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A parallel neighborhood of a path of a Brownian motion is some-
times called the Wiener sausage. We consider almost sure approxi-
mations of this random set by a sequence of random polyconvex sets
and show that the convergence of the corresponding mean curvature
measures holds under certain conditions in two and three dimensions.
Based on these convergence results, the mean curvature measures of
the Wiener sausage are calculated numerically by Monte Carlo simu-
lations in two dimensions. The corresponding approximation formu-
lae are given.

1. Introduction. Although the path of the Brownian motion is a ran-
dom fractal set, the boundary of its parallel neighborhood of radius r (also
called the Wiener sausage) is a Lipschitz manifold and the closure of the
complement to the parallel neighborhood has positive reach for almost all
r > 0, at least in dimensions two and three; see [5]. Due to this fact, curva-
ture measures of the Wiener sausage, including its volume, surface area and
Euler–Poincaré characteristic, can be introduced, as in [13]. Since the 1930s,
much attention has been paid to the computation of the mean volume of
the Wiener sausage; see [8, 16] and [1]. Recently, its mean surface area was
obtained in [12]. The same result was re-established, using different tools,
in [9]. Explicit formulae for other mean curvature measures of the Wiener
sausage are still unknown. The first attempt to treat them was made by
Last (in [9]), who reduced the computation of his support measures to two
mean curvature functions.

In this paper, we consider the curvature measures of the Wiener sausage
in dimensions two and three. In the planar case, we show that the mean
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Euler number is finite, by using a general property of the set of critical
values of the distance function and the self-similarity of the Brownian mo-
tion. Furthermore, we consider a.s. approximations of the Wiener sausage by
polyconvex sets and show that the corresponding curvature measures con-
verge almost surely and, in certain cases, also in mean. Finally, we attempt
to study the mean curvatures of the Wiener sausages by simulation and
find the corresponding approximation formulae. For that, we consider the
approximating polyconvex sets whose curvature measures can be calculated
numerically. Averaging over a large number of Monte Carlo realizations, the
mean curvatures of these sets are estimated and the corresponding approx-
imation formulae in two dimensions are found. Although the formulae for
the mean area and boundary length are known explicitly (see the discussion
in Section 7.1), they involve an integral of a functional of Bessel functions
that has to be assessed numerically. Thus, apart from illustrating our con-
vergence results stated in Sections 5 and 6, our approximation formulae for
the mean area and boundary length are of practical interest. As for the mean
Euler characteristic EV0(Ξr) of the Wiener sausage, no analytical expression
is known thus far. Thus, the approximation formula in Section 7.2 is novel
and can be considered as a first step toward studying its properties.

The paper is organized as follows. In Section 2, curvature measures and
intrinsic volumes are introduced for polyconvex sets and the sets of positive
reach. Section 3 contains some preliminaries on Wiener sausages. In Sec-
tion 4, we show that the mean Euler number of the Wiener sausage is finite in
R

2. The rest of the paper deals with approximations of the Wiener sausage.
Namely, the convergence of parallel neighborhoods of compact sets in the
Hausdorff metric is considered in Section 5. In Theorem 5.2, conditions are
found under which the weak convergence of their curvature measures takes
place. Polyconvex approximations of the Wiener sausage satisfying these
conditions are described in Section 6. Finally, Section 7 contains the Monte
Carlo simulation results for the mean curvature measures of the Wiener
sausage.

2. Intrinsic volumes and curvature measures. Let Vd be the Lebesgue
measure and Hs the s-dimensional Hausdorff measure in R

d (see, e.g., [14]).
Denote by K the set of all convex bodies in R

d. Let R be the family of all
finite unions of sets from K. It is sometimes called the convex ring and its
elements are referred to as polyconvex sets.

Let A ⊕ B be the pointwise sum of two sets, A and B, in R
d. For the

closed ball B = Br(o) of radius r ≥ 0 in R
d centered at the origin, the set

Ar = A ⊕ Br(o) is called the r-parallel neighborhood of A. The operation
A 7→ Ar is known as dilation.
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Let A be a nonempty compact subset of R
d. The distance function of A

is defined by

∆A :x 7→ min{|x − a| :a ∈A}, x ∈ R
d.

Given two nonempty compact subsets A,B of R
d, their Hausdorff distance

is defined as

dH(A,B) = max
{

max
a∈A

∆B(a),max
b∈B

∆A(b)
}

.

It is well known that dH is a metric. For any x ∈ R
d, we denote by

ΣA(x) = {a ∈A : |x− a| = ∆A(x)}
the set of all points in A which are nearest to x. The set ΣA(x) is always
nonempty, by the compactness of A. We say that x ∈ R

d is a critical point
of ∆A if x lies in the closed convex hull of ΣA(x). A point x is called regular
if it is not critical. A number r > 0 is a critical value of ∆A is there exists
a critical point x of ∆A with ∆A(x) = r. We shall denote by C(A) ⊆ (0,∞)
the set of all critical values of ∆A.

The reach of a closed subset A⊆ R
d is given by

reachA = sup{r ≥ 0 :∀x ∈ R
d,∆A(x) < r ⇒ cardΣA(x) = 1}

(see [3]). As examples of sets with positive reach, consider convex closed sets
(with infinite reach) or sets with compact and C2-smooth boundaries.

For a compact set A ⊆ R
d with positive reach, the Steiner formula holds

for sufficiently small radii. More exactly, we have

Vd(Ar) =
d

∑

i=0

ωir
iVd−i(A), 0 ≤ r < reachA,

where Vd is the Lebesgue measure in R
d (volume), ωi is the volume of the

unit i-ball and Vi is the ith intrinsic volume of A, i = 0, . . . , d (see [3]). The
functionals Vi are motion invariant and additive. In particular, V0 is the
Euler–Poincaré characteristic and Vd−1 is one half of the surface area.

