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A GENERAL SADDLE POINT THEOREM 
AND ITS APPLICATIONS 

Z. SEBESTYI~N (Budapest) 

Let X and Y be nonempty se ts , f  and g be real-valued functions on the Cartesian 
product X •  Y of these sets. A point (x, y) in X •  Y is said to be a saddle point of the 
functions f ,  g if 

(SP) g(u, y) <= f(x,  v) for every (u,v) in X•  

holds true. For a single functionfthe well-known notion of saddle point follows here 
by letting g=_f in (SP). It should also be noted that the existence of a saddle point 
implies the following minimax inequality 

(MMI) infsup g(x, y) <: sup inff(x,  y). 
y E Y x E X  xEXyEY 

In the case when fNg,  especially when g equals f ,  the latter property is known as the 
statement of the two variable generalized version of the celebrated yon Neumann's 
minimax theorem, namely 

(MME) infsup g(x, y) = sup inf f(x,  y). 
yEYxEX xEXyEu 

Our aim is to prove a general but rather elementary theorem first on the existence 
of saddle points (Theorem 1), secondly, as a consequence, on the existence of mini- 
max inequality and equality respectively - -  giving necessary and sufficient conditions 
for them. Our condition is general enough and not only of convexity type. The results 
so obtained are a common generalization of our previous ones and many other known 
theorems of concave-convex type. Our approach is essentially the same as our earlier 
one. We use the finite dimensional separation argument for disjoint convex sets in 
a similar but essentially simpler way as in [1, Theorem 2.5.1] and Riesz's well-known 
theorem concerning a common point of  compact sets with finite intersection property. 
The compactness here follows by Alexander's subbase theorem [6]. 

Concerning minimax type inequalities see S. Simmons [lOJ, J. Kindler [5] and 
Z. Sebestyen [8, 9]. Minimax theorems are e.g. in Belakrishnan [1], Z. Sebestyen 
[7, 8, 9], I. Jo6 [3] and I. Jo6--L. L. Stachd [4]. 

Let now f,  g be two real-valued functions defined on the Cartesian product X •  Y 
of two nonempty sets X, Y. As a notation, for a nonemty set K c X •  Y, for a point 
(u, v) in X •  Y and for a positive real number c let 

Ks v = {(x, y)EK: 0 <=f(x, v)-g(u,  y)+c}. 

This is why for a point (x, y) in X •  Y to be a saddle point is nothing else but each 
Ks v being nonempty for the one point set K =  {(x, y)}. 
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THEOREM 1. Let f ,  g be real-valued functions on X X  Y. There exists a saddle 
point for f ,  g i f  and only i f  there exists a nonempty set K c  YX  Y such that : 

(1) rain z~ 2(x, y)[ f (x ,v ) -g(u ,y)]  <- sup rain [ f (x ,v ) -g(u ,y )]  
(u,v)~e (x,y) ~F (x,y)EK (u,v)E G 

for all finite sets F c  K, G c X • Y and a probability measure 2 on F; 

(2) 0 <- inf sup [ f (x ,v) -g(u ,v)]  <= sup ~ #(u, v)[f(x, v ) -  g(u, y)] 
(u,o)EXXY (x,y)EK (x,y)EK (u,v)EG 

for every finite set G c X X  Y and a probability measure # on G; 

(3)/f  D c ( 0 ,  +o~)XXXY has the property that for any (x,y) in K there exists 
(c, u, v) in D with f ( x ,  v ) -g(u ,  y ) + c < 0 ,  then a finite subset of  D exists with the 
same property. 

PROOF. Assume first that a point (x, y) in X •  Y is a saddle point for the func- 
tions f ,  g on X •  Y. The one point subset K =  {(x, y)} of X •  Y clearly satisfies con- 
ditions (1), (2) and (3) 

To prove the sufficiently let K be as in the assumption. Let further U~, ~ =K\Kg,  
be the complements in K of the subsets Kg, ~ introduced before. 

