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1. Introduction

This expository survey is mainly dedicated to structural properties of the elemen-
tary operators

(1.1) EA,B; S 7→
n∑

j=1

AjSBj ,

where A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(X)n are fixed n-tuples of bounded
operators on X and X is a (classical) Banach space. The simplest operators con-
tained in (1.1) are the left and right multiplications on L(X) defined by LU : S 7→ US
and RU : S 7→ SU for S ∈ L(X), where U ∈ L(X) is fixed. Thus the operators in
(1.1) can be written as

EA,B =
n∑

j=1

LAjRBj .

This concrete class includes many important operators on spaces of operators, such
as the two-sided multiplications LARB, the commutators (or inner derivations) LA−
RA, and the intertwining maps (or generalized derivations) LA−RB for given A,B ∈
L(X). Elementary operators also induce bounded operators between operator ideals,
as well as between quotient algebras such as the Calkin algebra L(X)/K(X), where
K(X) are the compact operators on X. Note also that definition (1.1) makes sense
in the more general framework of Banach algebras.

Elementary operators first appeared in a series of notes by Sylvester [Sy1884] in
the 1880’s, in which he computed the eigenvalues of the matrix operators correspond-
ing to EA,B on the n × n-matrices. The term elementary operator was coined by
Lumer and Rosenblum [LR59] in the late 50’s. The literature related to elementary
operators is by now very large, and there are many excellent surveys and expositions
of certain aspects. Elementary operators on C∗-algebras were extensively treated by
Ara and Mathieu in [AM03, Chapter 5]. Curto [Cu92] gives an exhaustive overview
of spectral properties of elementary operators, Fialkow [Fi92] comprehensively dis-
cusses their structural properties (with an emphasis on Hilbert space aspects and
methods), and Bhatia and Rosenthal [BR97] deals with their applications to operator
equations and linear algebra. Mathieu [Ma01b], [Ma01a] surveys some recent topics
in the computation of the norm of elementary operators, and elementary operators
on the Calkin algebra. These references also contain a number of applications, and
we also note the survey by Carl and Schiebold [CS00], where they describe an in-
triguing approach to certain nonlinear equations from soliton physics which involves
some elementary operators (among many other tools).

This survey concentrates on aspects of the theory of elementary operators that,
roughly speaking, involves ”Banach space techniques”. By such methods we mean
e.g. basic sequence techniques applied in X or in K(X), facts about the structure
of complemented subspaces of classical Banach spaces X, as well as useful special
properties of the space X (such as approximation properties or the Dunford-Pettis
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property). The topics and results covered here are chosen to complement the existing
surveys, though some overlap will be unavoidable. Our main motivation is to draw
attention to the usefulness of Banach space methods in this setting. In fact, it turns
out that Banach space techniques are helpful also when X is a Hilbert space.

This survey will roughly be divided as follows. In Section 2 we discuss various
qualitative properties such as (weak) compactness or strict singularity of the basic
two-sided multiplications S 7→ ASB for A,B ∈ L(X). In Section 3 we concentrate
on questions related to the norms and spectra of elementary operators in various
settings. We include a quite detailed proof, using only elementary concepts, of the
known formula σ(EA,B) = σT (A) ◦ σT (B) for the spectrum of EA,B in terms of the
Taylor joint spectra of the n-tuples A and B. We also describe the state of the
art in computing the norm of elementary operators. Section 4 discusses properties
of the induced elementary operators on the Calkin algebra L(X)/K(X), such as
a solution to the Fong-Sourour conjecture in the case where the Banach space X
has an unconditional basis, and various rigidity properties of these operators. The
results included here demonstrate that elementary operators have nicer properties on
the Calkin algebra. There is some parallel research about tensor product operators
A⊗̂αB for various tensor norms α and fixed operators A,B, which may be more
familiar to readers with a background in Banach space theory.

The ideas and arguments will be sketched for a number of results that we highlight
here, and several open problems will be stated. The topics selected for discussion
have clearly been influenced by our personal preferences and it is not possible to
attempt any exhaustive record of Banach space aspects of the theory of elementary
operators in this exposition. Further interesting results and references can be found
in the original papers and the surveys mentioned above.

Elementary operators occur in many circumstances, and they can be approached
using several different techniques. This survey is also intended for non-experts in
Banach space theory, and we have accordingly tried to ensure that it is as widely
readable as possible by recalling many basic concepts. Our notation will normally
follow the references [LT77] and [Wo91], and we just recall a few basic ones here.
We put BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1} for the Banach
space X. If A ⊂ X is a given subset, then [A] denotes the closed linear span of
A in X. Moreover, L(X,Y ) will be the space of bounded linear operators X → Y
and K(X,Y ), respectively, W (X,Y ) the closed subspaces of L(X,Y ) consisting of
the compact, respectively the weakly compact operators. The class of finite rank
operators X → Y is denoted by F(X,Y ). We refer e.g. to [LT77], [DJT95], [JL03]
or [Wo91] for more background and any unexplained terminology related to Banach
spaces.

2. Qualitative aspects

In this section we focus on concrete qualitative properties of the basic two-sided
multiplication operators LARB for fixed A,B ∈ L(X), where

(2.1) LARB(S) = ASB

for S ∈ L(X) and X is a Banach space. The first qualitative result for LARB is
probably due to Vala [Va64], who characterized the compact multiplication operators
on the space of bounded operators. Recall that X has the approximation property if
for every compact subset D ⊂ X and ε > 0 there is a finite rank operator U : X → X
so that supx∈D ‖x− Ux‖ < ε.

Theorem 2.1. Suppose that A,B ∈ L(X) are non-zero bounded operators. Then
LARB is a compact operator L(X) → L(X) if and only if A ∈ K(X) and B ∈ K(X).
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Proof. The necessity-part is a simple general fact which we postpone for a mo-
ment (see part (i) of Proposition 2.3). The following straightforward idea for the
sufficiency-part comes from the proof of [ST94, Thm. 2], which dealt with weak
compactness (see also [DiF76] for a similar idea for the ε-tensor product).

Suppose that A ∈ K(X) and B ∈ K(X). We first consider the situation where
X has the approximation property. In this case there is a sequence (An) ⊂ F(X) of
finite-rank operators satisfying ‖A−An‖ → 0 as n→∞. Clearly

‖LAnRB − LARB‖ ≤ ‖An −A‖ · ‖B‖ → 0

so that LAnRB → LARB as n→∞, whence it is enough to prove the claim assuming
that A is a rank-1 operator, that is, A = x∗⊗ y for fixed x∗ ∈ X∗ and y ∈ X. In this
case one gets for S ∈ L(X) and z ∈ X that

(x∗ ⊗ y) ◦ S ◦Bz = 〈x∗, SBz〉y = 〈B∗S∗x∗, z〉y,
that is, LARB(S) = B∗S∗x∗ ⊗ y. Hence

(2.2) LARB(BL(X) ⊂ Φ ◦B∗(BX∗),

where Φ : X∗ → L(X,Y ) is the bounded linear operator Φ(z∗) = ‖x∗‖z∗ ⊗ y for
z∗ ∈ X∗. Since Φ ◦B∗ is compact by assumption, the claim follows.

How should one proceed in the general situation? The main problem compared to
the preceding argument is that it may not be possible to approximate the operator
A by finite dimensional ones. For that end consider first the case where A is replaced
by any rank-1 operator C : X → Y and Y is an arbitrary Banach space. Exactly
the same argument as above applies and we obtain that LCRB : L(X) → L(X,Y )
is compact. Also, if Y has the approximation property, then we may approximate
any C ∈ K(X,Y ) by finite-rank operators and deduce that LCRB is compact. Next
let J : X → `∞(BX∗) be the isometric embedding defined by

Jx = (x∗(x))x∗∈BX∗ , x ∈ X,
and recall that `∞(BX∗) has the approximation property. By choosing C = JA in
the previous reasoning we get that LCRB is a compact operator. Finally, observe
that LCRB = LJ ◦ (LARB), where LJ : L(X) → L(X, `∞(BX∗)) is an isometric
embedding, which forces LARB to be compact. �

Vala’s argument in [Va64] was quite different. He applied an Ascoli-Arzela type
characterization of compact sets of compact operators, which was inspired by a
symmetric version of the Ascoli-Arzela theorem used by Kakutani.

It is less straightforward to formulate satisfactory characterizations of arbitrary
compact elementary operators EA,B, because of the lack of uniqueness in the rep-
resentations of these operators (for instance, LA−λ − RA−λ = LA − RA for every
A ∈ L(X) and every scalar λ). One possibility is to assume some linear indepen-
dence among the representing operators. We next state a generalization of Theorem
2.1 of this type, due to Fong and Sourour [FS79] (cf. also [Fi92, Thm. 5.1]).

Theorem 2.2. Let A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(X)n, where X is any
Banach space. Then EA,B is a compact operator L(X) → L(X) if and only if there
are r ∈ N and compact operators C1, . . . , Cr in the linear span of {A1, . . . , An} and
compact operators D1, . . . , Dr in the linear span of {B1, . . . , Bn} so that

EA,B =
r∑

j=1

LCjRDj .

Vala’s result (Theorem 2.1) raised the problem when the basic maps LARB are
weakly compact, that is, when LARB(BL(X)) is a relatively weakly compact set. It
is difficult in general to characterize the weakly compact subsets of L(X), and the
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picture for weak compactness is much more complicated compared to Theorem 2.1.
As the first step Akemann and Wright [AW80] characterized the weakly compact
multipliers LARB in the case of Hilbert spacesH as follows: LARB is weakly compact
L(H) → L(H) if and only if A ∈ K(H) or B ∈ K(H) (see Example 2.6 below).
The weakly compact one-sided multipliers LA and RA on L(H) were identified much
earlier by Ogasawara [Og54] (cf. also [Y75] for some additional information).

Subsequently the weak compactness of LARB was studied more systematically
by the authors [ST92], Racher [Ra92], and in a more general setting by Lindström
and Schlüchtermann [LSch99]. The following basic general facts were noticed in
[ST92]. The original proof of part (ii) in [ST92] is somewhat cumbersome, and
easier alternative arguments were given in [Ra92] and [ST94] (see also [LSch99]).
The argument included below is arguably the simplest one conceptually.

Proposition 2.3. Let X be any Banach space and let A,B ∈ L(X).
(i) If LARB is a weakly compact operator L(X) → L(X), and A 6= 0 6= B, then
A ∈W (X) and B ∈W (X).
(ii) If A ∈ K(X) and B ∈ W (X), or if A ∈ W (X) and B ∈ K(X), then LARB is

weakly compact L(X) → L(X).

Proof. (i) The identity LARB(x∗ ⊗ x) = B∗x∗ ⊗ Ax for x∗ ∈ X∗, x ∈ X, is the
starting point. Fix x ∈ SX with Ax 6= 0, and note that

B∗(BX∗)⊗Ax ⊂ {LARB(x∗ ⊗ x) : x∗ ∈ BX∗} ⊂ LARB(BL(X)),

where the right-hand set is relatively weakly compact in L(X) by assumption. It
follows that the adjoint B∗ (and consequently also B) is a weakly compact operator.
The fact that A ∈W (X) is seen analogously.

(ii) Suppose first that A ∈ K(X) and B ∈ W (X). In this situation the proof is
quite analogous to the corresponding one of Theorem 2.1: ifX has the approximation
property then one notes that it is enough to consider the case where A = x∗ ⊗ y for
some x∗ ∈ X∗ and y ∈ X. Here the inclusion (2.2) again yields the weak compactness
of LARB, since B∗ is also weakly compact by Gantmacher’s theorem. In the general
case one again picks an isometric embedding J : X → `∞(BX∗) and one applies the
approximation property of `∞(BX∗) to obtain that

LJARB = LJ ◦ (LARB) : L(X) → L(X,Y )

is weakly compact. Recall next a useful fact: (relative) weak (non-)compactness
is unchanged under isometries. Hence, as LJ : L(X) → L(X,Y ) is an isometric
embedding we obtain that LARB is weakly compact.

Next consider the case A ∈ W (X) and B ∈ K(X). From the preceding case
applied to LB∗RA∗ we get that G ≡ {U∗ : U ∈ LARB(BL(X))} is a relatively weakly
compact set, since obviously

G ⊂ LB∗RA∗(BL(X∗)).

This implies that LARB(BL(X)) is also a relatively weakly compact set, since the
map U → U∗ is an isometric embedding L(X) → L(X∗). �

For any given Banach space X the exact conditions for the weak compactness
of LARB on L(X) fall between the extremal conditions contained in (i) and (ii) of
Proposition 2.3, and examples demonstrating a wide variety of different behaviour
were included in [ST92] and [Ra92]. To get our hands on these examples we will
need more efficient criteria for the weak compactness of LARB, which can be ob-
tained by restricting attention to suitable classes of Banach spaces. Before that
we also observe that in the study of the maps S 7→ ASB one is naturally lead to
consider (possibly different) Banach spaces X1, X2, X3, X4 and compatible operators
A ∈ L(X3, X4) and B ∈ L(X1, X2). In this case (2.1) still defines a bounded linear
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operator LARB : L(X2, X3) → L(X1, X4) (strictly speaking LARB is now a composi-
tion operator, but by a minor abuse of language we will still talk about multiplication
operators). Above we restricted attention to the case X1 = X2 = X3 = X4 = X for
notational simplicity.