A local version of the Steiner formula holds for sets with positive reach.
Let ξA(x) be the nearest point of A to x whenever ∆A(x) < reachA. Then,
we have, for any bounded Borel subset F of R

d,

Vd((Ar \A)∩ ξ−1
A (F )) =

d
∑

i=1

ωir
iCd−i(A;F ), 0≤ r < reachA,

where Ci(A; ·) is the ith curvature measure of A; it is a signed Radon measure
concentrated on ∂A for 0 ≤ i ≤ d − 1 and Cd−1(A; ·) is the restriction of
the (d − 1)-dimensional Hausdorff measure to ∂A, provided that A is d-
dimensional. If ∂A is compact, then Ci(A;Rd) = Vi(A), i = 0, . . . , d− 1.
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The curvature measures Ci(·; ·) admit an additive extension to the family
of polyconvex sets; see [15]. The same holds, of course, for intrinsic volumes
Vi(·), i = 0, . . . , d. Curvature measures can further be extended to certain
full-dimensional Lipschitz manifolds; see [13]. This applies, in particular, to

the case when A is a full-dimensional Lipschitz manifold in R
d and Rd \Ar

has positive reach; see [13], Proposition 4. In this case, the curvature mea-
sures of Ar can be introduced through the identity

Ci(Ar;F ) = (−1)d−i−1Ci(Rd \Ar;F )

for i = 0, . . . , d− 1 and r > 0 such that reach(Rd \Ar) > 0.

3. Mean curvatures of the Wiener sausage. Let (Ω,F, P ) be an arbitrary
probability space. The Wiener process is a random process {W (t) : t ≥ 0}
defined on (Ω,F, P ) with continuous paths and with the following properties:

• W (0) = 0 almost surely;
• W has independent increments;
• W (t)−W (s) has Gaussian distribution with mean zero and variance t− s

whenever 0 ≤ s < t.

Given d independent Wiener processes W1, . . . ,Wd, the random function
X(t) = (W1(t), . . . ,Wd(t)), t ≥ 0, is the Brownian motion in R

d initiated at
the origin o ∈ R

d; see, for example, [2]. Denote by Ξ = {X(t) : 0 ≤ t ≤ 1} ⊆ R
d

the image of the Brownian motion in R
d running over 0≤ t≤ 1.

Definition 3.1. The set Ξr = Ξ ⊕ Br(o), r ≥ 0, is called a Wiener
sausage; see, for example, [18], page 64.

By [12], Corollary 4.4, the intrinsic volumes Vi(Ξr), i = 0, . . . , d − 1, are
well defined for d ≤ 3 almost surely. Moreover, the expectation EVi(Ξr) is
finite for i = d, d − 1; see [1] and [12]. It will be shown in the next section
that EV0(Ξr) < ∞ in the case d = 2. We conjecture that all mean intrinsic
volumes of Ξr are also finite in three dimensions.

4. Finiteness of the mean Euler number. In this section, we show that
the mean Euler number EV0(Ξr) exists and is finite for any r > 0 in two
dimensions. Two basic tools are used. The first is a general result about the
smallness of the set C(A) of critical values of A ⊆ R

2, which is of a similar
nature to the main result in [5]. Furthermore, the stochastic self-similarity
of a Brownian motion is used to show a certain local homogeneity of the
random set C(Ξ).

Lemma 4.1. Let A ⊆ R
2 be compact with D = diamA and let 0 < ε <

r be such that C(A) ∩ [r, r + ε) = ∅. Then, the total number of bounded

connected components of R
2 \Ar is less than or equal to π(D+2r)2

r
√

2rε
.
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Proof. Let L1,L2, . . . be an enumeration of the bounded connected
components of R

2 \Ar and let εi be the inradius of Li (i.e., εi is the maximal
number such that there exists a disc of radius εi contained in Li). Let, for
each i, Bi = Bεi(si) be any fixed disc with this property. Then, si is a critical
point of △A with critical value r + εi.

Consider two different centers, si and sj. Since they belong to different
connected components, the segment [si, sj] must contain a point of Ar. This
point must belong to a disc of radius r which is disjoint with the interiors
of both Bi and Bj . Simple geometric reasoning leads to

|si − sj| ≥
√

2rεi + ε2
i +

√

2rεj + ε2
j .

Let Zi = {z ∈ R
2 : dist(z,Bi) ≤ dist(z,Bj)∀j 6= i} be the “zone of influence”

of Bi. We shall find a lower bound for the area of Zi. Let bi be a boundary
point of Bi belonging to Ar; thus, ai = bi + r

εi
(bi − si) ∈ A. Setting s′i =

bi +
ε
εi

(si − bi), all three discs Bi,Br(ai) and Bε(s
′
i) have a common tangent

at bi. Now, let t1i and t2i be two tangent points of ∂Br(ai) on lines passing
through s′i. It follows from the previous observations that the quadrangle

ait
1
i s

′
it

2
i lies in Zi and its area is r

√
2rε + ε2 ≥ r

√
2rε. Consequently, the

total number of zones Zi must not exceed π(D+2r)2

r
√

2rε
. �

Lemma 4.2. Let n ∈ N, ε1, . . . , εn be positive numbers and S0, . . . , Sn

be segments of length at least s > 0 contained in the ball BR(o), R ≥ s.
Assume that for all 0 ≤ i < j ≤ n, dist(Si, Sj) ≥

√

s/2
√

εi+1 + · · ·+ εj . Then,√
ε1 + · · ·+√

εn ≤ 8s−3/2πR2.