Topologize K by taking {Ug, v : (c, u, v)E(0, + ~ ) X X •  as a family of open 
subbase for this topology. Condition (3) says that if K is covered by a subfamily 
{Ug, o :(c, u, v)ED} then K is also covered by a finite subcollection of the family 
indexed by D. By Alexander's well-known subbase lemma K is thus compact in the 
topology so introduced. But the subsets K~ ~ of K are thus closed hence compact with 
respect to this topology on K. Now a point (x, y) in X •  Y satisfies (SP) if and only if  

0 <=f(x ,v)-g(u ,y)+c holds for all (c,u,v)E(O, + ~ ) X X •  

in other words (x, y) belongs to each of K~,,,,. To prove that a saddle point exists is 
therefore nothing else but to prove that the sets K,~ v have a common point. But the 
compactness of K~,,~'s allows us, refering to Riesz, to prove the finite intersection 
property of  the family K[,,,,. Let 0<ci ,  (ui, vi)EXXY for i = 1 , 2  . . . .  , n  have a 
finite family of subsets K,~ ,  in K indexed by i=1,  2 . . . . .  n. Since with c =  
={min ci: l<=i<=n} 

K~,,~ cK~i,v, for i = 1 , 2  . . . . .  n, 

(~ K ~ r 0 will imply the desired nonvoid intersection property for the chosen 
U i , V i 

i = l  

finite family tK ~' �9 i--1, 2, n}. Assume the contrary: ~ K ~ t .. ~i . . . .  .,,v~ =0. Then we 
i=1 

conclude that for any (x, y) in K there exists a natural number i, I <-_i~-n such that 
gC (x, y){ ,,,v,, i.e. f ( x ,  vl)-g(ui, y ) + c < 0 .  

This implies the following property: 

(4) min [fix, V0-g(u i ,  y ) ] < : - c  for any (x,y) in K. 

Let now ~c be the R"-valued function on K defined as follows : 

~c(x, y) := (f(x, vO-g (u  1, y)+c .. . . .  f (x ,  %)--g(ul, y)+c). 
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We have thus that #c(X, Y), the range of  #c, does not meet 

R~. := {t = (tl . . . .  , t,)ER": 0 <= t~ for i = 1, 2 . . . . .  n}, 

the positive cone in R". But we state more that this, namely that the convex hull o f  
#c (X, Y) also does not meet but the interior of  R%. Otherwise there would be a finite 
set F c X •  Y, probability measure 2 on F such that 

0 <  ~ 2 ( x , y ) [ f ( x , % ) - g ( u f ,  y )+c ]  for i =  1,2 . . . . .  n. 
( x , r ) E F  

But then, in view o f ( l )  and (4), we have 

- c <  min ~ 2(x,y)[f(x, vi)-g(u,,y)<= sup m~nn[f(x,%)-g(ui, y)]<-_-c , 
l~--i<-n ( x , y ) E F  (x ,y )EK -- -- 

a contradiction. The separation argument thus applies : there exists a nonzero vector 
#=(#1 . . . . .  #n)ER ~ separating the mentioned two convex sets in R ~. This can be 
expressed by the following property 

Z#i[f(x,  v3-g(u~,y)+c] <: ~Pif i  for (x,y) in K,O<-t~, i = 1 , 2  . . . .  ,n .  
i = l  i = l  

As an easy consequence we have 0<_-#~ for i=1 ,  2 . . . .  , n. We can thus assume 

~ # i = l ,  i.e. that # is a probability measure on the finite set G={(u~, v3: i =  
i = l  
= 1, 2 . . . .  , n}. But (2) thus gives us the following contradiction 

[f(x ) g( y)] Z [ ( f (x  ) g(  y ) ) ] <  - <  s U p  - -  U i ,  : - -  C. 0 ~ inf sup , v - u, = /ti , vi 
(u , v )EXXY ( x , y ) E K  (x ,y )E K  i = 1  

The proof  of  the theorem is now complete. 

COROLLARY 1. Let X, Y be convex subsets of real linear spaces, and let f g be 
real-valued functions on XX Y such that ( 5 ) f ( - g )  is concave in its first (second), 
and convex in its second (first) variable. 