Remark 2.4. Theorem 2.1 and Proposition 2.3 remain valid in the general setting,
with purely notational changes in the proofs. For instance, part (ii) of Proposi-
tion 2.3 can be stated as follows: If A ∈ K(X3, X4) and B ∈ W (X1, X2), or if
A ∈ W (X3, X4) and B ∈ K(X1, X2), then LARB is a weakly compact operator
L(X2, X3) → L(X1, X4).

The first type of examples belong to the class of Banach spaces, where the duals
of the spaces K(X,Y ) of compact operators can be described using trace-duality.
We refer to [DiU77] for the definition and the properties of the Radon-Nikodym
property (RNP). It suffices to recall here that X has the RNP if X is reflexive or if
X is a separable dual space, while X fails the RNP if X contains a linear isomorphic
copy of c0 or L1(0, 1). The following concrete range-inclusion criterion for the weak
compactness of LARB is quite efficient. We again restrict our attention to the case
X1 = . . . = X4 = X, and the formulation below is far from optimal.

Proposition 2.5. Let X be a Banach space having the approximation problem, and
suppose that X∗ or X∗∗ has the RNP. Let A,B ∈ L(X) be non-zero operators. Then
LARB is weakly compact L(X) → L(X) if and only if A,B ∈W (X) and

(2.3) LA∗∗RB∗∗(L(X∗∗)) ⊂ K(X∗∗).

If X is reflexive, then (2.3) reduces to

(2.4) {ASB : S ∈ L(X)} ⊂ K(X).

Condition (2.3) is based on the trace duality identifications K(X)∗ = N(X∗) and
N(X∗)∗ = L(X∗∗), where the first identification requires suitable approximation
properties and the RNP conditions (see e.g. section 2 of the survey [Ru84]). Recall
here that T =

∑∞
n=1 y

∗
n ⊗ yn is a nuclear operator on the Banach space Y , denoted

T ∈ N(Y ), if the sequences (y∗n) ⊂ Y ∗ and (yn) ⊂ Y satisfy
∑∞

n=1 ‖y∗n‖ · ‖yn‖ <∞.
The nuclear norm ‖T‖N is the infimum of

∑∞
n=1 ‖y∗n‖ · ‖yn‖ over all such represen-

tations of T . Recall that trace duality is defined by

(2.5) 〈T, S〉 ≡ trace(T ∗S) =
∞∑

n=1

Sx∗∗n (x∗n).

for S ∈ L(X∗∗) and T =
∑∞

n=1 x
∗∗
n ⊗ x∗n ∈ N(X∗). For S ∈ K(X) and T ∈ N(X∗)

one has analogously that 〈T, S〉 =
∑∞

n=1 S
∗∗x∗∗n (x∗n). Thus one has K(X)∗∗ =

L(X∗∗) in this setting, where the canonical embedding K(X) ⊂ K(X)∗∗ coincides
with the natural isometry S 7→ S∗∗ from K(X) into L(X∗∗). One easily checks on
the rank-1 operators that the (pre)adjoints of LARB satisfy

(2.6) (LARB : K(X) → K(X))∗ = LA∗RB∗ : N(X∗) → N(X∗),

(2.7) (LA∗RB∗ : N(X∗) → N(X∗))∗ = LA∗∗RB∗∗ : L(X∗∗) → L(X∗∗).

Hence (LARB |K(X))∗∗ = LA∗∗RB∗∗ , where LARB |K(X) is the restricted operator
K(X) → K(X), so that (2.3) reduces to a well-known general criterion (see [Wo91,
Thm. 2.C.6(c)]) for the weak compactness of bounded operators.

The following examples from [ST92] demonstrate some typical applications of
(2.3). For p = 2 this is the result of Akemann and Wright [AW80] cited above.

Example 2.6. Let 1 < p < ∞ and A,B ∈ L(`p). Then LARB is weakly compact
on L(`p) if and only if A ∈ K(`p) or B ∈ K(`p).
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Proof. The implication ”⇐” is included in Proposition 2.3.(ii). For the converse
implication we first look at the simplest case where p = 2. Note that to apply (2.4)
we must exhibit, for any given pair A,B /∈ K(`2), an operator S ∈ L(`2) so that
ASB /∈ K(`2). This is easy to achieve. Indeed, by assumption there are closed
infinite-dimensional subspaces M1,M2 ⊂ `2, so that the restrictions A|M2

and B|M1

are bounded below. Pick constants c1, c2 > 0 such that

‖Bx‖ ≥ c1‖x‖ for x ∈M1, ‖Ax‖ ≥ c2‖x‖ for x ∈M2.

Define the bounded operator S on `2 = B(M1) ⊕ (BM1)⊥ by requiring that S
is an isometry from B(M1) onto M2 and S = 0 on (BM1)⊥. Thus ‖ASBy‖ ≥
c1‖S(By)‖ ≥ c1c2‖y‖ for x ∈M1, whence ASB /∈ K(`2).

To argue as above for p 6= 2 one needs for any U /∈ K(`p) to find a subspace
M ⊂ `p so that M is isomorphic to `p, M and U(M) are complemented in `p, and
U|M is bounded below. This basic sequence argument is familiar to Banach space
theorists, and we refer e.g. to [LT,Prop. 2.a.1 and 1.a.9] or [Pi80, 5.1.3] for the
details. �

A more serious refinement of these ideas yields the exact distance formula

dist(LARB,W (L(`p))) = dist(A,K(`p)) · dist(B,K(`p))

for A,B ∈ L(`p) and 1 < p <∞, see [ST94, Thm. 2.(ii)].
Condition (2.4) gives, after some additional efforts, the following identification of

the weakly compact maps LARB for the direct sum X = `p ⊕ `q, see [ST92, Prop.
3.5]. Here we represent operators S on `p ⊕ `q as an operator matrix

S =
(
S11 S12

S21 S22

)
,

where S11 ∈ L(`p), S12 ∈ L(`q, `p), S21 ∈ L(`p, `q) and S22 ∈ L(`q).

Example 2.7. Let 1 < p < q < ∞ and A,B ∈ L(`p ⊕ `q). Then LARB is weakly
compact on L(`p ⊕ `q) if and only if A ∈ K(`p ⊕ `q), or B ∈ K(`p ⊕ `q), or

(2.8) A ∈
(
K(`p) L(`q, `p)
L(`p, `q) L(`q)

)
and B ∈

(
L(`p) L(`q, `p)
L(`p, `q) K(`q)

)
.

Examples 2.6 and 2.7 provide ample motivation to consider the more delicate
case X = Lp(0, 1) for 1 < p < ∞ (recall that `p and `p ⊕ `2 embed as comple-
mented subspaces of Lp(0, 1)). According to Proposition 2.3.(ii) the operator LARB

is weakly compact on L(Lp(0, 1)) if A ∈ K(Lp(0, 1)) or B ∈ K(Lp(0, 1)), but these
conditions are far from being necessary. For this recall that U ∈ L(X,Y ) is a strictly
singular operator, denoted U ∈ S(X,Y ), if the restriction U|M does not define an
isomorphism M → U(M) for any closed infinite-dimensional subspaces M ⊂ X. It
is known that UV ∈ K(Lp(0, 1)) whenever U, V ∈ S(Lp(0, 1)), see [Mi70, Teor. 7].
Hence condition (2.4) immediately yields the following fact:
• If A,B ∈ S(Lp(0, 1)), then LARB is weakly compact on L(Lp(0, 1)).
The preceding cases do not yet exhaust all the possibilities. In fact, note that (2.8)
allows weakly compact multiplications LARB arising from non-strictly singular op-
erators A,B on `p⊕ `2, and this example easily transfers to Lp(0, 1) by complemen-
tation. The following question remains unresolved, and it is also conceivable that
there is no satisfactory answer.

Problem 2.8. Let 1 < p < ∞ and p 6= 2. Characterize those A,B ∈ L(Lp(0, 1))
for which LARB is weakly compact on L(Lp(0, 1)).
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For our second class of examples recall that X has the Dunford-Pettis property
(DPP) if ‖Uxn‖ → 0 as n → ∞ for any U ∈ W (X,Y ), any weak-null sequence
(xn) of X and any Banach space Y . For instance, `1, L1(0, 1), c0, C(0, 1) and
L∞(0, 1) have the DPP (in fact, more generally any L1- and L∞- space X has the
DPP). We refer to the survey [Di80] for further information about this property.
Note that if X has the DPP, then UV ∈ K(Y, Z) for all weakly compact operators
U ∈ W (X,Z) and V ∈ W (Y,X). This fact and Proposition 2.5 suggest that there
might be an analogue of Vala’s theorem for weakly compact multipliers LARB on
L(X) if X has the DPP. It is an elegant result of Racher [Ra92] that this is indeed
so (a more restricted version was contained in [ST92]). This fact provides plenty of
non-trivial examples of weakly compact multiplications. The formulation included
here of Racher’s result is not the most comprehensive one.

Theorem 2.9. Let X be a Banach space having the DPP, and suppose that A,B ∈
L(X) are non-zero operators. Then LARB is weakly compact L(X) → L(X) if and
only if A ∈W (X) and B ∈W (X).

The proof of Racher’s theorem is based on the following useful auxiliary fact.

Lemma 2.10. Let X1, X2, X3, X4 be Banach spaces and suppose that A = A1 ◦
A2 ∈ W (X3, X4), B = B1 ◦B2 ∈ W (X1, X2) factor through the reflexive spaces Z1,
respectively Z2, so that

(2.9) LA∗∗
2
RB1(L(X2, X

∗∗
3 )) ⊂ K(Z2, Z1).

Then LARB is weakly compact L(X2, X3) → L(X1, X4).

Proof. Let (Tγ) ⊂ BL(X2,X3) be an arbitrary net. It follows from Tychonoff’s theorem
and the w∗-compactness of BX∗∗

3
that there is a subnet, still denoted by (Tγ), and

an operator S ∈ L(X2, X
∗∗
3 ) so that

〈y∗,K3Tγx〉 → 〈y∗, Sx〉 for all x ∈ X2, y
∗ ∈ X∗

3 .

Here K3 denotes the natural map X3 → X∗∗
3 . Thus

〈z∗, A∗∗2 K3TγB1(z)〉 → 〈z∗, A∗∗2 SB1(z)〉 for all z ∈ Z2, z
∗ ∈ Z∗1 ,

where A∗∗2 SB1 ∈ K(Z2, Z1) and A∗∗2 K3TγB1 ∈ K(Z2, Z1) for all γ by the assump-
tion. A fundamental criterion for weak compactness in spaces of compact operators,
due to Feder and Saphar [FeS75, Cor. 1.2], yields then that the net

A2TγB1 = A∗∗2 K3TγB1
w−→
γ
A∗∗2 SB1

weakly in K(Z2, Z1). Thus LA2RB1 is weakly compact L(X2, X3) → K(Z2, Z1), and
so is LARB = LA1RB2 ◦ LA2RB1 . �

The proof of Theorem 2.9 is immediate from Lemma 2.10. Recall first that the
weakly compact operators A,B ∈ W (X) factor as A = A1 ◦ A2 and B = B1 ◦ B2

through suitable reflexive spaces Z1 and Z2 by the well-known DFJP-construction,
see [Wo91, Thm. II.C.5]. If X has the DPP, then A2SB1 ∈ K(Z2, Z1) for any
S ∈ L(X), so that (2.9) is satisfied.

It is also possible to prove analogues of Theorem 2.2 for the weak compactness
of elementary operators EA,B. The following version of Theorem 2.9 is taken from
[S95, Section 2]:
• Suppose that X has the DPP. Then the elementary operator EA,B is weakly compact
on L(X) if and only if there are m-tuples U = (U1, . . . , Um), V = (V1, . . . , Vm) ∈
W (X)m so that

EA,B = EU,V .
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It is possible to study multiplications and elementary operators in the general
setting of Banach operator ideals in the sense of Pietsch [Pi80]. This extension is
motivated by several reasons (one reason is the duality with the nuclear operators
used in the proof of Proposition 2.5). Recall that (I, ‖ · ‖I) is a Banach operator
ideal if I(X,Y ) ⊂ L(X,Y ) is a linear subspace for any pair X,Y of Banach spaces,
‖ · ‖I is a complete norm on I(X,Y ) and
(i) x∗ ⊗ y ∈ I(X,Y ) and ‖x∗ ⊗ y‖I = ‖x∗‖ · ‖y‖ for x∗ ∈ X∗ and y ∈ Y ,
(ii) ASB ∈ I(X1, X2) and ‖ASB‖I ≤ ‖A‖ · ‖B‖ · ‖S‖I whenever S ∈ I(X,Y ),
A ∈ L(Y,X2) and B ∈ L(X1, X) are bounded operators.
There is a large variety of useful and interesting examples of Banach operator ideals.
For instance, K, W , the nuclear operators (N, ‖ · ‖I) and the class Πp of the p-
summing operators are important examples (we refer to [Pi80] or [DJT95] for further
examples). Conditions (i) and (ii) imply that the basic map LARB is bounded
I(X2, X3) → I(X1, X4), and that in fact

(2.10) ‖LARB : I(X2, X3) → I(X1, X4)‖ = ‖A‖ · ‖B‖.

for any bounded operators A ∈ L(X3, X4), B ∈ L(X1, X2).
The study of multiplication operators in the framework of Banach operator ideals

was initiated by Lindström and Schlüchtermann in [LSch99]. Here one obviously
meets the following general problem:
• Let (I, ‖ · ‖I) and (J, ‖ · ‖J) be Banach operator ideals. For which operators A and
B does the map LARB : I(X2, X3) → I(X1, X4) belong to J?

