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A GENERAL SADDLE POINT THEOREM
AND ITS APPLICATIONS

Z. SEBESTYEN (Budapest)

Let X and ¥ be nonempty sets, fand g be real-valued functions on the Cartesian
product X' XY of these sets. A point (x, y)in X XY is said to be a saddle point of the
functions f, g if

(SP) g(u, p) = f(x,v) for every (u,v) in XxY

holds true. For a single function f'the well-known notion of saddle point follows here
by letting g=f in (SP). It should also be noted that the existence of a saddle point
implies the following minimax inequality

(MMI) inf sup g(x, y) = sup inf f(x, ).

VEY x€X x€EX yeyY
In the case when f=g, especially when g equals f, the latter property is known as the
statement of the two variable generalized version of the celebrated von Neumann’s
minimax theorem, namely

(MME) infsup g(x, y) = sup inf f(x, p).
yEY x€X XEX yEY

Our aim is to prove a general but rather elementary theorem first on the existence
of saddle points (Theorem 1), secondly, as a consequence, on the existence of mini-
max inequality and equality respectively — giving necessary and sufficient conditions
for them. Our condition is general enough and not only of convexity type. The results
so obtained are a common generalization of our previous ones and many other known
theorems of concave-convex type. Our approach is essentially the same as our earlier
one. We use the finite dimensional separation argument for disjoint convex sets in
a similar but essentially simpler way as in [1, Theorem 2.5.1] and Riesz’s well-known
theorem concerning a common point of compact sets with finite intersection property.
The compactness here follows by Alexander’s subbase theorem [6].

Concerning minimax type inequalities see S. Simmons [10], J. Kindler [5] and
Z. Sebestyen [8, 9]. Minimax theorems are e.g. in Belakrishnan [1], Z. Sebestyen
{7, 8,91, 1. Jo6 [3] and L. Joo—L. L. Stachd [4].

Let now £, g be two real-valued functions defined on the Cartesian product X XY
of two nonempty sets X, Y. As a notation, for a nonemty set KCXXY, for a point
(4, v)in XXY and for a positive real number ¢ let

K, = {(x, y)EK: 0 = f(x,v)—g(u, y)+c}.

This is why for a point (x, y) in XXY to be a saddle point is nothing else but each
K , being nonempty for the one point set K={(x, y)}.
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THEOREM 1. Let f, g be real-valued functions on XXY. There exists a saddle
point for f, g if and only if there exists a nonempty set KCY XY such that :

(1 min > A WG v)—g )= sup min [f(x,v)—g(u, y)]
@, €6 (x,»EF G WEK (4, )EG

for all finite sets FC K, GC X XY and a probability measure . on F;

(2 0= inf sup [flx,v)—gwv)]= sup 3 wuo)[flx,v)—gu, )]
W )EXXY (x,)€EK x0EK (w,0)€6

Jor every finite set GC X' XY and a probability measure pon G,

3)if Dc(0, +=)XXXY has the property that for any (x,y) in K there exists
(¢, u, v) in D with f(x, v)—g(u, y)+c<0, then a finite subset of D exists with the
same property.

PrOOF. Assume first that a point (x, y) in X XY is a saddle point for the func-
tions f, g on X XY. The one point subset K={(x, )} of XXY clearly satisfies con-
ditions (1), (2) and (3)

To prove the sufﬁciently let K be as in the assumption. Let further U ,=K\XK ,
be the complements in K of the subsets K] , introduced before.

Topologize K by taking {U¢,: (¢, u, v)€(0, +oo)><X XY} as a family of open
subbase for this topology. Condition (3) says that if K is covered by a subfamily
{U:,: (c,u, v)ED} then K is also covered by a finite subcollection of the family
indexed by D. By Alexander’s well-known subbase lemma K is thus compact in the
topology so introduced. But the subsets K[ , of K are thus closed hence compact with
respect to this topology on K. Now a point (x, y)in X' XY satisfies (SP)if and only if

0 =f(x,v)—g(u, y)+c holds for all (c, u, v)E(0, + =) X X XY,

in other words (x, y) belongs to each of K ,. To prove that a saddle point exists is
therefore nothing else but to prove that the sets K , have a common point. But the
compactness of K; s allows us, refering to Riesz, to prove the finite intersection
property of the family K ,. Let O<c;, (u;, v)eXXY for i=1,2,...,n have a
finite farmly of subsets K,*, in K indexed by i=1,2,...,n Since with c¢=
={minc¢;: 1 =i=n}
K"c,-,vi c Kuc:,v, fOI' i= 19 23 R

N Ky, #0 will imply the desired nonvoid intersection property for the chosen
i=1

finite family {K!,: i=1,2, ... n}. Assume the contrary: ﬂ K., ., =9. Then we
=1
conclude that for any (x, y) in K there exists a natural number i, 1=i=n such that

(¢, VK, o5 P8 (X, 0)—g (U, p)+c<0.
This implies the following property:

