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Abstract 

We propose a procedure to follow the weakest ascent along a valley using gradient-only calculations. The device allows 
one to search for saddles starting somewhere near a minimum provided that the saddle is connected with the minimum by a 
valley. We define a local criterion for a minimum energy path by comparison of gradients. The algorithm is a 
predictor-corrector method using two parameters: step length and tolerance. There is no need for a guess of the saddle point 
region. We calculate valley pathways on 2D test examples, on the HCN surface, and on a 12D potential of an argon 
4-cluster. 

I .  Introduction 

A quarter of a century ago, a mathematical defini- 
tion of the chemical reaction path (RP) on the poten- 
tial energy surface (PES) of reacting molecules was 
given [1-3]. The RP concept is to follow the steepest 
descent from the saddle point to the reactant or 
product minimum by tracing the negative gradient of 
the PES downhill. Since then, the concept of the RP 
of PES has been of continual importance in theoreti- 
cal chemistry [4-9]. It is basically a curve in the 
configuration space of the atoms forming the chemi- 
cal system. The curve connects two minimizers of 
the PES. The energy profile over the reaction path 
should be a 'valley floor' leading through the point 
of highest energy, the saddle point (SP) of index 1. 
This point corresponds to the transition structure of 
'transition state theory'. 

The fundamental problem in handling n-dimen- 
sional hypersurfaces, E = E ( x  ~ . . . . .  x~),  is the di- 

mension. Molecules with more than N = 4 atoms 
cause an overwhelming number of net points in the 
dimension n = 3N. The RP concept is promising, 
because it reduces the problem to finding an algo- 
rithm for one-dimensional curves of the PES, with- 
out knowledge of the whole PES. Any parametriza- 
tion s of the RP x ( s ) =  (x l ( s )  . . . . .  x~(s ) )  T is called 
the reaction coordinate. Different mathematical defi- 
nitions of the RP may produce different lines, out- 
side the stationary points. From the point of view of 
a chemical application, this is not disturbing, if only 
the energy of the SP, E(Xsp), is of interest as it is in 
transition state theory. 

In theoretical chemistry, the so-called minimum 
energy path (MEP) is identified with the steepest 
descent from the SP, calculated in mass-weighted 
coordinates [1-3]. The path is also called the intrin- 
sic reaction coordinate (IRC) [2,4,10]. Despite its 
success in theoretical chemistry, the MEP has two 
imperfections which are of particular interest. 
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(i) There exists no possibility of  turning the di- 
rection of the search in order to go uphill from the 
minimum to the saddle point by gradient-only steps. 
(If  we have a guess of  the SP, there are some 
methods, see Ref. [11], and if we have a guess of  the 
product region, see Refs. [8,12] and references therein 
for further methods. Eigenvector-following devices 
and tracing of gradient extremals [13-19]  use no 
lower than second derivatives of the energy func- 
tional.) 

(ii) Steepest descent works well downhill for steep 
slopes. However,  along the bottom of the valley, it 
shows a numerical disadvantage, the so-called 
zigzagging across the valley ground line, cf. Ref. 
[20]. 

In this Letter we propose an algorithm which 
allows us to go uphill along a valley bottom in the 
direction of the weakest  ascent by using a controlled 
zigzagging procedure. We should realize regarding 
this idea that the direction of the scaled gradient 
vector of  the point x o pointing to Xl does not agree 
with the direction of  the gradient vector in xl in the 
general case. However,  sometimes this happens, see 
Fig. 1. In this case we presume that we are on a 
valley pathway! Controlling a coincidence in the two 
gradients is achieved by means of the scalar product 
of  the normalized vectors. 
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\ 
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Fig. 1. Scheme of three different points on and near an MEP and 
their gradient vectors: in Xol, x o, and Xor the gradients are 
drawn; however, in x u, x~, and x,,, the negative gradients are 
drawn. The vectors -grad( x It) and -grad( x u) are used for correc- 
tor steps for an MEP search uphill, see text. 

2. The algorithm 

We use the normalized gradient vector, grad(x)  
= V E ( x ) / I V E ( x ) [ .  It is the vector of  the first 
derivatives of  the PES functional of unit length. We 
start with a new definition of a valley pathway. 