Proof. To prove the lemma, we shall use the following fact which can
be shown by induction. Whenever n ∈ N, δ1, . . . , δn > 0 and P0, . . . , Pn are
points on a line such that

dist({P0, . . . , Pi−1},{Pi, . . . , Pn}) ≥ δi, i = 1, . . . , n,

then δ1 + · · ·+ δn ≤ diam{P0, . . . , Pn}.
Now, let L be any line hitting the disc BR(o) and let I be the set of all

indices i≤ n such that Si hits L. Applying the fact to the points Pi = L∩Si

and δi =
√

s/2
√

εi, i ∈ I , we get
√

s

2

∑

i∈I

√
εi ≤ λ1(L∩BR(o)).

Let {e1, e2} be an orthonormal basis of R
2 and consider the two grids of

lines L1
i = e⊥1 + (is/

√
2)e1 and L2

i = e⊥2 + (is/
√

2)e2, where i are integers
with |i| ≤

√
2R/s and e⊥j are the coordinate axes with normal vectors ej ,
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j = 1,2. Note that each segment Si hits at least one of the two line grids.
From the above fact, we get that

√

s

2

n
∑

i=1

√
εi ≤ 2

∑

|i|≤
√

2R/s

λ1(L1
i ∩BR(o)) ≤ 2(2R + πR2/(s/

√
2))

≤ 2s−1πR2
(

2

π

s

R
+
√

2

)

≤ 5s−1πR2,

hence
n

∑

i=1

√
εi ≤ 5

√
2s−3/2πR2 < 8s−3/2πR2.

�

Lemma 4.3. Let A be a nonempty compact set in R
2, x, y two critical

points of its distance function with distances 0 < r < s from A and let a, b
be points of A with |a − x| = ∆A(x) = r and |b − y| = ∆A(y) = s. Then,
|x− y| ≥

√
2r
√

s− r. Furthermore, if S (T ) is the segment with endpoints x

and x+a
2 (resp., y and y+b

2 ), then dist(S,T )≥
√

r/2
√

s− r.

Proof. The interior of the ball Bs(y) contains no point of A. Thus,
intBs(y) contains no diameter of Br(x) (since, otherwise, x would not be
a critical point). It follows that |x − y| ≥

√
2r
√

s− r (see [5], Lemma 4.3).
Furthermore, since a ∈ ∂Br(x)\ intBs(y) and b ∈ ∂Bs(y)\ intBr(x), we have
(b−a) ·(y−x) ≥ 0. It follows that the orthogonal projections of the segments
S and T onto the line passing through x and y have distance at least |y −
x|/2 ≥

√

r/2
√

s− r. The same lower bound must then apply for the distance
of the segments themselves. �

Corollary 4.1. Let A⊆ R
2 be compact with D = diamA and let 0 < s < r.

Write

(s, r) \C(A) =
⋃

i

Ii

as a countable union of maximal disjoint open intervals with lengths εi.
Then,

∑

i

√
εi ≤ 8s−3/2πD2.

We now consider a Brownian motion. Given r > 0, we introduce the ran-
dom variable

ηr = inf{ε > 0 : r + ε ∈ C(Ξ)},
where we use the convention inf ∅ = ∞. By [12], Theorem 4.1, any r > 0 does
not belong to C(Ξ) almost surely. Hence, we get ηr > 0 almost surely. For
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any curve γ : [0,1] → R
d, define its supremum norm by ‖γ‖ = maxt∈[0,1] |γ(t)|.

When we write ‖X‖ in the following, we implicitly restrict X to [0,1].

Lemma 4.4. Given r > 0, there exists a δ > 0 such that for all s ∈ (r −
δ, r) and all ε < δ, we have

P

(

ηs <

(

r

r − δ

)3

‖X‖4ε

)

≥ 1

2
P(ηr < ‖X‖4ε).

Proof. For each trajectory of X , choose a critical point z ∈ R
2 with

∆Ξ(z) = r + ηr and denote the random variable ξ = |X(1) − z| − (r + ηr).
Since X(1) does not lie on the boundary of Br+ηr(z) almost surely (see [12],
Lemma 4.2 or [9], Lemma 3.3), we have ξ > 0 a.s. Thus, as τ ց 0, it holds
that

{ηr < ‖X‖4ε, ξ > τ}ր {ηr < ‖X‖4ε}.

By choosing τ > 0 small enough, we have

P(ηr < ‖X‖4ε, ξ > τ)≥ 3
4P(ηr < ‖X‖4ε).

Furthermore, we can choose λ0 > 1 such that

P
(

sup
1<t<λ0

|X(t)−X(1)| < τ
)

≥ 3

4
.

