A GENERAL SADDLE POINT THEOREM AND ITS APPLICATIONS

Z. SEBESTYÉN (Budapest)

Let X and Y be nonempty sets, f and g be real-valued functions on the Cartesian product $X \times Y$ of these sets. A point (x, y) in $X \times Y$ is said to be a saddle point of the functions f, g if

$$
\begin{equation*}
g(u, y) \leqq f(x, v) \text { for every }(u, v) \text { in } X \times Y \tag{SP}
\end{equation*}
$$

holds true. For a single function f the well-known notion of saddle point follows here by letting $g \equiv f$ in (SP). It should also be noted that the existence of a saddle point implies the following minimax inequality

$$
\begin{equation*}
\inf _{y \in Y} \sup _{x \in X} g(x, y) \leqq \sup _{x \in X} \inf _{y \in Y} f(x, y) . \tag{MMI}
\end{equation*}
$$

In the case when $f \leqq g$, especially when g equals f, the latter property is known as the statement of the two variable generalized version of the celebrated von Neumann's minimax theorem, namely

$$
\inf _{y \in Y} \sup _{x \in X} g(x, y)=\sup _{x \in X} \inf _{y \in Y} f(x, y) .
$$

Our aim is to prove a general but rather elementary theorem first on the existence of saddle points (Theorem 1), secondly, as a consequence, on the existence of minimax inequality and equality respectively - giving necessary and sufficient conditions for them. Our condition is general enough and not only of convexity type. The results so obtained are a common generalization of our previous ones and many other known theorems of concave-convex type. Our approach is essentially the same as our earlier one. We use the finite dimensional separation argument for disjoint convex sets in a similar but essentially simpler way as in [1, Theorem 2.5.1] and Riesz's well-known theorem concerning a common point of compact sets with finite intersection property. The compactness here follows by Alexander's subbase theorem [6].

Concerning minimax type inequalities see S. Simmons [10], J. Kindler [5] and Z. Sebestyen [8, 9]. Minimax theorems are e.g. in Belakrishnan [1], Z. Sebestyen [7, 8, 9], I. Joó [3] and I. Joó-L. L. Stachó [4].

Let now f, g be two real-valued functions defined on the Cartesian product $X \times Y$ of two nonempty sets X, Y. As a notation, for a nonemty set $K \subset X \times Y$, for a point (u, v) in $X \times Y$ and for a positive real number c let

$$
K_{u, v}^{c}=\{(x, y) \in K: 0 \leqq f(x, v)-g(u, y)+c\} .
$$

This is why for a point (x, y) in $X \times Y$ to be a saddle point is nothing else but each $K_{u, v}^{c}$ being nonempty for the one point set $K=\{(x, y)\}$.

Theorem 1. Let f, g be real-valued functions on $X \times Y$. There exists a saddle point for f, g if and only if there exists a nonempty set $K \subset Y \times Y$ such that :

$$
\begin{equation*}
\min _{(u, v) \in G} \sum_{(x, y) \in F} \lambda(x, y)[f(x, v)-g(u, y)] \leqq \sup _{(x, y) \in K} \min _{(u, v) \in G}[f(x, v)-g(u, y)] \tag{1}
\end{equation*}
$$

for all finite sets $F \subset K, G \subset X \times Y$ and a probability measure λ on F;
(2) $0 \leqq \inf _{(u, v) \in X \times Y} \sup _{(x, y) \in K}[f(x, v)-g(u, v)] \leqq \sup _{(x, y) \in K} \sum_{(u, v) \in G} \mu(u, v)[f(x, v)-g(u, y)]$
for every finite set $G \subset X \times Y$ and a probability measure μ on G;
(3) if $D \subset(0,+\infty) \times X \times Y$ has the property that for any (x, y) in K there exists (c, u, v) in D with $f(x, v)-g(u, y)+c<0$, then a finite subset of D exists with the same property.

Proof. Assume first that a point (x, y) in $X \times Y$ is a saddle point for the functions f, g on $X \times Y$. The one point subset $K=\{(x, y)\}$ of $X \times Y$ clearly satisfies conditions (1), (2) and (3)

To prove the sufficiently let K be as in the assumption. Let further $U_{u, v}^{c}=K \backslash K_{u, v}^{c}$ br the complements in K of the subsets $K_{u, v}^{c}$ introduced before.