Then there exists a saddle point in XX Y for f, g if and only if there exists a non- 
empty subset Kin XX Y with (3) and such that 

(6) 0 <= sup [fix,  v)--g(u, y)] for every (u, v)EXXY. 
(x ,y)  EK 

PROOF. For  concave-convex functions f ,  - g ,  as (5) assumes, we have for every 
finite sets F, G c X X  Y and probability measures 2, # on them, respectively, such 
that 

~ '  2(x, y)[f(x,v)--g(u,y)] <--f(x ~ 2(x, y)x,v)--g(u, Z 2(x, y)y), 
(x, y) E F ( ,Y) EF (x, y) E K 

f (x ,  ~ #(u,v)v)-g(  ~ V(u,v)u,y)<= ~ #(u,v)[f(x,v)-g(u,v)]. 
(u, v) E G (u, v) C G (u, v) E 

Properties (1), (2) are easy consequences of  these and (6). Therefore Theorem 1 
applies. 
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R~MARIC 1. A known result is a consequence of Corollary 1 in the case when X, Y 
are compact convex subsets of  real topological linear spaces and f = g  is continuous 
(or at least f ( x ,  v)-g(u,  y) is upper semicontinuous in (x, y) for every (u, v)) con- 
cave-convex real-valued function on Y(• Y. 

THEOREM 2. Let g , f  be real-valued functions on the Cartesian product X•  Y of  
the nonempty sets X, Y. The minimax inequality (MMI) holds true for f ,  g i f  and only 
i f  for each positive real number e there exists a nonempty subset K, of  X)< Y such that 
conditions (1), (2), (3) of Theoerm 1 hold true with Ks, f + e instead of  K and f,  respec- 
tively. 

PROOF. The minimax inequality (MMI) clearly holds if and only if for any e >0  
the following inequality is satisfied 

infsup g(x, y) < sup inf (f(x, y)+e).  
Y E Y x E x  x E x Y E Y  

Equivalently, when there exists y~ in Y such that 

sup g(x, y,) < sup inf(f(x ,  y)+8), 
x E X  x E X  yEu  

then there exists x, in X such that 

sup g(x, y~) < inf(f(x~, v)+~). 
s E X  y E Y  * 

But this is (SP)for  f + e ,  g with (x~, y~)in X •  indeed. Theorem 1 is therefore 
applies~ 

As a further consequence we have [3, Theorem] in an improved form instead of  
its minimax formulation in [3]: 

COROLLARY 1 a. Let f b e  a real-valued function on X X  Y such that inf sup f (u, y)E 
YEY u E x  

ER. There exists xoEX such that 

(7) i n f s u p f ( u ,  y) <- f(xo, v) for every vEY 
YEY x E X  

holds i f  and only i f  there exists a nonempty set X o c X  such that the following proper- 
ties hold: 
(8) min ~ 2 J ( x j ,  vi) <= sup m~n f (x,  vi) 

i j xEXo 

for anyfinite sets (xj, vi)EXoXY and 2i>=0, ~ 2 / = 1 ;  
J 

(9) inf sup f (x ,  v) <- sup ,~ p~f(x, vi) 
vEY  xEXo x E X  o i 

for any finite sets viE Y and l~i>=O, ~/Ai=l; 
i 

(10) i f  Cc(O, + ~ ) X X  has the property that for any xEX o there exists (e, v) in C 
with 

f (x ,  v) + e < inf sup f(u, y) 
yE g uEXo 

then a finite subset of  C ex&ts with the same property. 
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PROOI~. The  validity o f  the condit ions (8), (9), (10) for  the one point  set Xo = {Xo} 
where x0 satisfies (7), is evident. Thus the necessity pa r t  o f  the theorem is clear .To 
prove  the sufficiency let g be the cons tant  

g : =  inf  s u p f ( u ,  y) 
uEY uEXo 

as a funct ion on X •  Y to apply  Theo rem 1 with X0 X {Yo} as K in the hope  tha t  
(Xo, Yo) is saddle poin t  for  f ,  g with any YoE Y, as (7) requires. With  this K, f a n d  g 
condit ions (1)--(3)  reduce dea r l y  to condit ions (8)--(10),  respectively. Theo rem 1 
hence applies,  thus the p r o o f  is complete.  
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