Since a Brownian motion has independent increments, we have

P
(

ηr < ‖X‖4ε, ξ > τ, sup
1<t<λ0

|X(t)−X(1)| < τ
)

= P(ηr < ‖X‖4ε, ξ > τ)P
(

sup
1<t<λ0

|X(t)−X(1)| < τ
)

≥ 9

16
P(ηr < ‖X‖4ε).

Note that if ηr < ε, ξ > τ and sup1<t<λ0
|X(t) − X(1)| < τ , then r + ηr

remains a critical value of {X(t) : 0 ≤ t ≤ λ0}. By the scaling invariance
property, Ξ∗ = λ−1/2{X(t) : 0 ≤ t ≤ λ} has the same distribution as Ξ, with
critical value λ−1/2(r + ηr) for any 1 ≤ λ ≤ λ0. Denoting by ‖X‖∗, η∗s the
random variables corresponding to Ξ∗ [thus, ‖X‖∗ = λ−1/2 max0≤t≤λ |X(t)|],
we have η∗

λ−1/2r
≤ λ−1/2ηr, ‖X‖∗ ≥ λ−1/2‖X‖. Consequently, we have

1

2
P(ηr < ‖X‖4ε) <

9

16
P(ηr < ‖X‖4ε)

≤ P
(

ηr < ‖X‖4ε, ξ > τ, sup
1<t<λ0

|X(t)−X(1)| < τ
)
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= P
(

η∗λ−1/2r < λ−1/2‖X‖4ε, ξ > τ, sup
1<t<λ0

|X(t)−X(1)| < τ
)

≤ P
(

η∗λ−1/2r < λ3/2(‖X‖∗)4ε, ξ > τ, sup
1<t<λ0

|X(t)−X(1)| < τ
)

= P
(

ηλ−1/2r < λ3/2‖X‖4ε, ξ > τ, sup
1<t<λ0

|X(t)−X(1)| < τ
)

≤ P(ηλ−1/2r < λ3/2‖X‖4ε)

for all 1≤ λ ≤ λ0. The assertion thus holds with δ = r − λ
−1/2
0 r. �

Proposition 4.1. For any r > 0, the mean number of connected com-
ponents of R

2 \Ξr is finite.

Proof. Let Nr be the number of bounded connected components of
R

2 \ Ξr. For r > 0, consider ηr. If ηr = ∞, then Ξr does not have any holes
and hence Nr = 0 [otherwise, any hole would contain a maximal inscribed
circle with its center at a critical point and with critical radius s ∈ (r,∞)].
Since r /∈C(Ξ) a.s., we get C(Ξ)∩ [r, r+ηr) = ∅ a.s. By Lemma 4.1, we thus
have

Nr ≤
π

r
√

2r

(2‖X‖ + 2r)2√
ηr

a.s.,

where we adopt the convention that 1
∞ = 0. We shall show that E‖X‖2η

−1/2
r

is finite, which is equivalent to the assertion. Let σ = r
r−δ . We have

E‖X‖2η−1/2
r =

∫ ∞

0
P(‖X‖2η−1/2

r > t)dt =

∫ ∞

0
P(ηr < ‖X‖4t−2)dt

≤ 2

δ

∫ ∞

0
E

∫ r

r−δ
1(ηs<σ3‖X‖4t−2) dsdt,

by Lemma 4.4 and Fubini’s theorem, since

1

2
δP(ηr < ‖X‖4ε) =

1

2

∫ r

r−δ
P(ηr < ‖X‖4ε)ds

≤
∫ r

r−δ
P(ηs < σ3‖X‖4ε)ds

= E

∫ r

r−δ
1(ηs<σ3‖X‖4ε) ds

for any ε > 0. Fix a trajectory Ξ of X . Let {Ii} be the family of maximal open
intervals of the complement of C(Ξ) which intersect the interval (r − δ, r)
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and let εi be the length of Ii. We assume, without loss of generality, that
the sequence {εi} is nonincreasing. We then have

∫ r

r−δ
1(ηs<σ3‖X‖4t−2) ds ≤

∑

i

min{σ3‖X‖4t−2, εi}

and hence, by Corollary 4.1,

E‖X‖2η−1/2
r ≤ 2

δ
E

∫ ∞

0

∑

i

min{σ3‖X‖4t−2, εi}dt

=
2

δ
E

∑

i

(
∫ σ3/2‖X‖2ε

−1/2
i

0
εi dt +

∫ ∞

σ3/2‖X‖2ε
−1/2
i

t−2 dt

)

=
2

δ
E

∑

i

(σ3/2‖X‖2√εi + σ−3/2‖X‖−2√εi)

≤ 2

δ
E(σ3/2‖X‖2 + σ−3/2‖X‖−2)8(r − δ)−3/2π‖X‖2

=
16π

δ(r − δ)3/2
(σ3/2

E‖X‖4 + σ−3/2).

Since all moments of ‖Ξ‖ are finite, the proposition is proved. �

Corollary 4.2. The mean Euler number of the Wiener sausage Ξr in
R

2 is finite for any r > 0.

5. Convergence of parallel neighborhoods. Let A ⊆ R
d be a nonempty

and compact subset of R
d. For r ≥ 0, denote by VA(r) the volume Vd(Ar) of

the parallel neighborhood to A. The following result was proven by Stachó
[17], Theorem 3.

Theorem 5.1. Let {An} be a sequence of nonempty compact subsets of
R

d converging with respect to the Hausdorff metric to a nonempty compact
set A. Then,

(i) VAn(r)→ VA(r), n→∞, for all r > 0;
(ii) Hd−1(∂An

r )→Hd−1(∂Ar), n →∞, for all r > 0 where (VA)′(r) exists.

Remark 5.1. In fact, assertion (i) is included in the proof of [17], The-
orem 3. It follows from the fact that for any ε > 0, Ar−ε ⊆ (An)r ⊆ Ar+ε

for sufficiently large n and from the continuity of the volume function VA.
Assertion (ii) is formulated in a different form in [17], Theorem 3, but (ii) is
exactly what is proved there.
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We shall now show that the curvature measures (and, hence, also the
intrinsic volumes) of the parallel neighborhood also converge.