Topologize K by taking $\left\{U_{u, v}^{c}:(c, u, v) \in(0,+\infty) \times X \times Y\right\}$ as a family of open subbase for this topology. Condition (3) says that if K is covered by a subfamily $\left\{U_{u, v}^{c}:(c, u, v) \in D\right\}$ then K is also covered by a finite subcollection of the family indexed by D. By Alexander's well-known subbase lemma K is thus compact in the topology so introduced. But the subsets $K_{u, v}^{c}$ of K are thus closed hence compact with respect to this topology on K. Now a point (x, y) in $X \times Y$ satisfies ($S P$) if and only if

$$
0 \leqq f(x, v)-g(u, y)+c \text { holds for all }(c, u, v) \in(0,+\infty) \times X \times Y
$$

in other words (x, y) belongs to each of $K_{u, v}^{c}$. To prove that a saddle point exists is therefore nothing else but to prove that the sets $K_{u, v}^{c}$ have a common point. But the compactness of $K_{u, v}^{c}$'s allows us, refering to Riesz, to prove the finite intersection property of the family $K_{u, v}^{c}$. Let $0<c_{i}, \quad\left(u_{i}, v_{i}\right) \in X \times Y$ for $i=1,2, \ldots, n$ have a finite family of subsets $K_{u_{i}, v_{i}}^{c_{i}}$ in K indexed by $i=1,2, \ldots, n$. Since with $c=$ $=\left\{\min c_{i}: 1 \leqq i \leqq n\right\}$

$$
K_{u_{i}, v_{i}}^{c} \subset K_{u_{i}, v_{i}}^{c_{i}} \quad \text { for } \quad i=1,2, \ldots, n,
$$

$\bigcap_{i=1}^{n} K_{u_{i}, v_{i}}^{c} \neq \emptyset$ will imply the desired nonvoid intersection property for the chosen finite family $\left\{K_{u_{i}, v_{i}}^{c_{i}}: i=1,2, \ldots n\right\}$. Assume the contrary: $\bigcap_{i=1}^{n} K_{u_{i}, v_{i}}^{c}=\emptyset$. Then we conclude that for any (x, y) in K there exists a natural number $i, 1 \leqq i \leqq n$ such that $(x, y) \ddagger K_{u_{i}, v_{i}}^{c}$, i.e. $f\left(x, v_{i}\right)-g\left(u_{i}, y\right)+c<0$.

This implies the following property:

$$
\begin{equation*}
\min _{1 \leqq i \leqq n}\left[f\left(x, V_{i}\right)-g\left(u_{i}, y\right)\right]<-c \quad \text { for any } \quad(x, y) \text { in } K . \tag{4}
\end{equation*}
$$

Let now Φ_{c} be the R^{n}-valued function on K defined as follows:

$$
\Phi_{c}(x, y):=\left(f\left(x, v_{1}\right)-g\left(u_{1}, y\right)+c, \ldots, f\left(x, v_{n}\right)-g\left(u_{1}, y\right)+c\right) .
$$

We have thus that $\Phi_{c}(X, Y)$, the range of Φ_{c}, does not meet

$$
\mathbf{R}_{+}^{n}:=\left\{t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{R}^{n}: 0 \leqq t_{i} \text { for } i=1,2, \ldots, n\right\}
$$

the positive cone in \mathbf{R}^{n}. But we state more that this, namely that the convex hull of $\Phi_{c}(X, Y)$ also does not meet but the interior of \mathbf{R}_{+}^{n}. Otherwise there would be a finite set $F \subset X \times Y$, probability measure λ on F such that

$$
0<\sum_{(x, y) \in F} \lambda(x, y)\left[f\left(x, v_{i}\right)-g\left(u_{i}, y\right)+c\right] \text { for } i=1,2, \ldots, n .
$$

But then, in view of (1) and (4), we have
$-c<\min _{1 \leqq i \leqq n} \sum_{(x, y) \in F} \lambda(x, y)\left[f\left(x, v_{i}\right)-g\left(u_{i}, y\right) \leqq \sup _{(x, y) \in K} \min _{1 \leqq i \leqq n}\left[f\left(x, v_{i}\right)-g\left(u_{i}, y\right)\right] \leqq-c\right.$,
a contradiction. The separation argument thus applies: there exists a nonzero vector $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbf{R}^{n}$ separating the mentioned two convex sets in \mathbf{R}^{n}. This can be expressed by the following property

$$
\sum_{i=1}^{n} \mu_{i}\left[f\left(x, v_{i}\right)-g\left(u_{i}, y\right)+c\right] \leqq \sum_{i=1}^{n} \mu_{i} t_{i} \quad \text { for } \quad(x, y) \quad \text { in } \quad K, 0 \leqq t_{i}, \quad i=1,2, \ldots, n
$$