Note that Proposition 2.3 admits a more general version. Recall for this that
(I, ‖ · ‖I) is a closed Banach operator ideal if I(X,Y ) is closed in (L(X,Y ), ‖ · ‖)
for any pair X,Y . The ideal (I, ‖ · ‖I) is injective if JS ∈ I(X,Z) for any isometry
J : Y → Z yield that S ∈ I(X,Y ) and ‖JS‖I = ‖S‖I . Moreover, (I, ‖ · ‖I) is
surjective if SQ ∈ I(Z, Y ) for any metric surjection Q : Z → X (that is, QBZ = BX)
imply that S ∈ I(X,Y ) and ‖SQ‖I = ‖S‖I . For instance, K and W are injective
and surjective ideals.

Let I and J be Banach operator ideals, and let A ∈ L(X3, X4), B ∈ L(X1, X2),
where X1, . . . , X4 are any Banach spaces. The following general facts hold, see
[LSch99, Section 2].
• If A 6= 0 6= B and the map LARB : I(X2, X3) → I(X1, X4) belongs to J , then
A ∈ J(X3, X4) and B∗ ∈ J(X∗

2 , X
∗
1 ).

• Assume that I is injective, and that J is closed and injective. If A ∈ K(X3, X4)
and B∗ ∈ J(X∗

2 , X
∗
1 ), then the map LARB : I(X2, X3) → I(X1, X4) belongs to J .

• Assume that I is surjective, and that J is closed and injective. If A ∈ J(X3, X4)
and B ∈ K(X1, X2), then the map LARB : I(X2, X3) → I(X1, X4) belongs to J .

Lindström and Schlüchtermann [LSch99] obtained several range inclusion results
for the multiplications LARB. We state two of their main results. Recall that the
operator U ∈ L(X,Y ) is weakly conditionally compact if for every bounded sequence
(xn) ⊂ X there is weakly Cauchy subsequence (Uxnk

). Clearly any weakly compact
map is weakly conditionally compact. Note that part (ii) below provides a partial
converse of Lemma 2.10. We refer to Section 4, or references such as [LT77] or
[Wo91], for more background about unconditional bases.

Theorem 2.11. Let X1, . . . , X4 be Banach spaces and A ∈ L(X3, X4), B ∈ L(X1, X2).
(i) Suppose that every S /∈ K(X2, X3) factors through a Banach space Z having an
unconditional basis, and that X3 does not contain any isomorphic copies of c0. If
the map LARB is weakly conditionally compact L(X2, X3) → L(X1, X4), then

LARB(L(X2, X3)) ⊂ K(X1, X4).
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(ii) Suppose that every S /∈ K(X2, X3) factors through a Banach space Z having
an unconditional basis, and that LARB is weakly compact L(X2, X3) → L(X1, X4).
Then

A∗∗ ◦BL(X2,X3)
w∗OT ◦B ⊂ K(X1, X4),

where w∗OT denotes the w∗-operator topology in L(X2, X
∗∗
3 ).

The examples included in this section demonstrate that the conditions for LARB

to belong to a given operator ideal I usually depend on geometric or structural
properties of the Banach spaces involved. However, for suitable classical Banach
spaces it is still possible to obtain complete descriptions. We next discuss some
non-trivial results from [LST05] related to strict singularity. This class of operators
is central for many purposes (such as in perturbation theory and the classification
of Banach spaces). The main result of [LST05] completely characterizes the strictly
singular multiplications LARB on L(Lp(0, 1)) for 1 < p <∞. The simple form of the
characterization is rather unexpected, since the subspace structure of the algebras
L(X) is very complicated. The case p = 2 is essentially contained in Theorem 2.1,
and it is excluded below.

Theorem 2.12. Let 1 < p < ∞, p 6= 2, and suppose that A,B ∈ L(Lp(0, 1)) are
non-zero operators. Then LARB is strictly singular L(Lp(0, 1)) → L(Lp(0, 1)) if and
only if A ∈ S(Lp(0, 1)) and B ∈ S(Lp(0, 1)).

In contrast to the simplicity of the statement above the proof of Theorem 2.12
is lengthy and quite delicate, and we are only able to indicate some of the main
steps and difficulties here. The implication ”⇐” is the non-trivial one (the converse
implication follows from the generalities). As the starting point one notes that
it suffices to treat the case 2 < p < ∞, since the map U 7→ U∗ preserves strict
singularity on Lp(0, 1), see [We77]. Assume to the contrary that there are operators
A,B ∈ S(Lp(0, 1)) so that LARB is not strictly singular L(Lp(0, 1)) → L(Lp(0, 1)).
Hence there is an infinite-dimensional subspace N ⊂ L(Lp(0, 1)) so that LARB

is bounded below on N . The first step consists of ”modifying” N to obtain a
block diagonal sequence (Sk) ⊂ F(Lp(0, 1)), for which the restriction of LARB to
[Sk : k ∈ N] is still bounded below and the image sequence (ASkB) is as close as we
want to a block diagonal sequence (Uk) ⊂ F(Lp(0, 1)). By a block diagonal sequence
(Sk) is here meant that

Sk = (Pmk+1
− Pmk

)Sk(Pmk+1
− Pmk

) for k ∈ N,

where (mk) ⊂ N is some increasing sequence and (Pr) is the sequence of basis
projections associated to the Haar basis (hn) of Lp(0, 1). Note that N ⊂ L(Lp(0, 1))
so that this reduction cannot be achieved just by a straightforward approximation.
In fact, the actual argument proceeds through several auxiliary results.

In the next step one invokes classical estimates on unconditional basic sequences
in Lp(0, 1) to ensure that

(2.11) ‖
∑

k

ckSk‖ ≈ ‖(ck)‖s for (ck) ∈ `s,

where s satisfies 1
2 = 1

p+ 1
s . The final challenge is to derive a contradiction from (2.11)

by a subtle comparison with the Kadec-Pelczynski dichotomy. (This fundamental
result [KP62] says that for any normalized basic sequence (fn) in Lp(0, 1), where
2 < p < ∞, there is a subsequence (fnk

) so that [fnk
: k ∈ N] is complemented in

Lp(0, 1) and (fnk
) is either equivalent to the unit vector basis of `p or `2).

Problem 2.13. Find a simpler approach to Theorem 2.12.
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The delicacy above is further illustrated by the facts that Theorem 2.12 remains
true for X = `p ⊕ `q, see [LST05, Thm. 4.1], but not for X = `p ⊕ `q ⊕ `r, where
1 < p < q < r <∞.

Example 2.14. Let 1 < p < q < r <∞ and define J1, J2 ∈ S(`p ⊕ `q ⊕ `r) by

J1(x, y, z) = (0, 0, j1y), J2(x, y, z) = (0, j2x, 0), (x, y, z) ∈ `p ⊕ `q ⊕ `r,

where j1 : `q → `r and j2 : `p → `q are the natural inclusion maps. Then LJ1RJ2 is
not strictly singular L(`p ⊕ `q ⊕ `r) → L(`p ⊕ `q ⊕ `r).

Indeed, by passing to complemented subspaces it is enough to check that the
related composition map Lj1Rj2 is not strictly singular L(`q) → L(`p, `r). This fact
follows from the straightforward computation that

‖
∑

n

anj
∗
2e
∗
n ⊗ j1en‖`p→`r = ‖

∑
n

ane
∗
n ⊗ en‖`q→`q = sup

n
|an|

for (an) ∈ c0, where (en) ⊂ `q is the unit vector basis and (e∗n) ⊂ `q
′
is the biorthog-

onal sequence.
The reference [LST05] also characterizes the strictly singular multiplications LARB

on L(X) when X is a L1-space. This result is based on Theorem 2.9 and the non-
trivial fact, essentially due to Bourgain [B81], that here L(X∗∗) has the DPP.

Qualitative results for the multiplication operators LARB are often helpful when
studying other aspects of multiplication or elementary operators. We also mention
an interesting application [BDL01, Section 5], where maps of the form LARB are
used to linearize the analytic composition operators Cφ : f 7→ f ◦φ on certain vector-
valued spaces of analytic functions. Here φ is an analytic self-map of the unit disc
D = {z ∈ C : |z| < 1}.
Other developments. There is a quite extensive theory of tensor norms of Banach
spaces and tensor products of operators, which parallels the study of the multipli-
cation operators LARB. Recall that the norm α, defined on the algebraic tensor
products X ⊗ Y for all Banach spaces X,Y , is called a tensor norm if

(iii) α(x⊗ y) = ‖x‖ · ‖y‖ for x⊗ y ∈ X ⊗ Y ,
(iv) ‖A⊗B : (X1 ⊗ Y1, α) → (X ⊗ Y, α)‖ ≤ ‖A‖ · ‖B‖ for any bounded operators

A ∈ L(X1, X), B ∈ L(Y1, Y ) and Banach spaces X1, X, Y1, Y .
The α-tensor product X⊗̂αY is the completion of (X ⊗ Y, α). Property (iv) states
that any A ∈ L(X1, X) and B ∈ L(Y1, Y ) induce a bounded linear operator A⊗̂αB :
X1⊗̂αY1 → X⊗̂αY . We refer to [DeF93] for a comprehensive account of tensor
norms and tensor products of operators.

Tensor norms and Banach operator ideals are related to each other, but this
correspondence is not complete. For instance, recall that X∗⊗̂εY = K(X,Y ) if X∗

or Y has the approximation property (see e.g. [DeF93, 5.3]), while (X⊗̂πY )∗ =
L(X∗, Y ) for any pair X,Y . Given A ∈ L(X) and B ∈ L(Y ) one may then identify,
under appropriate conditions, the tensor product operator A∗⊗̂εB with the map
LA∗RB and (A⊗̂πB)∗ with LARB∗ . There are many results which are more natural
to state either in terms of multiplication operators or tensor products of operators.
An example of this for tensor products is the following celebrated result of J. Holub
[Ho70], [Ho74] (see also [DeF93, 34.5]):
• A⊗̂εB is a p-summing operator whenever A and B are p-summing operators.
References such as e.g. [DiF76], [Pi87], [CDR89], [DeF93, Chapter 34], [Ra92] and
[LSch99] contain qualitative results for tensor products of operators which resem-
ble some of the results of this section for the multiplication operators. Since the
elementary operators are the main objects of this survey we have not pursued this
aspect.
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It is not known whether Vala’s result (Theorem 2.1) holds for arbitrary Banach
operator ideals (alternatively, for arbitrary tensor norms).

Problem 2.15. Let (I, ‖ · ‖I) be an arbitrary Banach operator ideal. Is LARB

a compact operator I(X2, X3) → I(X1, X4) whenever A ∈ K(X3, X4) and B ∈
K(X1, X2)?

The tensor version of this problem was discussed by Carl, Defant and Ramanujan
[CDR89], where one finds a number of partial positive results.

3. Norms and spectra in various settings

This section discusses several results related to the computation of the operator
norm and of various spectra of (classes of) elementary operators. It has turned out
that computing the norm of reasonably general (classes of) elementary operators is
a difficult problem. In fact, only very recently Timoney [Ti05] provided the first
general formula for ‖EA,B‖ on L(`2), see Theorem 3.10 below.

Recall as our starting point that

‖LARB : L(X) → L(X)‖ = ‖A‖ · ‖B‖
by (2.10) for any Banach space X and any A,B ∈ L(X). The first non-trivial results
concern the norm of the inner derivations (or commutator maps)

LA −RA : L(X) → L(X); S 7→ AS − SA,

determined by A ∈ L(X). These concrete operators occur in many different contexts.
Since LA−λ − RA−λ = LA − RA for any scalar λ, we immediately get the general
upper bound

(3.1) ‖LA −RA‖ ≤ 2 · inf
λ∈K

‖A− λ‖,

which holds for anyX (where the scalar field K is either R or C). J.G. Stampfli [St70]
showed that the preceding estimate is exact for the norm of the inner derivations on
L(`2).

Theorem 3.1. Let H be a complex Hilbert space and A ∈ L(H). Then

(3.2) ‖LA −RA‖ = 2 · inf{‖A− λ‖ : λ ∈ C}

Stampfli’s elegant formula also holds in the case of real scalars. Stampfli [St70]
extended it to the generalized derivations (or intertwining operators) LA − RB on
L(`2), where S 7→ AS − SB.

Theorem 3.2. Let H is a complex Hilbert space and A,B ∈ L(H). Then

(3.3) ‖LA −RB‖ = inf{‖A− λ‖+ ‖B − λ‖ : λ ∈ C}

Later Fialkow [Fi79, Example 4.14] observed that the operator A ∈ L(`2), defined
by Ae2n = e2n−1 and Ae2n−1 = 0 for n ∈ N, satisfies

‖LA −RA : C2 → C2‖ < 2 · inf
λ∈C

‖A− λ‖.

Here (en) is the unit coordinate basis of `2 and (C2, ‖ · ‖HS) is the Banach ideal
of L(`2) consisting of the Hilbert-Schmidt operators. Hence (3.2) fails for arbitrary
restrictions LA −RA : J → J , where J is a Banach ideal of L(`2).