Theorem 5.2. Let {An} be a sequence of nonempty compact subsets of
R

d converging with respect to the Hausdorff metric to a nonempty compact
set A and let r ∈ (0,∞)\C(A). Then, r /∈ C(An) for sufficiently large n and
the curvature measures Ci(A

n
r ; ·) converge weakly to Ci(Ar; ·), n →∞, for

i = 0, . . . , d− 1.

The proof will be based on the following result.

Theorem 5.3 ([3], Theorem 5.9). Let Dn,D be compact sets with posi-
tive reach such that dH(Dn,D)→ 0 and infn reachDn > 0. Then, Ci(D

n; ·) →
Ci(D; ·) weakly, n→∞, i = 0, . . . , d− 1.

To prove Theorem 5.2, it is sufficient to show that

lim inf
n→∞

reachCn
r > 0,

where Cn
r = Rd \An

r . We shall start with some continuity results.
We say that a function F from a metric space X to the space K′ of

nonempty compact subsets of R
d (equipped with the Hausdorff metric) is

upper semicontinuous if, whenever xn → x in X , an → a in R
d and an ∈

F (xn), n ∈ N, we have a ∈ F (x) (see [11]). Recall, also, that a real function
f :X →R is upper semicontinuous if lim infy→x f(y)≤ f(x) for all x ∈X .

Lemma 5.1. (i) The function x 7→ ΣA(x) is upper semicontinuous on
R

d for any compact A⊆ R
d.

(ii) The function A 7→ ΣA(x) is upper semicontinuous on K′ for any x ∈
R

d.

Proof. To verify (i), let xn → x, an ∈ ΣA(xn), an → a. We shall show
that a ∈ ΣA(x). If not, there would be another point b ∈ A with |b − x| <
|a− x|. Let n be sufficiently large that

max{|an − a|, |xn − x|} < ε =
1

3
(|a− x| − |b− x|).

Then, by the triangle inequality,

|xn − b| ≤ |xn − x|+ |b− x| < ε + |a− x| − 3ε

< |a− x| − |a− an| − ε≤ |an − x| − ε

< |an − x| − |x− xn| ≤ |an − xn|,
which means that an is not the closest point of A to xn, a contradiction.



APPROXIMATIONS OF THE WIENER SAUSAGE 11

In order to show (ii), let An,A be compact sets, dH(An,A) → 0, an ∈
ΣAn(x), an → a. We have to show that a ∈ ΣA(x). If not, there would be a
point b ∈ A with |b − x| < |a − x|. By the definition of Hausdorff distance,
there is a point bn ∈ An with |bn − b| < ε for sufficiently large n, where
ε = 1

2 (|a−x| − |b−x|). We also have |an − a|< ε for large n. We then easily
obtain, by the triangle inequality, that |x− bn|< |x− an|, which contradicts
the fact that an is the closest point of An to x. �

As in [12], we introduce the function

JA :x 7→ min{|a− x| :a ∈ convΣA(x)}, x∈ R
d.

Clearly, x is a regular point of ∆A if and only if JA(x) > 0.

Lemma 5.2. (i) The function x 7→ JA(x) is upper semicontinuous on R
d

for any compact A ⊆ R
d.

(ii) The function A 7→ JA(x) is upper semicontinuous on K′ for any x ∈
R

d.

Proof. This follows directly from Lemma 5.1 and from the fact that
JA(x) depends continuously on ΣA(x). �

Lemma 5.3. If An,A are nonempty compact subsets of R
d, dH(An,A)→

0 as n →∞ and r /∈C(A), then

lim inf
n→∞ inf{JAn(x) :x ∈ ∂An

r } > 0.

Proof. We have inf{JA(x) :x ∈ ∂Ar}> 0 by [12], Lemma 3.3. Further,
since JA is upper semicontinuous and ∂A is compact, we have

η = inf{JA(x) : r − ε≤ ∆A(x)≤ r + ε}> 0

for some sufficiently small ε > 0. By the definition of the Hausdorff metric,

Ar−ε ⊆ An
r ⊆ Ar+ε

for large n. Now, for any x with r−ε≤∆A(x) ≤ r+ε, we have JAn(x) > η/2
for sufficiently large n, by Lemma 5.2. Define

Kn = {x : r − ε≤ ∆A(x)≤ r + ε, JAm(x)≤ η/2 for m≥ n}.
By the upper semicontinuity of JAm , the sets Kn are compact and since
Kn ց ∅, we have Kn0 = ∅ for some n0, which completes the proof. �

Lemma 5.4. If A ⊆ R
d is a nonempty and compact subset of R

d and
r > 0, then

reach Rd \Ar ≥ inf{JA(x) :x ∈ ∂Ar}.
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Proof. If z ∈ ∂Ar, then, for any a ∈ convΣA(z), B|z−a|(a) ⊆Ar with

|z − a| ≥ η = inf{JA(x) :x ∈ ∂Ar}.
We can thus “roll” a ball of radius η from outside along the boundary of
Rd \Ar, which proves that reachRd \Ar ≥ η (see [3], Theorem 4.18). �

Proof of Theorem 5.2. Follows directly from Lemmas 5.3 and 5.4.
�

6. Approximations of the Wiener sausage by polyconvex sets. In this
section, we use a piecewise linear approximation Ξn of the path Ξ of a Brow-
nian motion X to construct the almost sure approximation of the Wiener
sausage Ξr = Ξ⊕Br(o) by random polyconvex sets Ξn

r = Ξn ⊕Br(o). Under
some assumptions, the convergence of the corresponding curvature measures
and their first moments is shown in Corollary 6.1 and Proposition 6.1. In
Sections 6.2 and 6.3, examples of such approximations are considered in
detail.

