\|U_{A, B}\right\| \geq \frac{1}{2}\left\|V_{A, B}\right\|$.
Proof. We may assume that $\|A\|=\|B\|=1$.
By Hahn-Banach theorem, there exist $f \in\left(\mathcal{A}^{*}\right)_{1}$ such that $f(B)=1$. Put $f(A)=\mu$.

It follows, from Corollary 3.3, that $\left\|U_{A, B}\right\| \geq \sup _{g \in\left(\mathcal{A}^{*}\right)_{1}}|f(A) g(B)+f(B) g(A)|=$ $\|A+\mu B\|$. Since $\left\|V_{A, B}\right\|=\left\|V_{A+\mu B, B}\right\| \leq 2\|A+\mu B\|$, it follows that $\left\|U_{A, B}\right\| \geq$ $\frac{1}{2}\left\|V_{A, B}\right\|$.

R ef er ences

[1] M. Barraa and M. Boumazgour, A lower bound for the norm operator $X \rightarrow A X B+B X A$, Extracta, No. 16, to appear.
[2] M. Mathieu, More properties of the product of two derivations of a C^{*}-algebra, Bull. Austrl. Math. Soc., 42(1990), 115-120.
[3] A. Seddik, A lower bound for the numerical radius and the norm of the operator $X \rightarrow A X B+$ $B X A$, submitted for publication.
[4] L. L. Stacho and B. Zalar, On the norm of Jordan operator algebra in standard operator algebra, Debrecen, 49(1996), 127-134.
[5] L. L. Stacho and B. Zalar, Uniform primeness of the Jordan algebra of symmetric operators, Proc. Amer. Math. Soc., 126(1998), 2241-2247.
[6] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tohoku Math. Journ., 20(1968), 417-424.

Department of M at hematics, Faculty of Science, King Abdulaziz Univer sity, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

E-mail address: seddikameur @hot mail. com
E-mail address: seddikameur @hot mail. com

[^0]: 1991 Mathematics Subject Classification. 46L35, 47A12, 47B47.
 Key words and phrases. Numerical range, numerical radius, standard operator algebra.