As an easy consequence we have $0 \leqq \mu_{i}$ for $i=1,2, \ldots, n$. We can thus assume $\sum_{i=1}^{n} \mu_{i}=1$, i.e. that μ is a probability measure on the finite set $G=\left\{\left(u_{i}, v_{i}\right): i=\right.$ $=1,2, \ldots, n\}$. But (2) thus gives us the following contradiction

$$
0 \leqq \inf _{(u, v) \in X \times Y} \sup _{(x, y) \in K}[f(x, v)-g(u, y)] \leqq \sup _{(x, y) \in K} \sum_{i=1}^{n} \mu_{i}\left[\left(f\left(x, v_{i}\right)-g\left(u_{i}, y\right)\right)\right] \leqq-c .
$$

The proof of the theorem is now complete.
Corollary 1. Let X, Y be convex subsets of real linear spaces, and let f, g be real-valued functions on $X \times Y$ such that (5) $f(-g)$ is concave in its first (second), and convex in its second (first) variable.

Then there exists a saddle point in $X \times Y$ for f, g if and only if there exists a nonempty subset K in $X \times Y$ with (3) and such that

$$
\begin{equation*}
0 \leqq \sup _{(x, y) \in K}[f(x, v)-g(u, y)] \quad \text { for every } \quad(u, v) \in X \times Y \tag{6}
\end{equation*}
$$

Proof. For concave-convex functions $f,-g$, as (5) assumes, we have for every finite sets $F, G \subset X \times Y$ and probability measures λ, μ on them, respectively, such that

$$
\begin{aligned}
& \sum_{(x, y) \in F} \lambda(x, y)[f(x, v)-g(u, y)] \leqq f\left(\sum_{(x, y) \in F} \lambda(x, y) x, v\right)-g\left(u, \sum_{(x, y) \in K} \lambda(x, y) y\right), \\
& f\left(x, \sum_{(u, v) \in G} \mu(u, v) v\right)-g\left(\sum_{(u, v) \in G} \mu(u, v) u, y\right) \leqq \sum_{(u, v) \in G} \mu(u, v)[f(x, v)-g(u, v)] .
\end{aligned}
$$

Properties (1), (2) are easy consequences of these and (6). Therefore Theorem 1 applies.

Remark 1. A known result is a consequence of Corollary 1 in the case when X, Y are compact convex subsets of real topological linear spaces and $f=g$ is continuous (or at least $f(x, v)-g(u, y)$ is upper semicontinuous in (x, y) for every (u, v)) con-cave-convex real-valued function on $X \times Y$.

Theorem 2. Let g, f be real-valued functions on the Cartesian product $X \times Y$ of the nonempty sets X, Y. The minimax inequality (MMI) holds true for f, g if and only if for each positive real number ε there exists a nonempty subset K_{ε} of $X \times Y$ such that conditions (1), (2), (3) of Theoerm 1 hold true with $K_{\varepsilon}, f+\varepsilon$ instead of K and f, respectively.

Proof. The minimax inequality (MMI) clearly holds if and only if for any $\varepsilon>0$ the following inequality is satisfied

$$
\inf _{y \in Y} \sup _{x \in X} g(x, y)<\sup _{x \in X} \inf _{y \in Y}(f(x, y)+\varepsilon) .
$$

Equivalently, when there exists y_{ε} in Y such that

$$
\sup _{x \in X} g\left(x, y_{\varepsilon}\right)<\sup _{x \in X} \inf _{y \in Y}(f(x, y)+\varepsilon),
$$

then there exists x_{ε} in X such that

$$
\sup _{x \in X} g\left(x, y_{\varepsilon}\right)<\inf _{y \in Y}\left(f\left(x_{\varepsilon}, y\right)+\varepsilon\right)
$$

But this is (SP) for $f+\varepsilon, g$ with $\left(x_{\varepsilon}, y_{\varepsilon}\right)$ in $X \times Y$ indeed. Theorem 1 is therefore applies.