6.1. General convergence results. Let Ξn be an arbitrary random piece-
wise linear curve with vertices Xn(ti), i = 1, . . . , kn, approximating the path
Ξ of the Brownian motion in the sense of the Hausdorff distance: dH(Ξn,Ξ)→
0 as n →∞, almost surely. For each n ∈ N, consider its parallel neighbor-
hood Ξn

r = Ξn ⊕ Br(o), r > 0. It holds that Ξn
r ∈ R a.s. for all n ∈ N and

r > 0. We call the sequence {Ξn
r }n∈N of polyconvex random closed sets an

(almost sure) polyconvex approximation of the Wiener sausage Ξr.
Since Ξn

r is polyconvex, its curvature measures Ci(Ξ
n
r ; ·) and intrinsic vol-

umes Vi(Ξ
n
r ), i = 0, . . . , d, are well defined for all r > 0. In the following,

we show that the curvature measures of Ξn
r approximate the corresponding

curvature measures of the Wiener sausage for growing n.
The next result follows immediately from Theorems 5.1, 5.2 and [12],

Corollary 4.1 and Lemma 4.3.

Corollary 6.1. Let dH(Ξn,Ξ)→ 0 as n→∞, almost surely. We then
have the following:

(i) VΞn(r)→ VΞ(r) as n →∞ almost surely for any r > 0;
(ii) Hd−1(∂Ξn

r )→Hd−1(∂Ξr) as n→∞ almost surely for any r > 0 if d≤
3, and for almost all r > 0 if d≥ 4;

(iii) Ci(Ξ
n
r ; ·) → Ci(Ξr; ) weakly as n →∞ almost surely for any r > 0 and

i = 0, . . . , d− 1 if d≤ 3.

Corollary 6.1 combined with the dominated convergence theorem yields
the following proposition.
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Proposition 6.1. Let dH(Ξn,Ξ)→ 0 as n→∞, almost surely. We then
have the following:

(i) EVΞn(r)→ EVΞ(r) as n→∞ for any r > 0;
(ii) EHd−1(∂Ξn

r ) → EHd−1(∂Ξr) as n →∞ for any r > 0 if d ≤ 3, and for
almost all r > 0 if d ≥ 4.

Proof. It suffices to find the uniform integrable random upper bounds
for |Vi(Ξ

n
r )|, i = d, d− 1.

(i) First, note that

|‖Xn‖ − ‖X‖| ≤ dH(Ξn,Ξ).

Since the last expression tends to 0 as n→ 0, we have

Vd(Ξ
n
r )≤ Vd(Br+‖Xn‖(o)) = ωd(r + ‖Xn‖)d ≤ ωd(r + ‖X‖+ 1)d

for sufficiently large n (and all ω). It is known that all moments of the
maximum of the Bessel process |X(t)| are finite; see, for example, [12],
proof of Theorem 2.1. Consequently, we have

EVd(Ξ
n
r )≤ ωdE(r + ‖X‖+ 1)d < ∞

for all sufficiently large n.
(ii) Since ∂Ξn

r ⊆ ∆−1
Ξn({r}) holds for all r > 0, we use the co-area formula

from [4] to obtain

Hd−1(Ξn
r )≤Hd−1(∆−1

Ξn({r})) = V ′
Ξn

(r)

for all r > 0 such that V ′
Ξn

(r) exists. These are all r /∈C(Ξn). By Theo-
rem 5.2, it holds that r /∈ C(Ξn) for all sufficiently large n if r /∈ C(Ξ).
It is known (see [12]) that r /∈C(Ξ) almost surely for any r > 0 if d≤ 3,
and for almost all r > 0 if d ≥ 4. By [12], Lemma 4.6, we obtain

Hd−1(Ξn
r )≤ V ′

Ξn
(r)≤ d

r
ωd(R + r)d,

where R = ‖Xn‖ ≤ ‖X‖ + ε for all sufficiently large n. Since the upper
bound

d

r
ωd(‖X‖+ r + ε)d

is integrable, the dominated convergence theorem yields EHd−1(∂Ξn
r )

→ EHd−1(∂Ξr) as n→∞. �

The following statement follows directly from Corollary 6.1(iii) and the
dominated convergence theorem.
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Remark 6.1. Let dH(Ξn,Ξ)→ 0 as n→∞, almost surely, d≤ 3. If the
sequence of random variables {Vi(Ξ

n
r )}n∈N is uniformly integrable for i =

0, . . . , d−2, then EVi(Ξ
n
r )→ EVi(Ξr) as n→∞ for i = 0, . . . , d−2 and r > 0.

We conjecture that in the two-dimensional case, the sequence {V0(Ξ
n
r )}n∈N

is uniformly integrable and that convergence for the mean Euler number
holds.

6.2. An example. Consider a regular lattice of time moments ti = i/kn,
i = 1, . . . , kn, kn → ∞ as n → ∞. Let Xn be the piecewise linear approxi-
mation of X passing through Xn(ti) = X(ti) for all i = 1, . . . , kn and n ∈ N.
It means that the vertices of the piecewise linear approximation Xn of the
Brownian motion X lie on the path Ξn of the Brownian motion. In the
following, we show that such an approximation procedure preserves the con-
vergence of the mean curvatures in the sense of the last section.

Theorem 6.1. It holds that

dH(Ξn,Ξ)≤ ‖Xn −X‖, n ∈ N,

almost surely.