Definit ion.  A point x belongs to a q-minimum 
energy path (qMEP)  if the vector equation holds 

g r a d ( x )  = g r a d ( x q ) ,  where Xq = x + q g r a d ( x ) ,  

(1) 

and q > 0 is a step length parameter. (The definition 
is also satisfied by points on a 'q-r idge ' . )  

This definition contains a local characterization of 
certain points x. Thus, the definition does not need 
an initial condition of the pathway, as opposed to the 
IRC, which does need a SP [2,10]. The definition 
compares differences of  gradient vectors. However,  
it does not use higher derivatives, as is necessary 
using the local definition of gradient extremals 
[16-18]. I f  q is sufficiently small, and if the point x 
fulfills the condition of Eq. (1) then we are near the 
so-called asymptotic steepest descent path [21], a line 
defined by the confluence of many steepest descent 
lines from the right and from the left-hand side into 
the streambed of  the valley ground. Note: the asymp- 
totic steepest descent path may be curvilinear. The 
qMEP will follow its curvature. Points next to the 
qMEP are shown in Fig. 1. Gradients in these points 
have a characteristic pattern. If the point Xl0 is to the 
' lef t '  of  the qMEP,  then the negative gradient of  x H 
points a step to the right. Vice versa, if the point x~0 
is displaced to the ' r ight '  then the negative gradient 
of  x~l points to the left. Thus, these negative gradi- 
ents may be used as corrector steps. We propose the 
following procedure. 

Gradient -only  algori thm 
(i) Choose step length q and parameter a < 1 with 

a < < q ,  andse t  i : = 0 .  
(ii) Choose the initial point x 0 with I VE(x0) l  ÷ 0. 

(iii) Predictor step: set xi+ l := xi + qgrad(x i ) .  
(iv) If  I V E ( x i +  l)i  is small enough then STOP (SP 

region is reached). 
(v) Calculate scal := grad(xi+ i) " grad(xi).  

Backwards control: If  (scal >~ 1 - a )  set i := i 
+ l and Goto (iii), else 

(vi) Corrector step: xi+ l '= xi+ l - qgrad(xi+ i) and 
Goto (iii) with i := i + i. 
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Fig. 2. (a) Test potential Eq. (2), from Ref. [9], demonstrating the 
use of the saddle point search algorithm for q = 0.1, a = 0.001, 
number of steps: 130. The steps are given by black dots connected 
by a line. (With the refined corrector (vi') we need 28 steps.) The 
thin lines are equipotential lines and gradient extremal lines. 
Right: enlargements of difficult regions of Fig. 2a: (b) region of 
the eurvilinear transition of the qMEP to the SP plateau, and (c) 
region of the transition from the curvilinear to the more straight 
region of the deep MEP valley. 

The algorithm needs two parameters: step length 
q and tolerance a .  The algorithm works well if a is 
two or more powers of  ten smaller than q. The 
cut-off test (iv) may also be combined with q, for 
example [ VEI  ~< q. 

3. Tests and refinement of  the algorithm 

Results are given for a test potential of  fourth 
order [9] 

E ( x ,  y ) = 2 y + y 2 + ( y + O . a x 2 ) x  2. (2) 

In Fig. 2 we show the case for q = 0.1 and ot = 0.001 
giving an approximation of  the qMEP by 130 steps 
when starting at point (1.77, - 2.5) and stopping the 
search with I VE(x)I <0.1 in step (iv) assuming 
that the SP region is reached. The thin lines which 
cross the level lines are the gradient extremals de- 
fined elsewhere [9,16,17]. They depict valley ground 
lines, cirques and ridges of  the PES. They are given 
for comparison. An increase of  a is tested up to 
0.014 in order to approximate the qMEP. Smaller 
values of  ot give a better approximation. A larger 
step length q may cause an ineffective increase of  
short corrector zigzag steps; for example, q = 
0.25, ot = 0.001 increases the number of  steps to 
600. With q = 0.1, a = 0.015 the algorithm breaks 

down. It does not always jump into the corrector 
loop and then goes up by erratic predictor steps. If  q 
is sufficiently small then it is the ratio of  q and a 
that decides whether the algorithm works or not. 

The example of  Eq. (2) is chosen to illustrate the 
general task of  a search procedure uphill: The algo- 
rithm has to work in three quite different situations. 
First, in a deep and curved valley ground, second, in 
a moderately deep and straight valley, and third on a 
flat SP region where again the qMEP is curvilinear. 
In Fig. 2c, we enlarge a conglomeration of  corrector 
steps around the gradient extremal line. The algo- 
rithm zigzags only by corrector steps which always 
shorten themselves uphill along the true path, up to a 
point where the tolerance is satisfied. After that 
happens, the algorithm does a pure gradient step 
uphill - the predictor step. The new point is also 
near the true qMEP,  but it still requires one correc- 
tor step. The last step in Fig. 2c is again the gradient 
step uphill, nearly parallel to the true pathway. 