Let H be a complex Hilbert space. Fialkow [Fi79] called the operator A ∈ L(H)
S-universal if ‖LA − RA : J → J‖ = 2 · inf{‖A − λ‖ : λ ∈ C} for all Banach
ideals J ⊂ L(H). Barraa and Boumazgour [BB01] obtained, in combination with
earlier results of Fialkow, the following neat characterization of S-universality. Let
W (A) = {(Ax, x) : x ∈ SH} be the numerical range of A ∈ L(H).
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Theorem 3.3. Let H be a complex Hilbert space and A ∈ L(H). Then the following
conditions are equivalent.
(i) A is S-universal,
(ii) ‖LA −RA : C2 → C2‖ = 2 · infλ∈C ‖A− λ‖,
(iii) diam(W (A)) = 2 · infλ∈C ‖A− λ‖,
(iv) diam(σ(A)) = 2 · infλ∈C ‖A− λ‖. (Here σ(A) is the spectrum of A.)

There are several proofs of Stampfli’s formula (3.2), see e.g. [AM03, Section 4.1].
We briefly discuss one of the approaches from [St70] of this fundamental result in
order to convey an impression of the tools involved here. The maximal numerical
range of A ∈ L(H) is

W0(A) = {λ ∈ C : λ = lim
n

(Axn, xn),where (xn) ⊂ SH and ‖Axn‖ → ‖A‖}.

Here (·, ·) is the inner product on H. The set W0(A) is known to be non-empty,
closed and convex.

Sketch of the proof of Theorem 3.1. We first claim that if µ ∈W0(A) then

(3.4) ‖LA −RA‖ ≥ 2(‖A‖2 − |µ|2)1/2.

Indeed, by assumption there is a sequence (xn) ⊂ SH so that µ = limn(Axn, xn)
and ‖A‖ = limn ‖Axn‖. Write Axn = αnxn + βnyn for n ∈ N, where yn ∈ {xn}⊥
and ‖yn‖ = 1. Note that αn = (Axn, xn) → µ and |αn|2 + |βn|2 = ‖Axn‖2 → ‖A‖2

as n→∞. Define the rank-2 operators Vn ∈ L(H) by

Vn = (xn ⊗ xn − yn ⊗ yn) ◦ Pn,

where Pn is the orthogonal projection onto [xn, yn]. Here (u ⊗ v)x = (x, u)v for
u, v, x ∈ H. Thus ‖Vn‖ = 1 for n ∈ N. We obtain that

lim
n
‖AVnxn − VnAxn‖ = lim

n
‖αnxn + βnyn − (αnxn − βnyn)‖

= lim
n

2|βn| = 2(‖A‖2 − |µ|2)1/2

Since ‖LA −RA‖ ≥ lim supn ‖AVnxn − VnAxn‖ it follows that (3.4) holds.
Observe next that if 0 ∈W0(A−λ0) for some scalar λ0 ∈ C, then (3.4) yields the

lower estimate

‖LA −RA‖ = ‖LA−λ0 −RA−λ0‖ ≥ 2‖A− λ0‖ ≥ 2 inf
λ∈C

‖A− λ‖.

Hence it follows from (3.1) that (3.2) holds.
The non-trivial part of the argument is to find λ0 ∈ C so that 0 ∈ W0(A − λ0).

This part is quite well-documented in the literature so we just refer to Stampfli
[St70](who included two different approaches), [Fi92, Section 2] or [AM03, Thm.
4.1.17]). �

Stampfli asked whether (3.2) also holds for the inner derivations on L(X), where
X is an arbitrary Banach space. This was disproved by the following example of
Johnson [J71].

Example 3.4. Let 1 < p <∞ and p 6= 2. Then there is a rank-1 operator A ∈ L(`p)
for which

‖LA −RA‖ < 2 · inf{‖A− λ‖ : λ ∈ C}.

Johnson [J71] also provided examples of spaces X where (3.2) does hold.

Example 3.5. Let `1n(R) = (Rn, ‖ · ‖1). Then

‖LA −RA‖ = 2 · inf{‖A− λ‖ : λ ∈ R}
for any A ∈ L(`1n(R)).
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Above `1n(R) is not uniformly convex. Subsequently Kyle [Ky77] obtained an
elegant connection between Stampfli’s formula and isometric characterizations of
Hilbert spaces within the class of uniformly convex spaces.

Theorem 3.6. Let X be a uniformly convex Banach space over the scalars K. Then
the following conditions are equivalent.
(i) X is isometric to a Hilbert space,
(ii) ‖LA −RA‖ = 2 · infλ∈K ‖A− λ‖ holds for any A ∈ L(X),
(iii) ‖LA −RA‖ = 2 · infλ∈K ‖A− λ‖ holds for any rank-1 operator A ∈ L(X).

There has been much recent work concerning the computation of norms (of classes)
of elementary operators. An optimal outcome would be a formula for

‖
n∑

j=1

LAjRBj : L(X) → L(X)‖

which in some sense involves the coefficients A = (A1, . . . , An), B = (B1, . . . , Bn) ∈
L(X)n of a given elementary operator EA,B so that their contribution to the norm
is clarified in some non-trivial sense (at least in the case where X is a Hilbert
space). One obvious obstruction is the non-uniqueness of the representation of such
operators. Runde [Run00] observed that ‖EA,B‖ is not symmetric in the sense that
the norms do not remain uniformly bounded in the flip correspondence EA,B → EB,A

(note that this is not well-defined as a map). Timoney [Ti01] gave the following
simplified version of Runde’s instructive example.

Example 3.7. Suppose that X is a Banach space with a normalized basis (en) and
biorthogonal sequence (e∗n) ⊂ X∗. Put Aj = e∗j ⊗ e1 and Bj = e∗1 ⊗ ej for j ∈ N.
Then

‖
n∑

j=1

LAjRBj‖ ≥ n, ‖
n∑

j=1

LBjRAj‖ ≤ C, n ∈ N,

where C is the basis constant of (en).

Proof. For S ∈ L(X) one gets that
n∑

j=1

LAjRBj (S) =
n∑

j=1

(e∗j ⊗ e1) ◦ S ◦ (e∗1 ⊗ ej) = (
n∑

j=1

〈e∗j , Sej〉)e∗1 ⊗ e1.

Thus ‖
∑n

j=1 LAjRBj‖ ≥ n‖e∗1 ⊗ e1‖ = n by choosing S = IX . Moreover, for
S ∈ L(X) and x ∈ X one obtains that

‖
n∑

j=1

LBjRAj (S)x‖ = ‖
n∑

j=1

(e∗1 ⊗ ej) ◦ S ◦ (e∗j ⊗ e1)x = ‖〈e∗1, Se1〉
n∑

j=1

e∗j (x)ej‖

≤ ‖S‖ · ‖Pn‖ · ‖
∞∑

j=1

e∗j (x)ej‖ ≤ C · ‖S‖ · ‖x‖.

Above x =
∑∞

j=1 e
∗
j (x)ej for x ∈ X, Pn denotes the natural basis projection X →

[e1, . . . , en] and C = supm ‖Pm‖ is the basis constant. �

By exercising somewhat more care in the argument (see [Ti01, Thm. 1]) it is
enough above to assume just that the basic sequence (en) spans a complemented
subspace of X.

Let X be a Banach space and A,B ∈ L(X). Clearly the symmetrized elementary
operator LARB + LBRA, for which S 7→ ASB +BSA for S ∈ L(X), satisfies

‖LARB + LBRA : L(X) → L(X)‖ ≤ 2‖A‖ · ‖B‖.
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For these maps it is natural to look for lower bounds having the form

(3.5) ‖LARB + LBRA : L(X) → L(X)‖ ≥ cX‖A‖ · ‖B‖,
for some constant cX > 0, possibly depending on X. In particular, Mathieu [Ma89]
conjectured that cH = 1. Recently Mathieu’s conjecture was independently solved,
using different methods, by Timoney [Ti03a] and by Blanco, Boumazgour and Rans-
ford [BBR04].

Theorem 3.8. Let H be a Hilbert space. Then

‖LARB + LBRA : L(H) → L(H)‖ ≥ ‖A‖ · ‖B‖
for any A,B ∈ L(H).

Earlier Stacho and Zalar [SZ96] showed that Mathieu’s conjecture holds for self-
adjoint A,B ∈ L(H), and that

‖LARB + LBRA : L(H) → L(H)‖ ≥ 2(
√

2− 1)‖A‖ · ‖B‖
for any A,B ∈ L(H). The bound 2(

√
2− 1) occurs naturally in the following result

due Blanco, Boumazgour and Ransford [BBR04, Thm. 5.1 and Prop. 5.3].

Theorem 3.9. In (3.5) one has that cX ≥ 2(
√

2−1) for any Banach space X. The
bound 2(

√
2− 1) cannot be improved e.g. on X = (R2, ‖ · ‖∞), `∞ or `1.

The general estimate in Theorem 3.9 also holds for the norm of the restrictions
LARB + LBRA : I(X) → I(X), where I is a Banach operator ideal.

Very recently Timoney [Ti05], building on his earlier work [Ti03b], obtained a
couple of general formulas for the norm ‖EA,B‖ in the Hilbert space case. His work
provides a solution of the norm problem which involves matrix numerical ranges
and a notion of tracial geometric mean. We briefly describe his solution, though we
are not able to include any details here. The tracial geometric mean of the positive
(semi-definite) n× n-matrices U, V is

tgm(U, V ) = trace

√√
UV

√
U =

n∑
j=1

√
λj(UV ).

Here
√
· denotes the positive square root, and (λj(UV )) are the eigenvalues of UV

ordered in non-increasing order and counting multiplicities. For the n-tuple A =
(A1, . . . , An) ∈ L(H)n and x ∈ H one introduces the scalar n× n-matrix

Q(A, x) = ((A∗iAjx, x))n
i,j=1 = ((Ajx,Aix))n

i,j=1.

The first version [Ti05, Thm. 1.4] of Timoney’s formula reads as follows.

Theorem 3.10. For any A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(H)n one has

‖EA,B : L(H) → L(H)‖ = sup{tgm(Q(A∗, x), Q(B, y)) : x, y ∈ SH},
where A∗ = (A∗1, . . . , A

∗
n).

Next put
‖(x1, . . . , xn)‖S1 = trace

√
((xi, xj))n

i,j=1

for (x1, . . . , xn) ∈ Hn. This defines a norm on Hn, see [Ti05, Lemma 1.7]. For
A = (A1, . . . , An) ∈ L(H)n let ‖A‖S1 denote the norm of A considered as an operator
H → (Hn, ‖ · ‖S1). One gets the following alternative formula [Ti05, Thm. 1.10] for
the norm.

Theorem 3.11. For any A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(H)n one has

‖EA,B : L(H) → L(H)‖ = sup{‖
√
Q(B, y)tA∗‖S1 : y ∈ SH},

where A∗ = (A∗1, . . . , A
∗
n) and Q(B, y)t is the transpose of the matrix Q(B, y).
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Timoney [Ti05] also established versions of Theorems 3.10 and 3.11 for the norm
of elementary operators on arbitrary C∗-algebras A. Moreover, he characterized the
compact elementary operators A → A, thus providing a complete generalization of
Theorem 2.2 to the setting of C∗-algebras (see [AM03, 5.3.26] for earlier results of
Mathieu in the case of prime algebras).

For further results about the norms of elementary operators on L(H) or on classes
of C∗-algebras we refer to e.g. [AM03, Sections 4.1,4.2 and 5.4], [AST05], [Ti05] (and
the references therein), as well as to Theorems 4.13 and 4.14 concerning elementary
operators on the Calkin algebra.

Let X be a complex Banach space and A,B ∈ L(X). It is an easy exercise
to check that the spectrum σ(LA) = σ(A) = σ(RA) for any operator A. Since
LARB = RBLA it follows immediately from elementary Gelfand theory that the
spectra of LARB and LA −RB satisfy

σ(LARB) ⊂ σ(A)σ(B), σ(LA −RB) ⊂ σ(A)− σ(B),

where σ(A)− σ(B) ≡ {α− β : α ∈ σ(A), β ∈ σ(B)}. Lumer and Rosenblum [LR59]
showed the exact formula

(3.6) σ(
n∑

j=1

Lfj(A)Rgj(B)) = {
n∑

j=1

fj(α)gj(β) : α ∈ σ(A), β ∈ σ(B)},

which holds whenever fj is holomorphic in a neighborhood of σ(A) and gj is holo-
morphic in a neighborhood of σ(B) for j = 1, . . . , n. (The result itself is attributed
to Kleinecke in [LR59].) Hence simple choices in (3.6) of the holomorphic functions
imply that in fact

σ(LARB) = σ(A)σ(B), σ(LA −RB) = σ(A)− σ(B).

For a long time it remained a considerable challenge to compute the spectrum
σ(EA,B) of general elementary operators. A satisfactory formula was eventually
obtained by Curto [Cu83] for Hilbert spaces X, and this result was later substan-
tially improved by Curto and Fialkow [CuF87] (again for Hilbert spaces) and Es-
chmeier [E88] (for arbitrary Banach spaces). (Some of these facts were announced
by Fainshtein [F84].) Here one expresses the spectrum σ(EA,B) and the essential
spectrum σe(EA,B) in terms of the Taylor joint spectrum and the Taylor joint essen-
tial spectrum of the n-tuples (A1, . . . , An) and B = (B1, . . . , Bn). We refer to the
survey [Cu92] for further references to the numerous intermediary results (including
those for tensor products of operators) that culminated in Theorems 3.12 and 3.13
below.