Proof. Using the piecewise linearity of Ξn, we get

max
y∈Ξ

∆Ξn(y) = max
i=1,...,kn

max
t∈[(i−1)/kn,i/kn]

∆Ξn(X(t))

= max
i=1,...,kn

max
t∈[(i−1)/kn,i/kn]

min
i=1,...,kn

min
s∈[(i−1)/kn,i/kn]

|Xn(s)−X(t)|

≤ max
i=1,...,kn

max
t∈[(i−1)/kn,i/kn]

|Xn(t)−X(t)| = max
t∈[0,1]

|Xn(t)−X(t)|.

Using similar arguments, it can be shown that

max
y∈Ξn

∆Ξ(y)≤ ‖Xn −X‖.

By the definition of Hausdorff distance, we have

dH(Ξn,Ξ) = max
{

max
y∈Ξn

∆Ξ(y),max
y∈Ξ

∆Ξn(y)
}

≤ ‖Xn −X‖.
�

Corollary 6.2. dH(Ξn,Ξ)→ 0 as n→∞, almost surely.

Proof. It is known that ‖W n
i −Wi‖→ 0 as n→∞ almost surely for all

i = 1, . . . , d. The assertion of the corollary follows from the above relation,
Theorem 6.1 and the inequality

‖Xn −X‖ = max
t∈[0,1]

√

√

√

√

d
∑

i=1

(W n
i (t)−Wi(t))

2 ≤
d

∑

i=1

‖W n
i −Wi‖→ 0.

�
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6.3. Haar–Schauder approximation. The piecewise linear approximations
considered above can easily be simulated using Gaussian finite-dimensional
distributions of a Brownian motion. Another constructive approach is pro-
vided by the so-called Haar–Schauder approximation of a Brownian motion;
see, for example, the book [6].

Let Hk : [0,1] → R, k ∈ N, be the so-called Haar function defined by the
relations

H1(s) = 1, s ∈ [0,1],

H2m+k(s) =























2m/2, s ∈
[

k − 1

2m
,
2k − 1

2m+1

)

,

−2m/2, s ∈
[

2k − 1

2m+1
,

k

2m

)

,

0, otherwise,

for k = 1,2, . . . ,2m and m = 0,1,2, . . . . The Schauder function is given by

Sk(t) =

∫ t

0
Hk(s)ds, k ∈ N.

It is known that the Wiener process W is equal in distribution to the Haar–
Schauder series

W (t) =
∞
∑

k=1

YkSk(t), t ∈ [0,1],

where {Yn}n∈N is the sequence of i.i.d. N(0,1)-distributed random variables;
see [6], pages 56–59. This series converges (a.s.) absolutely and uniformly on
[0,1]. Hence, the Wiener process can be approximated pathwise by partial
sums

2n
∑

k=1

YkSk(t), t ∈ [0,1].

We use this idea to approximate the coordinates Wi(t), i = 1, . . . , d, of the
Brownian motion X(t) a.s. by

W n
i (t) =

2n
∑

k=1

YikSk(t), t ∈ [0,1],

where the sequences {Yik}k∈N, i = 1, . . . , d, of i.i.d. standard normally dis-
tributed random variables Yik are independent. For

Xn(t) = (W n
1 (t), . . . ,W n

d (t)), t ∈ [0,1],

consider its path Ξn = {Xn(t) : 0≤ t ≤ 1}. It is a piecewise linear curve with
2n + 1 nodes lying on Ξ. More precisely, we have Xn(0) = X(0) = o a.s. for
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(a) Estimated Euler number (b) Estimated area

Fig. 1. Mean (solid), minimal (dashed) and maximal (dotted) estimated Euler number
and area, respectively, of 1000 simulated Wiener sausages, depending on the number of
discretization steps.

n ∈ N and

Xn(t) = (1−αn(t))X

(

k − 1

2n

)

+ αn(t)X

(

k

2n

)

, t ∈
[

k − 1

2n
,

k

2n

]

a.s. for all n and k = 1, . . . ,2n, where αn(t) = 2nt − k + 1. Thus, Ξn can be
regarded as an a.s. approximation of the path Ξ by piecewise linear curves,
in the sense of Section 6.3, with kn = 2n.

7. Numerical results. In this section, we present some numerical results
for the estimated mean intrinsic volumes of the Wiener sausage in the two-
dimensional case. The theoretical basis for the simulation which supports
the outcome is provided by the convergence results of Proposition 6.1 and
Corollary 6.2.

7.1. Approach and estimation results. A piecewise linear approximation
of the path of a Brownian motion in R

2 is considered and the path is dilated
to produce a polyconvex approximation of the Wiener sausage. The approx-
imation of the path is achieved by simulating the independent, normally
distributed increments of the Wiener process; see Section 6.2. For this, we
chose the time interval [0, T ] = [0,106] and k equidistant time points in this
interval. Figure 1 shows the estimated Euler number and estimated area,
respectively, of approximated Wiener sausages Ξr in the plane with radius
r = 20 depending on the number k of such discretization points. For each k,
one can see the mean (solid) as well as the minimal (dashed) and maximal
(dotted) values of 1000 realizations. It is obvious that for small values k, the
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approximation is not very good and the estimated value of the polyconvex
approximation is therefore too small. On the other hand, both estimated
values converge to a limit once k is sufficiently large. Since this convergence
behavior is basically the same for the boundary length, we discretized the
interval [0, T ] in k = 100,001 time points for all simulations. The radius r of
the Wiener sausage varies between 1 and 1900 pixels. For radii less than 1,
there is no difference between the Brownian motion and the Wiener sausage
in the simulation due to discretization. In any case, in Figures 2(a)–2(f),
one can recognize a trend in the curves for small radii. On the other hand,
the behavior of the curves for growing radii is clearly visible, so there is no
need to simulate bigger radii. In Figures 2(a)–2(f), the solid line denotes
the mean value, the dashed line the minimal value and the dotted line the
maximal value of the considered estimator out of 1000 realizations for each
radius. The intrinsic volumes were estimated with the algorithm described
in [7] using Steiner’s formula. Figure 2(a) shows the mean, minimal and
maximal estimated area of 1000 realizations. For growing radii, the area
grows quadratically and as the radius tends to zero, the area tends to zero
as well. This can be seen in Figure 2(b), which shows a magnification of
Figure 2(a) for small radii. Thus, we get an empirical illustration of the
following asymptotic result of Le Gall [10]:

EVΞ(r)∼ πT

| log r| , r → 0.