To avoid such a conglomeration of  corrector steps, 
we refine the algorithm. In point (vi) we may use a 
shortened version of  the corrector step by the scalar 
product scal. This factor scal makes the algorithm 
more efficient and prevents some of  the unnecessary 
steps. If  the valley is deep, we could further reduce 
the corrector steps, for example, by a constant factor 
of  0.9. However, this does not work in the SP region. 
Fig. 2b shows the enlargement of  the SP region: we 
also find short corrector steps. This necessitates a 
further refinement of  the corrector (vi): if it were too 
small, we may enlarge the corrector step from x i to 
direction xi+ ~. We have used the following refined 
corrector step with scal from step (v), and 2.5 < f <  5: 
(v i ' )  Correc tor  step: Xi+l := xi+ z - q scal 

grad(xi+ 1); 
if distance ( x  i, xi+ 1) < q / l O  and if scal > 1 
- 10a  set xi+ j := xi - f ( x i  - xi÷ l); 
goto (iii) with i := i + 1. 

By this refinement, we can reduce the number of  
steps tracing the qMEP on test potential Eq. (2) 
from 130 to 28 steps using q = 0.2 and a -- 0.002. 

4. Further results 

We report tests with the usage of  'optimal '  pa- 
rameters, i.e. the algorithm finds the SP with a 
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Fig. 3. Test potential Eq. (3), from Ref. [22], below the approxi- 
mated qMEP with a minimal number of  50 steps. These are given 
by black dots connected by a line. The MEP is demonstrated by a 
bold line calculated 'point by point' with a small q. 

minimal number of steps using these parameters 
regardless of a crude qMEP approximation. In order 
to demonstrate the algorithm, we treat the standard 
'streambed' test potential of Gonzales and Schlegel 
[22], see also Ref. [21] 

E( x, y) = arccot[--e y cot( x / 2  - 7r/4)] 

- 2 e x p [ - ( y -  sin x )2 /2 ] .  (3) 

We start at (4.7, - 1.0) using q = 0.25 and a = 0.05. 
A resulting approximation of the qMEP with a num- 
ber of 50 steps uphill is shown in Fig. 3. In this case, 
the refined corrector (vi') does not reduce the num- 

ber of steps because we are always on a deep lying 
curvilinear valley floor path. This test potential is of 
particular interest because it has side valleys, or 
more exactly, it has beginning side valleys at an 
altitude a little above the MEP, cf. Ref. [21]. Thus, 
there are side valleys, but the MEP does not bifur- 
cate. Normally, if we use sufficiently poor parame- 
ters in the algorithm, we leave the valley floor 
pathway somewhere and reach a ridge. Here, for 
q = 0.5, ot = 0.01, and a corrector step shortened by 
the product of q and scal and 0.9, we may jump 
uphill accidentally to the northern side valley charac- 
terized by x = "rr/2 and y positive. 

Remark: in the case of valley bifurcation (see test 
PESs in Refs. [6,9,15,16]) the proposed gradient-only 
algorithm, i.e. a first-order method, cannot find this 
peculiarity of the PES, cf. Refs. [9,23]. The calcula- 
tion of a qMEP goes uphill accidentally to one of 
the valleys depending on the initial point of the 
search. However, if the search meets the bifurcation 
point itself, the path following can also change to the 
ridge between the two valleys. A procedure for the 
determination of bifurcation points is given in Ref. 
[ 19] using the theory of gradient extremals. A differ- 
ence between qMEP and gradient extremals can be 
visualized in a further example. We treat the 2D-PES 
section of the Morse potential of the HCN molecule 
in a fit of Carter, Mills and Handy [24], see Fig. 4. 

-0.5 0.0 0.5 1.0 1.5 

Fig. 4. Fitted PES of HCN stretching modes [24] with gradient 
extremal lines (thin) and the calculated qMEP along the CN 
stretching valley. It is q = 0.1 and ~ = 0.0001. 
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The x axis is the CH change (in ,~,) of the geometric 
distance coordinate of the bond, the y axis is the 
change of the CN distance. The geometry of HCN is 
linear in the equilibrium structure, and also for 
stretchings. The bending dimension is suppresed for 
illustration. The gradient extremals (the thin lines 
which cross the equipotential lines) create an unsatis- 
factory gap: some valley ground gradient extremals 
are separated by turning points which hide the valley 
structure of the PES. The qMEP nicely bridges this 
gap and goes up to a SP of the potential. 

If in step (iv) the cut-off for reaching the SP 
region is too strong in comparison to step length q, 
then the search normally does not stop. The path 
turns 90 ° around the SP and goes up further along 
one of the ridges. A corner on the computed pathway 
may indicate such a bypassed SP. A possibility to 
test the index of the arrived SP is a downwards IRC 
calculation. 