Let A = (A1, . . . , An) ∈ L(X)n be an n-tuple such that the set {A1, . . . , An}
commutes. The Taylor joint spectrum σT (A) consists of λ = (λ1, . . . , λn) ∈ Cn so
that the Koszul complex corresponding to A− λ is not exact. Actually we will not
require the precise homological definition here, and we refer e.g. to [Ta70], [Cu88]
or [Mu02] for the details. The set σT (A) ⊂ Cn is compact and non-empty. We will
use below the convenient notation

U ◦ V ≡ {
n∑

j=1

αjβj : (α1, . . . , αn) ∈ U, (β1, . . . , βn) ∈ V }

for subsets U, V ⊂ Cn. It will also be convenient to discuss simultaneously the
spectrum of the restrictions EA,B : I → I, where I ⊂ L(X) is any Banach ideal,
since the results does not depend on I and the arguments are similar.

Theorem 3.12. Let X be a complex Banach space and I ⊂ L(X) be any Banach
ideal. Suppose that A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(X)n are n-tuples such
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that {A1, . . . , An} and {B1, . . . , Bn} are commuting sets. Then

(3.7) σ(EA,B : I → I) = σT (A) ◦ σT (B).

The essential spectrum of S ∈ L(X) is

σe(S) = {λ ∈ C : λ− S is not a Fredholm operator}.
Recall that S ∈ L(X) is a Fredholm operator if there are operators T ∈ L(X)
and K1,K2 ∈ K(X) so that ST = IX + K1 and TS = IX + K2. Thus σe(S) is
the spectrum of the quotient element S+K(X) in the corresponding Calkin algebra
L(X)/K(X). The references [E88] and [CuF87] also compute the essential spectrum
σe(EA,B) in the preceding setting. Let A = (A1, . . . , An) ∈ L(X)n be a commuting
n-tuple. We recall that the Taylor joint essential spectrum σTe(A) consists of the
λ ∈ Cn for which the Koszul complex of A−λ is not Fredholm (see again e.g. [E88]
or [Cu92] for the precise definition).

Theorem 3.13. Let X be a complex Banach space and let I ⊂ L(X) be any Banach
ideal. Suppose that A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(X)n are n-tuples such
that {A1, . . . , An} and {B1, . . . , Bn} are commuting sets. Then

(3.8) σe(EA,B : I → I) = σTe(A) ◦ σT (B) ∪ σT (A) ◦ σTe(B).

Theorems 3.12 and 3.13 remain valid for the spectrum and the essential spec-
trum of the analogous tensor product operators

∑n
j=1Aj ⊗ Bj with respect to any

tensor norm (this is the explicit point of view in [E88]). The arguments in [E88]
and [CuF87] apply multivariable spectral theory and some homological algebra (the
requisite background is discussed e.g. in the surveys [Cu88] and [Cu92]). A central
idea is to determine the complete spectral picture and compute, or in the Banach
space case to suitably estimate, the Taylor joint (essential) spectra of the com-
muting 2n-tuples (A ⊗ IX , IX ⊗ B) = (A1 ⊗ I, . . . , An ⊗ I, I ⊗ B1, . . . , I ⊗ Bn) or
(LA, RB) = (LA1 , . . . , LAn , RB1 , . . . , RBn). Theorems 3.12 and 3.13 are then ob-
tained by applying the polynomial spectral mapping property to P : Cn ×Cn → C,
where P (z, w) =

∑n
j=1 zjwj for z, w ∈ Cn. The references [E88] and [CuF87] contain

plenty of additional information related to other classical subsets of the spectrum
as well as index formulas. By contrast we will provide below minimalist approaches
to (3.7) and (3.8), which are based on ideas from [S95].

Before proving (3.7) we mention that it is even possible to identify the weak
essential spectrum σw(EA,B) in several situations. Here

σw(S) = {λ ∈ C : λ− S is not invertible modulo W (Y )}
for S ∈ L(Y ). Recall that S ∈ L(Y ) is invertible moduloW (Y ) if there are T ∈ L(Y )
and V1, V2 ∈W (Y ) so that ST = IY +V1 and TS = IY +V2. We refer e.g. to Section
2 and Corollary 4.2 for results about weakly compact elementary operators. The
following results were obtained in [ST94].

Theorem 3.14. (i) Let 1 < p <∞ and A,B ∈ L(`p). Then

σw(LARB) = σe(A)σe(B).

(ii) Let X be an arbitrary complex Banach space and A,B ∈ L(X). Then

(3.9) σw(A∗)σ(B) ∪ σ(A)σw(B) ⊂ σw(LARB) ⊂ σe(A)σ(B) ∪ σ(A)σe(B).

For instance, if X∗ has the Dunford-Pettis property, then one obtains from (3.9)
that

σw(LARB) = σe(LARB) = σe(A)σ(B) ∪ σ(A)σe(B).
For this equality one has to recall a few well-known facts. Firstly, if Y has the
DPP and V ∈ W (Y ), then IY + V is a Fredholm operator. In fact, by assumption
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V 2 ∈ K(Y ) so that IY − V 2 = (IY + V )(IY − V ) = (IY − V )(IY + V ) is a Fredholm
operator, whence IY + V is also Fredholm. This yields that σw(S) = σe(S) for any
S ∈ L(Y ). Secondly, X has the DPP ifX∗ has this property. Finally, σe(S∗) = σe(S)
for any operator S.

Subsequently Saksman [S95] extended Theorem 3.14 to the weak essential spectra
of elementary operators in certain cases. We state a couple of results from [S95].

Theorem 3.15. Let X be a complex Banach space and let A = (A1, . . . , An), B =
(B1, . . . , Bn) ∈ L(X)n be commuting n-tuples.
(i) If X = `p and 1 < p <∞, then

σw(EA,B) = σTe(A) ◦ σTe(B).

(ii) If X∗ has the DPP, then

σw(EA,B) = σTe(A) ◦ σT (B) ∪ σT (A) ◦ σTe(B).

The ideas underlying Theorem 3.15, and the earlier Theorem 3.14 for the case
LARB, yield ”elementary” approaches to to Theorems 3.12 and 3.13 that do not
use any homological algebra (as was pointed out on [S95, p. 182]). In order to give
the reader some impressions of the techniques involved in computing the spectra of
elementary operators we present here a fairly detailed argument for Theorem 3.12
along these lines. We also point out the main additional ideas needed for a proof of
Theorem 3.13 using elementary tools, see Remark 3.17 below.

We begin by recalling some classical concepts of joint spectra. Let X be a com-
plex Banach space and let A = (A1, . . . , An) ∈ L(X)n be a n-tuple of commuting
operators. The (joint) approximative point spectrum σπ(A) of A = (A1, . . . , An)
consists of the points λ = (λ1, . . . , λn) ∈ Cn for which

inf
x∈SX

n∑
j=1

‖(Aj − λj)x‖ = 0.

The joint approximative spectrum of A = (A1, . . . , An) is then

σa(A) = σπ(A) ∪ σπ(A∗),

where A∗ = (A∗1, . . . , A
∗
n). The left spectrum σl(A) of A = (A1, . . . , An) consists of

(λ1, . . . , λn) ∈ Cn such that
∑n

j=1 Sj(Aj − λj) 6= IX for all n-tuples (S1, . . . , Sn) ∈
L(X)n. Similarly, (λ1, . . . , λn) ∈ σr(A) if

∑n
j=1(Aj − λj)Sj 6= IX for (S1, . . . , Sn) ∈

L(X)n. The Harte joint spectrum of A = (A1, . . . , An) is

σH(A) = σl(A) ∪ σr(A).

For a single operator S ∈ L(X) (that is, the case n = 1) one has σT (S) = σH(S) =
σa(S) = σ(S). According to the polynomial spectral mapping property for the
Taylor spectrum one has

σ(P (A1, . . . , An)) = P (σT (A1, . . . , An)).

for any commuting n-tuple A = (A1, . . . , An) ∈ L(X)n and for any scalar polynomial
P : Cn → C. This property also holds for the joint spectra σH(·) and σa(·). We refer
e.g to [Cu88] for a further discussion of multivariable spectral theory.

The following technical observation will be crucial. This fact goes back to Curto
[Cu86, Thm. 3.15] (see also [S95, Prop. 1]).

Lemma 3.16. Let A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(X)n be commuting
n-tuples, and P : Cn × Cn → C be a polynomial. Then

P (σT (A)× σT (B)) = P (σH(A)× σH(B)) = P (σa(A)× σa(B)).
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Proof. We verify the inclusion P (σT (A) × σT (B)) ⊂ P (σa(A) × σa(B)). The other
inclusions are similar (actually, one could also apply the fact that σa(A) ⊂ σH(A) ⊂
σT (A) for any commuting n-tuple A, see e.g. [Cu88]).

Let P (α0, β0) ∈ P (σT (A) × σT (B)), and consider the polynomial Q1 : Cn → C,
where Q1(z) = P (z, β0). It follows from the polynomial spectral mapping theorems,
and the fact that these spectra coincide for a single operator, that

P (α0, β0) = Q1(α0) ∈ Q1(σT (A)) = σ(Q1(A)) = Q1(σa(A)).

Hence there is α1 ∈ σa(A) so that P (α0, β0) = Q1(α1) = P (α1, β0). By applying
the same argument to Q2 : Cn → C, where Q2(w) = P (α1, w), we get β1 ∈ σa(B) so
that

P (α0, β0) = P (α1, β0) = Q2(β0) = Q2(β1) = P (α1, β1) ∈ P (σa(A)× σa(B)).

�

Proof of Theorem 3.12. The strategy is to prove the inclusions

(3.10) σH((LA, RB);L(I)) ⊂ σH(A)× σH(B),

(3.11) P (σa(A)× σa(B)) ⊂ σ(P (LA, RB) : I → I),

for any polynomial P : Cn ×Cn → C. Above σH((LA, RB);L(I)) denotes the Harte
spectrum of the commuting 2n-tuple (LA1 , . . . , LAn , RB1 , . . . , RBn) in the algebra
L(I). By applying Lemma 3.16 with the choice P (z, w) =

∑n
j=1 zjwj to (3.10) and

(3.11) we get the desired identities

σ(EA,B : I → I) = σT (A) ◦ σT (B) = σH(A) ◦ σH(B) = σa(A) ◦ σa(B).

It is enough towards (3.10) to verify that

(3.12) σl((LA, RB);L(I)) ⊂ σl(A)× σr(B),

(3.13) σr((LA, RB);L(I)) ⊂ σr(A)× σl(B).

These inclusions were probably first noted by Harte. If λ /∈ σl(A) then there is an
n-tuple S = (S1, . . . , Sn) ∈ L(X)n so that

∑n
j=1 Sj(Aj − λj) = IX . It follows that

n∑
j=1

LSjLAj−λj
+

n∑
j=1

0 ◦RBj−µj = IdI ,

so that (λ, µ) /∈ σl((LA, RB);L(I)). If µ /∈ σr(B) then there is T = (T1, . . . , Tn) ∈
L(X)n so that

∑n
j=1(Bj − µj)Tj = IX . We get that

n∑
j=1

0 ◦ LAj−λj
+

n∑
j=1

RTjRBj−µj = IdI ,

that is, (λ, µ) /∈ σl((LA, RB);L(I)). The verification of (3.13) is similar.
The proof of the lower inclusion (3.11) is the crucial step of the argument. Suppose

that (λ, µ) ∈ σa(A)× σa(B). We first factorize

P (z, w)− P (λ, µ) =
n∑

j=1

Gj(z, w)(zj − λj) +
n∑

j=1

Hj(z, w)(wj − µj),

where Gj and Hj are suitable polynomials for j = 1, . . . , n, so that

Φ = P (LA, RB)− P (λ, µ) =
n∑

j=1

Gj(LA, RB) ◦ LAj−λj
+

n∑
j=1

Hj(LA, RB) ◦RBj−µj



MULTIPLICATIONS AND ELEMENTARY OPERATORS IN THE BANACH SPACE SETTING 19

defines a bounded operator on I. Assume next to the contrary that P (λ, µ) /∈
σ(P (LA, RB); I → I), so that Φ is invertible I → I. Since σa(A) = σπ(A)∪ σπ(A∗),
and similarly for σa(B), we get four cases which are all handled somewhat differently.
Case 1. λ ∈ σπ(A), µ ∈ σπ(B∗). There are sequences (xk) ⊂ SX and (x∗k) ⊂ SX∗

so that ‖(Aj − λj)xk‖ → 0 and ‖(B∗j − µj)x∗k‖ → 0 as k →∞ for each j = 1, . . . , n.
Consider the rank-1 operator x∗k⊗xk ∈ I, for which ‖x∗k⊗xk‖I = 1 for k ∈ N. Hence

‖(LAj−λj
)(x∗k ⊗ xk)‖I = ‖x∗k‖ · ‖(Aj − λj)xk‖ → 0,

‖(RBj−µj )(x
∗
k ⊗ xk)‖I = ‖(B∗j − µj)x∗k‖ · ‖xk‖ → 0

as k → ∞ for j = 1, . . . , n. Here ‖ · ‖I is the norm on the Banach ideal I. Deduce
that

Φ(x∗k⊗xk) =
n∑

j=1

Gj(LA, RB)(LAj−λj
)(x∗k⊗xk)+

n∑
j=1

Hj(LA, RB)(RBj−µj )(x
∗
k⊗xk)

converges to 0 in I as k →∞, which contradicts the fact that Φ is invertible.
Case 2. λ ∈ σπ(A∗), µ ∈ σπ(B). There are (xk) ⊂ SX and (x∗k) ⊂ SX∗ so that
‖(A∗j − λj)x∗k‖ → 0 and ‖(Bj − µj)xk‖ → 0 as k → ∞ for j = 1, . . . , n. Define a
linear functional ψk on I by

ψk(S) = 〈x∗k, Sxk〉, S ∈ I.