G min [f(x,V})—g(u, y)]<—c forany (x,y) in K

1=i=n
Let now @, be the R*valued function on K defined as follows:
Q (xay) (f(x 7/1) g(ul’y)+c f(xﬁvn)_g(ulay)+c)'
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We have thus that @,(X, Y), the range of @, does not meet
Ri:={t=(t, .., )R 0=t for i=1,2,...,n},

the positive cone in R*. But we state more that this, namely that the convex hull of
@,(X, Y) also does not meet but the interior of R% . Otherwise there would be a finite
set FCXXY, probability measure A on Fsuch that

0< Z 2 MLfGe v)—g(uy, y)+c] for i=1,2,..,n
(x,)EF

But then, in view of (1) and (4), we have
—e=gmin, & A v)—g(w, y) = Sup min [fee, 0)—g(us D] =—c,

1=i=n (g,

a contradiction. The separation argument thus apphes: there exists a nonzero vector
u=(, ..., L) R® separating the mentioned two convex sets in R™ This can be
expressed by the following property

Zﬂi[f(xa vi)—g(uia y)-I—C] = Zﬂiti fOI' (xa y) in K’ 0= tia i= 13 2, e 1
i=1 i=1

As an easy consequence we have O=y; for i=1,2,...,n. We can thus assume
Z’ p;=1, ie. that p is a probability measure on the finite set G={(u;, v;): i=
~1 2, ..., n}. But (2) thus gives us the following contradiction

0=, fof , o Lfxo)—gw )= sup _Z’ﬂ,[(f(x, v)—g(w, y))] =—~c.

WOEXXY (x, ek x,y) €
The proof of the theorem is now complete.

COROLLARY 1. Let X, Y be convex subsets of real linear spaces, and let f, g be
real-valued functions on X XY such that (5) f(—g) is concave in its first (second),
and convex in its second (first ) variable.

Then there exists a saddle point in X XY for f, g if and only if there exists a non-
empty subset K in X XY with (3) and such that

6) 0= ( S%IE)K [fCx, v)—g(u, )] for every (u,v)EXXY.

ProoF. For concave-convex functions f, —g, as (5) assumes, we have for every
finite sets F, GCXXY and probability measures A, u on them, respectively, such
that

> A 0)—gu, M= Z AMx »)x,0)—gu, 3 Ax ),
(x,»)eF G 0)EF (x, )€K
f(x’ Z ﬂ(u’ 1))7))—- g( Z ﬂ(ua v)u, J’) = 2 :u(u’ v)[f(x, v)—g(u, U)]
(u,0)EG W, )EG u,)EG

Properties (1), (2) are easy consequences of these and (6). Therefore Theorem 1
applies.
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REMARK 1. A known result is a consequence of Corollary 1 in the case when X, ¥
are compact convex subsets of real topological linear spaces and f=g is continuous
(or at least f(x, v)—g(u, y) is upper semicontinuous in (x, y) for every (u, v)) con-
cave-convex real-valued function on X'XY.

THEOREM 2. Let g, f be real-valued functions on the Cartesian product XXY of
the nonempty sets X, Y. The minimax inequality (MMI) holds true for f, g if and only
if for each positive real number ¢ there exists a nonempty subset K, of X XY such that
conditions (1), (2), (3) of Theoerm 1 hold true with K., f+¢ instead of K and f, respec-
tively.

Proor. The minimax inequality (MMI) clearly holds if and only if for any &=0
the following inequality is satisfied

inf Y inf ( f(x, .
Infsup g(x y) < sup inf (f(x, ) +¢)
Equivalently, when there exists y, in ¥ such that
sup g(x, y,) < sup inf (f(x, y)+e),
x€X xex ¥€Y
then there exists x, in X such that
sup g(x, ) < inf (f(x,, ¥)-+e).
x€X yey

But this is (SP) for f4e, g with (x,, y.) in XXY¥ indeed. Theorem 1 is therefore
applies.

As a further consequence we have [3, Theorem] in an improved form instead of
its minimax formulation in [3]:

COROLLARY la. Let f be a real-valued function on X X Y such that 1161£ sup f(u, y)é
Yelyex
€R. There exists x,¢ X such that
@) inf sup f(u, y) = f(xy,v) for every v€Y
YEY xeX

holds if and only if there exists a nonempty set Xo< X such that the following proper-
ties hold:

(®) min > 2;f(x;, v;) = sup min f(x, v)
L xX€X, !
for any finite sets (x;, v)EX, XY and 1;=0, > A;=1;
J

© inf sup f(x,v) = sup 3 g, f(x, v,)
vEY xc X, x€X, 1

for any finite sets v;€Y and u,;=0, Z’ u=1;
(10) if C (0, +o)XX has the property that for any x< X, there exists (c,v)in C
with
S, v)+c¢ < inf sup f(u, y)
YEY yex,
then a finite subset of C exists with the same properity.
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Prookr. The validity of the conditions (8), (9), (10) for the one point set X, = {x,}
where x, satisfies (7), is evident. Thus the necessity part of the theorem is clear.To
prove the sufficiency let g be the constant

g:= iof sup f(u, y)
“EYMEXO

as a function on XX Y to apply Theorem ! with X, X {y,} as K in the hope that
(x9, Vo) is saddle point for f, g with any y,€Y, as (7) requires. With this X, fand g
conditions (1)—(3) reduce clearly to conditions (8}—(10), respectively. Theorem 1
hence applies, thus the proof is complete.
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