Figures 2(c) and 2(d) show the estimated mean boundary length. One
can see that it grows linearly once all holes of Ξr disappear as r tends to

(a) Mean (solid), minimal (dashed) and
maximal (dotted) area of 1000 simulated
Wiener sausages depending on the radius

(b) Magnification of Figure 2(a) for small
radii

Fig. 2. Estimated mean intrinsic volumes of the Wiener sausage in two dimensions
depending on the radius.
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(c) Mean (solid), minimal (dashed) and
maximal (dotted) boundary length of
1000 simulated Wiener sausages depend-
ing on the radius

(d) Magnification of Figure 2(c) for small
radii

(e) Mean (solid), minimal (dashed) and
maximal (dotted) Euler number of 1000
simulated Wiener sausages with large
radii (r ≥ 120)

(f) Mean (solid), minimal (dashed) and
maximal (dotted) Euler number of 1000
simulated Wiener sausages with small
radii (r ≤ 15)

Fig. 2. Continued.

infinity. It is shown in [12] that the expected boundary length equals the
first derivative of the mean area of the Wiener sausage with respect to its
radius. This is also backed by our simulations. For instance, the gradient
of the tangent line to the graph of the mean area in Figure 2(b) grows
rapidly as the radius becomes small. This coincides with the behavior of the
graph of the mean boundary length in Figure 2(d) around the origin and
the asymptotic formula

EH1(∂Ξr) ∼
πT

r log2 r
, r → 0,

proved in [12].
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The mean Euler number of Ξr, that is, 1 minus the mean number of
holes, tends to −∞ and its slope tends to infinity as r → 0 since Ξr is
connected and the number of holes grows unboundedly. This behavior is
reflected in Figure 2(f). For growing radius, the mean Euler number tends
to 1 as more and more holes get filled by the dilation, and equals 1 when all
holes disappear; see Figure 2(e).

Berezhkovskĭı, Makhnovskĭı and Suris [1] give an explicit formula for the
expected area of the Wiener sausage in dimensions greater than 1. Its special
case for d = 2 can be written as

EVΞ(r) = πr2 +
8r2

π

∫ ∞

0

1− e−y2T/(2r2)

y3(J2
0 (y) + Y 2

0 (y))
dy,

where J0 and Y0 are Bessel functions of order zero. Thus, EVΞ(r) and its
derivative with respect to r—the expected boundary length EH1(∂Ξr)—
can be computed numerically, in addition to the simulations shown above.
Our computations show that the difference between the simulated and the
approximated values is less than 10% for radii greater than 20 (resp., 200)
for the boundary length (resp., area). For smaller radii, the difference gets
bigger (up to 39%) due to the high slope of the boundary length and area,
respectively.

7.2. Approximation formulae. The curves of the estimated mean intrin-
sic volumes were approximated with the Curve Fitting Toolbox in MATLAB
using a trust region algorithm. The mean estimated area [see Figures 2(a)
and 2(b)] of the Wiener sausage can be approximated by the function

EVΞ(r) ≈ 441.83

| log r|+ 265.265
+ 387768r0.252344 + 1064.51r1.24465

+ 0.235594r2.27655

depending on the dilation radius r. The absolute value of the relative error
between this function and the estimated values is always less than 2% and
the mean relative error is less than 0.6%.

For the boundary length in Figure 2(c), we fitted the function

EH1(∂Ξr) ≈
54943.9

r(log r)2 + 2.66290
+ 93484.2r−0.862668

+ 9038.09r−0.123680 + 15.6493r0.901971 .

This is not exactly the derivative of the approximated mean area, but, nev-
ertheless, the fit is very good. The relative errors are less than 1.9% for all
radii and the mean relative error is less than 0.6%. In both cases, that is, for
the estimated mean area and boundary length, their asymptotic behavior as
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r → 0 coincides (up to a constant factor) with the formula of Le Gall given
in the previous section.

A different class of functions was used to fit the Euler number. Here, a
logarithmic term seems to be a good choice to approximate 2 − EV0(Ξr).
[We did not approximate EV0(Ξr) directly because it takes values close to
zero in a certain interval and therefore one cannot compute relative errors
to evaluate the fit.] Since this logarithmic function converges to 1 slowly
as r →∞, we additionally used the cumulative distribution function Φ of
the standard normal distribution to make it converge faster so that it is
practically 1 for large radii. The resulting function fitted with MATLAB is
given by

EV0(Ξr) ≈ 1− 0.0423017(1 −Φ((r − 224.899)/50.2096))

log(3.88182 · 10−6r1.88978 + 1.0)r0.153452
.

The relative error of this fit is less than 10.5% and the mean relative error
is less than 1.5%. For growing radii, the fitted function converges to one
at an appropriate speed, which leads to low approximation errors. For radii
greater than 160, the relative error is less than 4% and for radii greater than
560, the relative error is less than 1%.

Acknowledgment. The authors are grateful to Volker Schmidt for fruitful
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