The chosen step length q is always a compromise 
between the convergence of the corrector and the 
number of steps to reach the SP region. In the 
neighborhood of the SP, a reduction of q may be 
used refining the SP search, see the next example. 
Alternatively, the exact determination of the SP may 
be done by the more effective second-order New- 
ton-Raphson method. Chekmarev [11] has shown 
that a final stage of the SP search by Newton-Raph- 
son typically saved about 75% of the steps of a 
gradient method and provided approximately the 
same gain of computer time, 

Finally, we treat the 12D task of a cluster of four 
argon atoms using the Lennard-Jones potential 

/ °" \12 (~t~.j) 6 
e = 4 , E / - - /  - (4) 

i<j ~ rij ] 

for pairwise interatomic interactions [25]. e is the 
pair potential well depth, o" = 3.4 ,~ is the separation 
appropriate for argon where the pair interaction goes 
through zero. r~y is the separation of atoms i and j. 
The energy unit is e = 1.671 × 10-14 erg [26]. The 
minimum structure is a tetrahedron at - 6 . 0 e ,  the 
SP1 of index 1 is a plain diamond with side length 
3.80680 ,~ and with the two diagonals of 3.81638 

o 

and 6.58802 A. The short diagonal also is an edge of 
the cluster. The SP region is extremely flat. The 
eigenvalue of the decomposition mode (out of plane) 

x 1' 

0 -1 0 I 
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Fig. 5. Visualization of a saddle point search on a cluster of four 
argon atoms using a Lennard-Jones PF.,S (configuration space with 
n = 12). The change of the cluster geometry is shown in the 3D 
Cartesian space. The te~ahedron below is the minimum structure, 
and the diamond above is the SP of index 1. The calculated valley 
bottom of the PES is depicted by dots, where every 25th point of 
the calculation is shown. For better illustration, the structures are 
shifted by a translation in the z direction, in each step. 

is only -0 .04 .  Thus, this potential of Eq. (4) is an 
extreme case in order to test the proposed gradient- 
only method. In the plane of the diamond, the dia- 
mond ma, y change into a square of side length 
3.78292 A. The square is on SP2 of index 2. The 
energy difference between the minimum tetrahedron 
and the SP1 is 0.92658e, and the difference between 
SP1 and SP2 is 0.59280e. The lower structure in 
Fig. 5 is the tetrahedron. Shown by dots is the 
weakest ascent path arriving at an approximation of 
the rhombus in the upper part of Fig. 5. For better 
illustration, we shifted step by step the computed 
path by a small distance in the z direction. We used 
a three-stage approximation of the SP1 with increas- 
ingly strong search parameters given in Table 1. 
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Table 1 
Parameters used in the SP search of an argon 4-cluster, and 
number of steps of the calculation 

] VE I q ot Steps 

0.025 0.005 0.0005 1800 
0.007 0.001 0.0001 4500 
0.001 0.0001 0.00001 10880 

Fig. 5 shows the result of the first stage, i.e. the first 
line in Table 1. The second stage still increases the 
exactness of the plain structure of the diamond by 

o 

--0.2 A, however, the third stage changes the dia- 
mond only by the thickness of the lines used. This 
demonstrates the well-known slowness of gradient 
procedures for an exact determination of extremizers 
of the PES [27]. 

5. Conclusion 

This work demonstrates that the algorithm may 
work for an MEP following uphill on an n-dimen- 
sional potential energy hypersurface by means of 
gradient-only calculations of the PES functional. We 
define a new qMEP by comparison of gradients 
about a fixed step length q. The procedure is a local 
working predictor-corrector algorithm using 'con- 
trolled' zigzagging of gradient steps uphill along the 
qMEP. It does not need initial information of the SP 
region, or of the product region of the PES. The 
algorithm is simple. It works in any coordinate sys- 
tem, in Cartesian or internal coordinates. All degrees 
of freedom are automatically taken into account. The 
algorithm will not be disturbed by zero eigenvalues 
because it does not need a matrix inversion. 

In program packages of theoretical chemistry, 
gradient calculations are standard. Thus, the pro- 
posed algorithm can be used to search a saddle point 
region if the SP is connected with the initial mini- 
mum by a valley at all. 

The algorithm needs a high number of steps to 
find the exact localization of the SP in comparison 
with methods of second order. Thus, as all other 
gradient methods do, the proposed method suffers 
from slow convergence to the stationary point [27]. It 

is well-known that this may be greatly improved by 
incorporating a method of higher order [11,28]. 
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