As a further consequence we have [3, Theorem] in an improved form instead of its minimax formulation in [3]:

Corollary 1a. Let f be a real-valued function on $X \times Y$ such that $\inf _{y \in Y} \sup _{u \in X} f(u, y) \in$
$\in \mathbf{R}$. There exists $x_{0} \in X$ such that

$$
\begin{equation*}
\inf _{y \in Y} \sup _{x \in X} f(u, y) \leqq f\left(x_{0}, v\right) \quad \text { for every } \quad v \in Y \tag{7}
\end{equation*}
$$

holds if and only if there exists a nonempty set $X_{0} \subset X$ such that the following properties hold:

$$
\begin{equation*}
\min _{i} \sum_{j} \lambda_{j} f\left(x_{j}, v_{i}\right) \leqq \sup _{x \in X_{0}} \min _{i} f\left(x, v_{i}\right) \tag{8}
\end{equation*}
$$

for any finite sets $\left(x_{j}, v_{i}\right) \in X_{0} \times Y$ and $\lambda_{j} \geqq 0, \sum_{j} \lambda_{j}=1$;

$$
\begin{equation*}
\inf _{v \in Y} \sup _{x \in X_{0}} f(x, v) \leqq \sup _{x \in X_{0}} \sum_{i} \mu_{i} f\left(x, v_{i}\right) \tag{9}
\end{equation*}
$$

for any finite sets $v_{i} \in Y$ and $\mu_{i} \geqq 0, \sum_{i} \mu_{i}=1$;
(10) if $C \subset(0,+\infty) \times X$ has the property that for any $x \in X_{0}$ there exists (c, v) in C with

$$
f(x, v)+c<\inf _{y \in Y^{\prime}} \sup _{u \in X_{0}} f(u, y)
$$

then a finite subset of C exists with the same property.

Proof. The validity of the conditions (8), (9), (10) for the one point set $X_{0}=\left\{x_{0}\right\}$ where x_{0} satisfies (7), is evident. Thus the necessity part of the theorem is clear.To prove the sufficiency let g be the constant

$$
g:=\inf _{u \in Y} \sup _{u \in X_{\mathbf{o}}} f(u, y)
$$

as a function on $X \times Y$ to apply Theorem 1 with $X_{0} \times\left\{y_{0}\right\}$ as K in the hope that (x_{0}, y_{0}) is saddle point for f, g with any $y_{0} \in Y$, as (7) requires. With this K, f and g conditions (1)-(3) reduce clearly to conditions (8)-(10), respectively. Theorem 1 hence applies, thus the proof is complete.

References

[1] A. V. Balakrishnan, Applied Functional Analysis, Springer (Berlin, 1976).
[2] I. Joó' A simple proof for von Neumann's minimax theorem, Acta Sci. Math. (Szeged), 42 (1980), 91-94.
[3] I. Joó, Note on my paper "A simple proof for von Neumann's minimax theorem", Acta Math. Hung., 44 (1984), 363-365.
[4] I. Joó and L. L. Stachó, A note on Ky Fan's minimax theorem, Acta Math. Acad. Sci. Hung., 39 (1982), 401-407.
[5] J. Kinder, A minimax version of Pták's Combinatorial Lemma, J. of Math. Anal. and Appl., 94 (1983), 454-459.
[6] M. G. Murdeshwar, Alexander's subbasis theorem, Nieuw Archief voor Wiskunde, 27 (1979), 116-117.
[7] Z. Sebestyén, An elementary minimax theorem, Acta Sci. Math. (Szeged), 47 (1984), 109-110.
[8] Z. Sebestyén, An elementary minimax inequality, Periodica Math. Hungar., 17 (1986), 65-69.
[9] Z. Sebestyén, A general minimax theorem and its applications, Publ. Math. Debrecen, 35 (1988), 115-118.
[10] S. Simmons, Minimax and variational inequalities: Are they of fixed-point or Hahn-Banach type? in Game Theory and Math. Economics, pp. 379-388, North-Holland, 1981.
(Received February 10, 1988)
DEPARTMENT OF APPLIED ANALYSIS
EÖTVÖS LORÁND UNIVERSITY
MUZEUM KTT. 6-8.
H-1088 BUDAPEST