Thus ψk ∈ I∗ and ‖ψk‖ = 1 for k ∈ N since I is a Banach ideal. Since Gj(LA, RB) ◦
LAj−λj

= LAj−λj
◦ Gj(LA, RB) and Hj(LA, RB) ◦ RBj−µj = RBj−µj ◦ Hj(LA, RB)

for j = 1, . . . , n we get for any S ∈ I that

|Φ∗ψk(S)| ≤
n∑

j=1

|〈(A∗j − λj)x∗k, (Gj(LA, RB)(S))xk〉|

+
n∑

j=1

|〈x∗k, (Hj(LA, RB)(S))((Bj − µj)xk)〉|

≤ c

n∑
j=1

‖(A∗j − λj)x∗k‖ · ‖S‖I + d
n∑

j=1

‖(Bj − µj)xk‖ · ‖S‖I .

Here c = maxj≤n ‖Gj(LA, RB)‖ and d = maxj≤n ‖Hj(LA, RB)‖ considered as oper-
ators I → I. This implies that ‖Φ∗(ψk)‖ → 0 as k → ∞, which again contradicts
the invertibility of Φ.
Case 3. λ ∈ σπ(A), µ ∈ σπ(B). There are (xk) ⊂ SX and (yk) ⊂ SX so that
‖(Aj − λj)xk‖ → 0 and ‖(Bj − µj)yk‖ → 0 as k →∞ for j = 1, . . . , n. Fix x∗, y∗ ∈
SX∗ and consider the normalized rank-1 operators Uk = x∗ ⊗ xk, Vk = y∗ ⊗ yk ∈ I
for k ∈ N. Here ‖(Aj − λj)Uk‖I = ‖(Aj − λj)xk‖ → 0 and ‖(Bj − µj)Vk‖I → 0 as
k → ∞ for j = 1, . . . , n. Note next that Φ ◦ LAj−λj

= LAj−λj
◦ Φ for each j, since

{LA1 , . . . , LAn , RB1 , . . . , RBn} commutes by assumption. Hence

Φ ◦ LAj−λj
◦ Φ−1 ◦ LUk

= L(Aj−λj)Uk
→ 0

as k →∞, considered as operators on I, for each j. This means that LAj−λj
◦Φ−1 ◦

LUk
→ 0 as k →∞, since Φ is invertible on I by assumption. We get that

RVk
LUk

= RVk
◦ Φ ◦ Φ−1 ◦ LUk

=
n∑

j=1

RVk
◦Gj(LA, RB) ◦ LAj−λj

◦ Φ−1 ◦ LUk

+
n∑

j=1

RVk
◦RBj−µj ◦Hj(LA, RB) ◦ Φ−1 ◦ LUk

→ 0
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as k →∞. Above we also used the fact that Hj(LA, RB) and RBj−µj commute for
each j. This contradicts the fact that ‖RVk

LUk
: I → I‖ = ‖Uk‖ ·‖Uk‖ = 1 for k ∈ N

by (2.10).
Case 4. λ ∈ σπ(A∗), µ ∈ σπ(B∗). There are sequences (x∗k), (y

∗
k) ⊂ SX∗ for which

‖(A∗j −λj)x∗k‖ → 0 and ‖(B∗j −µj)y∗k‖ → 0 as k →∞ for j = 1, . . . , n. Fix x, y ∈ SX

and consider Uk = x∗k ⊗ x, Vk = y∗k ⊗ y ∈ I for k ∈ N. Thus ‖Uk(Aj − λj)‖I → 0 and
‖Vk(Bj −µj)‖I → 0 as k →∞ for j = 1, . . . , n. By arguing as in Case 3 we get that
LUk

◦ Φ−1 ◦ LAj−λj
→ 0 as k → ∞ for = 1, . . . , n, from which we again deduce the

contradiction that ‖LUk
RVk

: I → I‖ → 0 as k →∞. �

Remark 3.17. Perhaps more interestingly, one may also recover an alternative
proof of Theorem 3.13 by suitably modifying the arguments of [S95, Prop. 10 and
Thm. 11], see the Remark on [S95, p. 182]. However, the argument is more delicate
than the previous one, and here we just indicate the main additional ideas. In this
case the strategy is to show the inclusions

(3.14) σHe((LA, RB);L(I)) ⊂ σHe(A)× σH(B) ∪ σH(A)× σHe(B),

(3.15) σHe(A)× σa(B) ∪ σa(A)× σHe(B∗) ⊂ σ′′((LA, RB); C(I)).

In (3.15) one meets a crucial observation, that is, the advantage of using the bi-
commutant spectrum σ′′((LA, RB); C(I)). Above σ′′((LA, RB); C(I)) is the algebraic
joint spectrum of (LA1 +K(I), . . . , LAn +K(I), RB1 +K(I), . . . , RBn +K(I)) in the
(commutative) bicommutant subalgebra

{LA1 +K(I), . . . , LAn +K(I), RB1 +K(I), . . . , RBn +K(I)}′′,⊂ C(I) = L(I)/K(I).

and σHe(A) = σle(A) ∪ σre(A) is the Harte spectrum of (LA1+K(X), . . . , LAn+K(X))
computed on the Calkin algebra C(X) = L(X)/K(X). Another important tool
in the proof is the construction of Fredholm inverses for operator n-tuples on X
assuming their existence on the level of elementary operators on I.

The following approximation problem for the inverses of elementary operators has
some practical interest. Note that the class E(L(X)) of all elementary operators is
a subalgebra of L(L(X)) for any Banach space X.

Problem 3.18. Does the inverse E−1
A,B ∈ E(L(X)) whenever the elementary operator

EA,B is invertible on L(X)? Here E(L(X)) is the uniform closure of the subalgebra
E(L(X)) in L(L(X)).

For instance, the above holds for invertible generalized derivations LA − RB,
where A,B ∈ L(X), or for invertible EA,B if A,B ∈ L(H)n are commuting n-tuples
of normal operators on a Hilbert space H. This is seen for LA −RB by applying an
integral representation of (LA − RB)−1 due to Rosenblum [Ro56, Thm. 3.1]. The
case of normal operators is an unpublished observation [ST]. One should mention
here a striking approximation result due to Magajna [M93, Cor. 2.3]:
• Let A be a C∗-algebra, and suppose that φ : A → A is a bounded linear operator so
that φ(I) ⊂ I for any closed 2-sided ideals I ⊂ A. Then φ ∈ E(A)

SOT
, the closure

in the strong operator topology of L(A).
Above E(A) is the class of elementary operators on A. Magajna’s result yields

some information related to Problem 3.18. Suppose that EA,B is invertible on L(`2)
for the n-tuples A,B ∈ L(`2)n. By applying Magajna’s result to φ = E−1

A,B we get
that

E−1
A,B ∈ E(L(X))

SOT
.

In fact, K(`2) is the only non-trivial ideal of L(`2) and EA,B(K(`2)) = K(`2) since
(EA,B |K(`2))

∗∗ = EA,B by (4.17) and (4.18).
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Other developments. McIntosh, Pryde and Ricker [MPR88] estimate the growth of
the norm ‖S‖ of solutions to the elementary operator equation

EA,B(S) = Y

for commuting n-tuples A,B ∈ L(X)n consisting of generalized scalar operators.
(Recall that S ∈ L(X) is a generalized scalar operator if there is s ≥ 0 and C <∞
so that ‖exp(itS)‖ ≤ C(1+|t|s) for t ∈ R.) Recently Shulman and Turowska [ShT05]
have obtained an interesting approach to some operator equations that include those
arising from elementary operators.

Moreover, we note that Arendt, Räbiger and Sourour [ARS94] discuss the spec-
trum of the map S 7→ AS + SB in the setting of unbounded operators A,B.

4. Elementary operators on Calkin algebras

Let X be an arbitrary Banach space and let EA,B =
∑n

j=1 LAjRBj be the elemen-
tary operator on L(X) associated to A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(X)n.
Since K(X) is a closed 2-sided ideal of L(X) the operator EA,B induces the related
elementary operator

Ea,b; s 7→
n∑

j=1

ajsbj , C(X) → C(X),

on the Calkin algebra C(X) = L(X)/K(X), where we denote quotient elements by
s = S +K(X) ∈ C(X) for S ∈ L(X). The quotient norm ‖S‖e ≡ dist(S,K(X)) for
S ∈ L(X) is called the essential norm. (We will change here freely between these
notations.)

In this section we will see that the operators Ea,b on the quotient algebra C(X)
has several remarkable properties which are not shared by EA,B on L(X). Roughly
speaking, Ea,b are quite ”rigid” operators and this also tells something about EA,B.
Let H be a Hilbert space. Fong and Sourour [FS79, p. 856] asked whether the
compactness of Ea,b : C(H) → C(H) actually implies that Ea,b = 0, that is, whether
the Calkin algebra C(H) admits any non-trivial compact elementary operators Ea,b.

Clearly such a property does not hold for the elementary operators on L(X), since
already LARB is a non-zero finite rank operator on L(X) whenever A 6= 0 6= B are
finite rank operators onX. We next recall why the Fong-Sourour conjecture holds for
the simplest operators LaRb to get a feeling for the matter. In fact, if A,B /∈ K(H)
then by a simple modification of the argument of Example 2.6 (for p = 2) one finds
A1, A2, B1, B2 ∈ L(H) so that A1AA2 = IH = B1BB2. It follows that

IC(H) = La1Rb2 ◦ LaRb ◦ La2Rb1 ,

whence LaRb is not weakly compact on C(H).
The Fong-Sourour conjecture was independently solved in the positive by Apostol

and Fialkow [AF86], Magajna [M87] and Mathieu [Ma88]. Apostol and Fialkow
[AF86, Thm. 4.1] established the stronger result that

(4.1) ‖Ea,b : C(`2) → C(`2)‖ = dist(Ea,b,K(C(`2)))

for arbitrary n-tuples A,B of L(`2). Magajna’s solution is algebraic in nature, while
Mathieu used tools from C∗-algebras. Actually, Mathieu established the somewhat
stronger result that C(`2) does not admit any non-zero weakly compact elementary
operators Ea,b.

It turns out that (4.1) is a particular case of a rigidity phenomenon for elementary
operators Ea,b on the Calkin algebra C(X), where X is any Banach space having an
unconditional Schauder basis. Recall that the normalized Schauder basis (ej) of X
is unconditional if

∑∞
j=1 θjajej converges in X for any sequence (θj) ∈ {−1, 1}N of
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signs whenever
∑∞

j=1 ajej converges in X. The unconditional basis constant of (ej)
is

C = sup{‖Mθ‖ : θ = (θj) ∈ {−1, 1}N},
where the diagonal operatorsMθ ∈ L(X) are given byMθ(

∑∞
j=1 ajej) =

∑∞
j=1 θjajej

for
∑∞

j=1 ajej ∈ X. The basis (ej) is 1-unconditional if C = 1. An important
consequence of unconditionality is that X admits plenty of nice projections: for any
non-empty subset A ⊂ N

PA(
∞∑

j=1

ajej) =
∑
j∈A

ajej for
∞∑

j=1

ajej ∈ X,

defines a projection PA ∈ L(X) such that ‖PA‖ ≤ C. Recall that the class of Banach
spaces having an unconditional basis is substantial: it contains e.g. the sequence
spaces `p (1 ≤ p < ∞) and c0, as well as the function spaces Lp(0, 1) (1 < p < ∞)
and H1. By contrast, L1(0, 1) and C(0, 1) do not have any unconditional bases, cf.
[LT77, 1.d.1] or [Wo91, II.D.10 and II.D.12].

The following result from [ST99, Thm. 3] extends the Apostol-Fialkow formula
(4.1) to spaces X having an unconditional basis. If the unconditional constant
C > 1 for X, then the identity (4.1) is here replaced by inequalities between ‖Ea,b‖
and dist(Ea,b,K(C(X))) that involve C.

Theorem 4.1. Suppose that X is a Banach space having an unconditional basis
(ej) with unconditional basis constant C. Let A,B ∈ L(X)n be arbitrary n-tuples.
Then the elementary operators EA,B : L(X) → L(X) and Ea,b : C(X) → C(X) satisfy

(4.2) dist(Ea,b,W (C(X))) ≥ C−4‖Ea,b : C(X) → C(X)‖,

(4.3) dist(EA,B,W (L(X))) ≥ C−4‖Ea,b : C(X) → C(X)‖.

In particular, if (ej) is a 1-unconditional basis, then

‖Ea,b : C(X) → C(X)‖ = dist(Ea,b,K(C(X))) = dist(Ea,b,W (C(X))),

and

(4.4) ‖Ea,b‖ ≤ dist(EA,B,W (L(X))) ≤ ‖EA,B : L(X) → L(X)‖.

Recall that e.g. `p (1 ≤ p <∞), c0 and direct sums such as `p⊕`q (1 ≤ p < q <∞)
have 1-unconditional bases, but the unconditional constant of any unconditional
basis of Lp(0, 1) for 1 < p < ∞, p 6= 2, is strictly greater that 1 (see e.g. [Wo91,
II.D.13 and p. 68]).

In particular, Theorem 4.1 solves a generalized version of the Fong-Sourour con-
jecture for elementary operators on C(X) for this class of Banach spaces. Part (ii)
should be compared with Proposition 2.5.

Corollary 4.2. Suppose that X is a Banach space having an unconditional basis
(ej), and let A,B ∈ L(X)n be arbitrary n-tuples.
(i) If Ea,b is weakly compact C(X) → C(X), then Ea,b = 0.
(ii) If EA,B is weakly compact L(X) → L(X), then Ea,b = 0 (so that EA,B(L(X)) ⊂
K(X)).

Surprisingly enough, it is actually possible to improve the estimate (4.4) from
Theorem 4.1 in the case X = `p.

Theorem 4.3. Let 1 < p <∞ and A,B ∈ L(`p)n be arbitrary n-tuples. Then

‖Ea,b : C(`p) → C(`p)‖ = dist(EA,B,W (L(`p))) = dist(EA,B,K(L(`p))).
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The proof of (4.1) in [AF86] is based on Voiculescu’s non-commutative Weyl -
von Neumann theorem (see e.g. [Da96, Section II.5] for a description of this result).
By contrast, the proof of Theorem 4.1 is quite different and it draws on fundamental
properties of unconditional bases. The following simple facts will also be used here.
• if (xn) ⊂ X is a normalized weak-null sequence, then

(4.5) ‖S‖e ≥ lim sup
n→∞

‖Sxn‖ for S ∈ L(X)

(This holds since ‖Uxn‖ → 0 as n→∞ for any compact operator U ∈ K(X).)
• Let (ej) be a Schauder basis for X so that ‖Qn‖ = 1 for all n ∈ N, where Qn is
the natural basis projection X → [er : r ≥ n + 1] (this property holds e.g. if (ej) is
a 1-unconditional basis). Then

(4.6) ‖S‖e = lim
n→∞

‖QnS‖ for S ∈ L(X).

Proof of Theorem 4.1 (sketch). For notational simplicity we may assume that the
basis (ej) is 1-unconditional on X. Otherwise we just pass to the equivalent norm
| · | on X, where

|x| = sup{‖Mθx‖ : θ = (θj) ∈ {−1, 1}N}, x ∈ X,
and (ej) is an 1-unconditional basis in (X, | · |). Above ‖x‖ ≤ |x| ≤ C‖x‖ for x ∈ X,
where C is the unconditional constant of the basis (ej) in (X, ‖ · ‖).

Suppose that after normalization one has ‖Ea,b : C(X) → C(X)‖ = 1 for the n-
tuples A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(X)n. In order to show (4.2) we are
required to verify that

(4.7) dist(Ea,b,W (C(X))) ≥ 1.

The strategy of the argument is to construct, for any given ε > 0, an operator
T ∈ L(X) and a sequence (Sj) ⊂ L(X) so that

(4.8) 1 = ‖T‖e ≤ ‖T‖ < 1 + ε,

(4.9) 1 = ‖Sj‖e = ‖Sj‖, j ∈ N,

(4.10) sup
j
|λj | ≤ ‖

∞∑
j=1

λjSj‖e ≤ ‖
∞∑

j=1

λjSj‖ ≤ 2 · sup
j
|λj | for all (λj) ∈ c0,

(4.11) dist(EA,B(TSj),K(X)) ≥ 1− ε, j ∈ N.

To verify (4.7) from these conditions suppose that V ∈W (C(X)) is arbitrary. By
(4.10) the closed linear span [sj : j ∈ N] ⊂ C(X) is isomorphic to c0, so that sj

w−→ 0
in C(X) as n→∞. Since c0 has the DPP and V ◦Lt is weakly compact on C(X), it
follows that ‖V(tsj)‖ → 0 as j →∞. As ‖tsj‖ ≤ ‖T‖e · ‖Sj‖e ≤ 1 for j ∈ N we get
that

‖Ea,b − V‖ ≥ lim sup
j→∞

‖Ea,b(tsj)− V(tsj)‖ ≥ lim sup
j→∞

‖Ea,b(tsj)‖ ≥ 1− ε

from (4.11). The verification of (4.3) follows a similar outline, since [Sj : j ∈ N] ⊂
L(X) is also linearly isomorphic to c0 by (4.10).

The heart of the argument lies in the construction of T ∈ L(X) and (Sj) ⊂ L(X)
which satisfy (4.8) - (4.11). We indicate some of the ideas for completeness. Let
Pm ∈ L(X) be the natural basis projection of X onto [e1, . . . , em], and Qm = I−Pm

form ∈ N. Moreover, put P(m,n] = Pn−Pm form < n, where (m,n] = {m+1, . . . , n].
Since ‖Ea,b‖ = 1 there is T ∈ L(X) such that 1 = ‖T‖e ≤ ‖T‖ < 1 + ε and

‖EA,B(T )‖e ≥ 1 − ε
8 . By an inductive process it is possible to choose increasing
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sequences (mk), (nk) ⊂ N and normalized sequences (yj) ⊂ SY and (y∗j ) ⊂ SY ∗ so
that the following properties are satisfied:

(4.12) 0 = m1 < n1 < m2 < n2 < . . . ,

(4.13) Q∗ky
∗
k = y∗k, k ∈ N,

(4.14) 〈y∗k, EA,B(TUk)yk〉 > 1− ε

2
, k ∈ N,

(4.15) |〈y∗k, EA,B(TUl)yk〉| ≤ ε · 2−l−k, k, l ∈ N, k 6= l.

Above we have denoted Uk = P(mk,nk] for k ∈ N. The induction is fairly lengthy and
delicate, and we are forced to refer to [ST99, pp. 8-9] for the actual details.

The operators (Sj) will be chosen as suitable disjointly supported basis projections
on X that are obtained by ”cut-and-paste” as follows. First fix a disjoint partition
N = ∪∞i=1Ni into infinite sets, and let Mi = ∪k∈Ni

(mk, nk] for i ∈ N. Put

Sj = PMj for j ∈ N,

the basis projection on X related to Mj ⊂ N. It follows from the 1-unconditionality
of (ej) that ‖Mλ‖ = supj=1 |λj | for any bounded real-valued λ = (λj) ∈ `∞, so that
(by splitting into real and imaginary parts)

sup
j∈N

|λj | ≤ ‖Mλ‖ ≤ 2 · sup
j∈N

|λj | for all λ = (λj) ∈ `∞

Since the sets Mj are pairwise disjoint this fact yields that

‖
∞∑

j=1

λjSj‖e ≤ ‖
∞∑

j=1

λjSj‖ ≤ 2 · sup
j
|λj |, (λj) ∈ c0.

To obtain the lower bound in (4.10) fix k ∈ N and enumerate Nk = {k(m) : m ∈ N}.
From (4.5) we get that ‖

∑∞
j=1 λjSj‖e ≥ lim supm→∞ |λk| · ‖Skek(m)‖ = |λk|. Thus

(4.10) holds.
Finally, (4.13) - (4.15) are used to enforce (4.11). Put again Nk = {k(m) : m ∈ N}

for k ∈ N. Since Sk =
∑∞

m=1 Uk(m) in the strong operator topology in L(X), we get
from (4.13) - (4.15) that

‖Qk(m)EA,B(TSk)‖ ≥ |〈y∗k(m), Qk(m)EA,B(TSk)yk(m)〉| = |〈y∗k(m), EA,B(TSk)yk(m)〉|

≥ |〈y∗k(m), EA,B(TUk(m))yk(m)〉| −
∑

l;l 6=m

|〈y∗k(m), EA,B(TUk(l))yk(m)〉|

≥ 1− ε

2
− ε

∑
l;l 6=m

2−k(m)−k(l) > 1− ε.

Finally, since ‖Qk(m)‖ = 1 for each m by the 1-unconditionality we get

dist(EA,B(TSk),K(X)) ≥ lim sup
m→∞

‖Qk(m)EA,B(TSk)‖ ≥ 1− ε.

from (4.6) and the preceding estimate. �

Theorem 4.1 remains valid if X has an unconditional finite-dimensional Schauder
decomposition (the Schatten classes Cp for 1 ≤ p < ∞ are concrete examples of
spaces having this property, but failing to have an unconditional basis, cf. [DJT95,
pp. 364-368]). The exact class of Banach spaces for which Theorem 4.1 holds
remains unknown.
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Problem 4.4. Does Theorem 4.1 hold for C(X) if X is a (classical) Banach space
that fails to have any unconditional structure, e.g. if X = L1(0, 1) or X = C(0, 1)?
An obvious starting point is to check whether dist(LaRb,K(C(X))) is comparable to
‖LaRb‖.

In [ST98, Thm. 7] one obtains a somewhat complementary rigidity result for
non-zero elementary operators Ea,b on C(X), where X is a reflexive space having
an unconditional basis. For such spaces one gets an alternative approach to the
Fong-Sourour type results in Corollary 4.2 by showing that the non-zero operators
Ea,b are automatically non strictly singular (note that this yields yet another proof
of the original conjecture for C(`2)). The argument does not give any information
about ‖Ea,b‖, but it is a simpler variant of the ideas underlying Theorem 4.1.

For S ∈ L(Y ) let R(S) ∈ L(Y ∗∗/Y ) be the operator defined by

R(S)(y∗∗ + Y ) = S∗∗y∗∗ + Y, y∗∗ ∈ Y ∗∗.
It is a general fact that if S is bounded below on the subspace M ⊂ Y then R(S) is
bounded below on the subspace M∗∗/M ⊂ Y ∗∗/Y , see e.g. [GST95, Prop. 1.4]. We
will apply this observation to the restriction ẼA,B = EA,B |K(X), for which

(4.16) R(ẼA,B) = Ea,b.

This holds in trace duality for any n-tuples A = (A1, . . . , An), B = (B1, . . . , Bn) ∈
L(X)n, provided e.g. X is a reflexive Banach space having an unconditional basis.
In fact, in this case C(X)∗ = K(X)⊥, and from (2.6) - (2.7) we get that

(4.17) (EA,B : K(X) → K(X))∗ = EA∗,B∗ : N(X∗) → N(X∗),

(4.18) (EA∗,B∗ : N(X∗) → N(X∗))∗ = EA,B : L(X) → L(X)),

where A∗ = (A∗1, . . . , A
∗
n), B∗ = (B∗1 , . . . , B

∗
n) (see the discussion following Proposi-

tion 2.5).

Theorem 4.5. Suppose that X is a reflexive Banach space having an unconditional
basis (ej), and let A,B ∈ L(X)n be arbitrary n-tuples. If Ea,b 6= 0, then Ea,b fixes a
copy of the non-separable quotient space `∞/c0: there is a subspace M ⊂ C(X) so
that M is isomorphic to `∞/c0 and Ea,b is bounded below on M .

Sketch. Assume without loss of generality that ‖Ea,b‖ = 1. Let ε > 0 and pick
T ∈ L(X) so that 1 = ‖T‖e ≤ ‖T‖ < 1 + ε and ‖EA,B(T )‖ > 1− ε.

By a gliding hump argument (see [ST98, p. p. 233] for the details) one obtains
an increasing sequence (mk) ⊂ N and a sequence (yk) ⊂ SX so that

(4.19) ‖EA,B(TUj)yj‖ > 1− ε, j ∈ N,

where Uj = P(mj ,mj+1] for all j. (Here we retain the notation from Theorem 4.1.)
Unconditionality implies that

‖
∞∑

j=1

λjUj‖ ≈ sup
j
|λj | for all (λj) ∈ c0.

Thus Uj
w−→ 0 in K(X) as j → ∞, so that (TUj) and (EA,B(TUj)) are weak-null

sequences of K(X), but (EA,B(TUj)) is not norm-null by (4.19). Hence the Bessaga-
Pelczynski basic sequence selection principle [LT77, 1.a.12] produces a subsequence
(Ujk

) so that both (TUjk
) and (EA,B(TUjk

)) are basic sequences in K(X). This
means that

‖
∞∑

k=1

λjTUjk
‖ ≈ ‖

∞∑
k=1

λjEA,B(TUjk
)‖ ≈ sup

k
|λk| for all (λk) ∈ c0,
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so that the restriction ẼA,B = EA,B |K(X) is bounded below on the subspace N =
[TUjk

: k ∈ N] ≈ c0 in K(X). It follows from the facts cited prior to this theorem
that Ea,b is bounded below on the subspace N∗∗/N ≈ `∞/c0. �

The circle of results (Theorems 4.1 and 4.5) related to the Fong-Sourour conjecture
concern the non-existence of small non-zero elementary operators Ea,b on a natural
class of Calkin algebras. We next discuss a different rigidity property from [ST98]
for Ea,b on C(X) for more special spaces X. These properties are related to the size
of the kernel Ker(Ea,b) and the cokernel C(X)/Im(Ea,b). We first recall some earlier
results which served as motivation. Gravner [G86] noted the following surprising
facts, which contain earlier results on C(`2) by Fialkow for the generalized derivation
La − Rb and by Weber for LaRb. The operators EA,B do not enjoy such rigidity
properties on L(X) for any space X (just consider a left multiplication LA).

Fact 4.6. Let A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(`2)n be n-tuples so that
{A1, . . . , An} or {B1, . . . , Bn} are commuting sets in L(`2).

(i) If Ea,b is injective on C(`2), then Ea,b is actually bounded below on C(`2).

(ii) If the range Ea,b(C(`2)) is dense in C(`2), then Ea,b is a surjection C(`2) → C(`2).

Results from [LeS71] and [AT86] yield some similar mapping results for the basic
maps La, Rb and LaRb on C(X) for a number of classical Banach spaces X.

Fact 4.7. Suppose that A,B ∈ L(X).

(i) Let X = `p (1 ≤ p < ∞), c0 or Lp(0, 1) (1 ≤ p < ∞). Then La is injective
C(X) → C(X) if and only if La is bounded below on C(X).

(ii) Let X = `p (1 < p ≤ ∞), c0, or Lp(0, 1) (1 < p ≤ ∞). Then Rb is injective
C(X) → C(X) if and only if Rb is bounded below on C(X).

(iii) Let X = `p (1 < p <∞), c0, or Lp(0, 1) (1 < p <∞). Then LaRb is injective
C(X) → C(X) if and only if LaRb is bounded below on C(X).

Note that part (iii) follows easily from (i) and (ii), since LaRb = RbLa. In fact, if
LaRb is injective on C(X), then La and Rb are both injective and consequently also
bounded below on C(X).

Fact 4.7 originated in studies of properties of the semi-Fredholm classes Φ+(X)
and Φ−(X) in C(X). Recall that the operator S ∈ Φ+(X) if its range Im(S) is closed
in X and its kernel Ker(S) is finite-dimensional, while S ∈ Φ−(X) if Im(S) has
finite codimension in X (thus Φ(X) = Φ+(X)∩Φ−(X) are the Fredholm operators).
We refer e.g. to [LeS71], [AT86], [AT87] and [T94] for a more careful discussion and
for further results about the classes Φ±(X) modulo the compact operators.

Facts 4.6 and 4.7 suggest the question whether similar rigidity facts would hold
for general elementary operators Ea,b on C(X). The following unexpected example
from [AT87] demonstrates that some limitations apply.

Example 4.8. There is a reflexive Banach space X, which fails to have the compact
approximation property, and an isometric embedding J ∈ L(X) so that

(i) Lj is one-to-one but not bounded below on C(X),

(ii) Rj∗ is one-to-one but not bounded below on C(X∗).

In contrast with Example 4.8 it was shown in [ST98, Thm. 3 and 4] that one
has the following striking dichotomies for arbitrary elementary operators Ea,b on
C(`p). We stress that the generality is much greater compared to Fact 4.6 also in the
classical case p = 2, since there are no commutativity assumptions on the n-tuples.
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Theorem 4.9. Let 1 < p <∞ and A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(`p)n be
arbitrary n-tuples. If Ea,b is not bounded below on C(`p), then its kernel Ker(Ea,b) is
non-separable. In particular, if Ea,b is injective on C(`p) then there is c > 0 so that

‖EA,B(S)‖e ≥ c‖S‖e, S ∈ L(`p).

Theorem 4.10. Let 1 < p < ∞ and A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(`p)n

be arbitrary n-tuples. If the range Ea,b(C(`p)) 6= C(`p), then the quotient

C(`p)/Im(Ea,b)

is non-separable. In particular, if Ea,b(C(`p)) is dense in C(`p), then Ea,b is a surjec-
tion.

Proof of Theorem 4.9 (sketch). Let A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ L(`p)n

be n-tuples so that Ea,b is not bounded below on C(`p). Recall that by (4.16) we
have R(ẼA,B) = Ea,b, where ẼA,B = EA,B |K(`p) is the restriction to K(`p) and

R(ẼA,B)(S +K(`p)) = EA,B(S) +K(`p), S +K(`p) ∈ C(`p).

By the crucial fact cited prior to Theorem 4.5 our assumption yields that ẼA,B is
not bounded below on K(`p).

Let Pn and Qn = I − Pn again denote the natural basis projections with respect
to the unit vector basis (ek) in `p for n ∈ N.
Step 1. We claim that for any ε > 0 and m ∈ N there is S ∈ K(`p) so that

‖S‖ = 1, QmSQm = S, and ‖ẼA,B(S)‖ < ε.

Fix m ∈ N and put Em = Qm(`p) = [es : s ≥ m + 1]. The key observation here is
that the related elementary operator

Eajm,qmb : C(Em) → C(`p)

fails also to be bounded below. Here Jm denotes the inclusion Em ⊂ `p and AJm =
(A1Jm, . . . , AnJm), QmB = (QmB1, . . . , QmBn). One should check that Eajm,qmb is
obtained from the restriction ẼAJm,QmB : K(Em) → K(`p) in trace duality, that is

R(ẼAJm,QmB) = Eajm,qmb.

Note that with only a minor loss of precision one may view the operators Eajm,qmb

and Ea,b as practically the same. This is so because Qm = I − Pm, where Pm

has finite rank and the codimension of Em is finite – hence one expects that these
differences are wiped away at the Calkin level. In particular, we thus know that
Eajm,qmb is not bounded below on C(Em). From the above cited general fact we
infer that EAJm,QmB also fails to be bounded below on K(Em), and we may pick a
normalized S0 ∈ K(Em) so that

‖EAJm,QmB(S0)‖ = ‖ẼA,B(JmS0Qm)‖ < ε.

Finally, S = JmS0Qm ∈ K(`p) is the desired operator. We refer the reader to [ST98,
pp. 221-222] for a precise version of the above partly heuristic argument
Step 2. By a gliding hump argument we next obtain an increasing sequence (mk) ⊂ N
and a normalized sequence (Sk) ⊂ K(`p) of finite rank operators so that

(4.20) P(mk,mk+1]SkP(mk,mk+1] = Sk,

(4.21) ‖ẼA,B(Sk)‖ < 1/2k

for all k ∈ N. Above P(r,s] ≡ Ps − Pr ∈ L(`p) is the natural projection onto
[er+1, . . . , es] for r, s ∈ N and r < s. Here (4.20) states that (Sk) is a block-diagonal
sequence on `p.
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We outline the general step of the induction for completeness. Suppose that we
have already found m1 = 1 < m2 < . . . < mn+1 and S1, . . . , Sn ∈ K(`p) that satisfy
(4.20) - (4.21). From Step 1 we get S ∈ K(`p) so that

S = Qmn+1SQmn+1 , ‖S‖ = 1 and ‖ẼA,B(S)‖ < 1/2n+2.

For r > mn+1 put S = PrSPr +Zr, where Zr ≡ QrS+SQr−QrSQr → 0 as r →∞,
since S is a compact operator on `p (and 1 < p < ∞). By continuity we may then
pick r = mn+2 > mn+1 so that

‖Pmn+2SPmn+2‖ ≈ 1 and ‖ẼA,B(Pmn+2SPmn+2)‖ < 1/2n+2.

Then Sn+1 = ‖Pmn+2SPmn+2‖−1Pmn+2SPmn+2 satisfies (4.20) and (4.21).
Step 3. We next explain how to build an isometric copy of `∞ inside the kernel
Ker(Ea,b). First fix a countable partition N =

⋃
r Nr into infinite setsNr and consider

the operators Ur =
∑

k∈Nr
Sk ∈ L(`p) for r ∈ N (the Ur are defined in the strong

operator topology). One must verify the following facts for any (cr) ∈ `∞:

(4.22) ‖
∞∑

r=1

crUr‖e = ‖
∞∑

r=1

crUr‖ = sup
r
|cr|,

(4.23)
∞∑

r=1

crur ∈ Ker(Ea,b).

The equality (4.22) is quite easy to verify on `p as one may essentially treat
the disjoint normalized blocks Sk as diagonal elements (cf. the proof of (4.10)).
The inclusion (4.23) in turn follows by observing that

∑∞
r=1 crEA,B(Ur) ∈ K(`p),

since the sum in question can formally be rewritten as
∑∞

k=1 akEA,B(Sk), where
|ak| ≤ ‖(cr)‖∞ for each k and where we have norm convergence thanks to (4.21).
We leave the details to the reader. �

We mention that the strategy of the proof of Thm. 4.10 is to embed `∞ isomor-
phically into the quotient C(`p)/Im(Ea,b) whenever Ea,b is not surjective on C(`p).
For this purpose one builds certain block diagonal sequences in the nuclear op-
erators N(`p

′
), where p′ is the dual exponent of p, as well as a related sequence

(φr) ⊂ K(`p)⊥ = C(`p)∗ of norm-1 functionals which are used to norm the desired
`∞-copy. We refer to [ST98, Thm. 4] for the details.

To illustrate Theorem 4.10 in a simple special case recall that 1 = I`2 +K(`2) /∈
Im(La − Ra) for any A ∈ L(`2) by a well-known commutator fact. It follows from
Theorem 4.10 that the quotient C(`2)/Im(La −Ra) is non-separable, so that

L(`2)/Im(LA −RA) +K(`2)

is also non-separable for any A ∈ L(`2). (Apparently Stampfli [St73] first noticed
that L(`2)/Im(LA −RA) is non-separable for any A ∈ L(`2)). This fact should be
contrasted with the following remarkable result of Anderson [A73], which is based
on C∗-algebraic tools.

Theorem 4.11. There are A ∈ L(`2) for which

I`2 ∈ Im(LA −RA),

that is, there is (Sn) ⊂ L(`2) so that ‖I`2 − (ASn − SnA)‖ → 0 as n→∞.

It remains unclear how far the techniques behind Theorems 4.9 and 4.10 can be
pushed beyond `p. We state this as a problem, where the case X = Lp(0, 1) for
p 6= 2 would be particularly interesting.
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Problem 4.12. Do Theorems 4.9 and 4.10 hold in the class of reflexive Banach
spaces X having an unconditional basis?

It was pointed out in [ST98, p. 226] that Theorem 4.9 remains valid for X =
`p ⊕ `q, where 1 < p < q < ∞, and also for X = c0. The technical obstruction in
the argument of Theorem 4.9 is the following: given a block diagonal sequence (Ur)
as in Step 3 above the sum

∑
k ckUk does not always define a bounded operator on

X for (ck) ∈ c0. (There is an analogous obstruction related to Theorem 4.10.) This
phenomenon already occurs for `p ⊕ `q, but in that case it can be circumvented.

Other developments. Magajna [M95] obtained a surprising formula for the norm of
an arbitrary elementary operator Ea,b on the Calkin algebra C(`2) in terms of the
completely bounded norm. (Clearly this result is also closely related to Section 3.)
We refer e.g. to [P03, Section 1] for a discussion of the cb-norm.

Theorem 4.13. Let A,B ∈ L(`2)n be arbitrary n-tuples. Then

‖Ea,b : C(`2) → C(`2)‖ = ‖Ea,b‖cb.

Subsequently Archbold, Mathieu and Somerset [AMS99, Thm. 6] characterized
the precise class of C∗-algebras where the preceding identity holds. Recall for this
that the C∗-algebra A is antiliminal if no non-zero positive element x ∈ A generates
an abelian hereditary C∗-subalgebra. (The C∗-subalgebra B of A is hereditary if
x ∈ B whenever y ∈ B+, 0 ≤ x ≤ y and x ∈ A. Here B+ is the positive part of
B.) The Calkin algebra C(`2) is an antiliminal algebra, see [AM03, pp. 34-35]. The
C∗-algebra A is called antiliminal-by-abelian, if there are C∗-algebras J and B so
that J is abelian, B is antiliminal and

0 −→ J −→ A −→ B −→ 0

is a short exact sequence. Finally, recall that the map LaRb; s 7→ asb is a bounded
linear operator A → A for any a, b ∈ M(A), the multiplier algebra of A. (Roughly
speaking, M(A) is the maximal unital C∗-algebra which contains A as a closed 2-
sided ideal, cf. [AM03, pp. 27-28].) Thus Ea,b =

∑n
j=1 LajRbj

defines a bounded
elementary operator A → A for any a = (a1, . . . , an), b = (b1, . . . , bn) ∈M(A)n.

Theorem 4.14. Let A be a C∗-algebra. Then the following conditions are equiva-
lent.
(i) ‖Ea,b‖ = ‖Ea,b‖cb for any n-tuples a, b ∈M(A)n,
(ii) A is antiliminal-by-abelian.

We refer to [M95] and [AMS99], or [AM03, Sect. 5.4] for the proofs of Theorems
4.13 and 4.14.

5. Concluding remarks

There is a quite rich and well-developed structural theory of special elementary
operators on L(`2) to which we have paid less attention because of the restraints of
this survey. A good introduction is found in the survey [Fi92].

The following topic may have some relevance for Banach spaces. Let X be a
Banach space and A,B ∈ L(X). It is well-known that a commutator AB − BA
cannot be of the form λIX + K, where λ 6= 0 and K ∈ K(X). The commutator
theorem due to Brown and Pearcy completely identifies the set of commutators on
L(`2):

{AB −BA : A,B ∈ L(`2)} = {S ∈ L(`2) : S 6= λIX +K for K ∈ K(`2), λ 6= 0}.
This characterization was subsequently extended by Apostol [Ap72], [Ap73] to the
case of X = `p for 1 ≤ p ≤ ∞ and X = c0. The following question, which is related
to the classical spaces, appears neglected.
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Problem 5.1. Characterize the commutators on Lp(0, 1) for 1 < p <∞, p 6= 2.

Some partial results are due to Schneeberger [Sch71] and Apostol.
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