
Math. Proc. Camb. Phil. Soc. (2004), 137, 709 c© 2004 Cambridge Philosophical Society

DOI: 10.1017/S0305004104007893 Printed in the United Kingdom
709

Surjective isometries between real JB∗-triples
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1. Introduction

In [19], R. Kadison proved that every surjective linear isometry Φ:A → B between
two unital C∗-algebras has the form

Φ(x) = uT (x), x ∈ A,

where u is a unitary element in B and T is a Jordan ∗-isomorphism from A onto
B. This result extends the classical Banach–Stone theorem [3, 32] obtained in the
1930s to non-abelian unital C∗-algebras. A. L. Paterson and A. M. Sinclair extended
Kadison’s result to surjective isometries between C∗-algebras by replacing the unitary
element u by a unitary element in the multiplier C∗-algebra of the range algebra
[28]. Thus, every surjective linear isometry between C∗-algebras preserves the triple
products as

{x, y, z} =2−1(xy∗z + zy∗x).

In the non-associative case, J.Wright andM. Youngson [35, theorem 6], established
that every unital surjective linear isometry between two unital JB∗-algebras was a
Jordan ∗-isomorphism. In 1995, J. M. Isidro and A. Rodrı́guez [18, theorem 1·9]
showed that every surjective linear isometry Φ between two JB-algebras has the
form

Φ(x) = bT (x),

where b is a central symmetry in the multiplier algebra of the range JB-algebra
and T is a surjective algebra isomorphism. It also follows, according to Isidro and
Rodrı́guez [18, theorem 1·9], that a bijective linear map Φ between two JB-algebras
is an isometry if and only if Φ is a triple-isomorphism with respect to the triple
product

{x, y, z} = (x ◦ y) ◦ z + (z ◦ y) ◦ x − (x ◦ z) ◦ y.

Other extensions of the Banach–Stone theorem for non-associative Banach algebras
can be found in [30] and [20].
C∗-algebras and JB∗-algebras belong to a more general class of algebraic-topo-

logical structures, known as (complex) JB∗-triples (cf. Section 2 for the definition).

† Authors partially supported by D.G.I. project no. BFM2002-01529, and Junta de Andalucı́a
grant FQM 0199.
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W.Kaup’s version of the Banach–Stone theorem for JB∗-triples [22], establishes that
a bijective linear map Φ between two JB∗-triples is an isometry if and only if it is
a triple isomorphism. An alternative proof of Kaup’s theorem was obtained by T.
Dang, Y. Friedman and B. Russo in [8].
Dang studied real linear surjective isometries between JB∗-triples [6]. An examin-

ation of quantummechanics reveals the existence of invertible affine maps on the unit
sphere of the dual of JB∗-triples and these maps coincide with the adjoints of real
(not necessarily complex) linear surjective isometries (compare [6, first paragraph
on page 972]). In general the Banach–Stone theorem does not hold good for real
linear isometries between JB∗-triples (cf. [6, remark 2·7]). Dang showed, however,
[6, theorem 3·1] that if Φ: E → F is a surjective real linear isometry between two
JB∗-triples, so that E∗∗ does not contain non-trivial rank-1 Cartan factors, then Φ is
a real linear triple isomorphism.
The structures of C∗-algebras, JB∗-algebras and JB∗-triples have been generalised

to real C∗-algebras, J∗B-algebras and real JB∗-triples respectively (cf. [5, 13], [2] and
[17], cf. also Section 2 for completeness). The Banach–Stone theorem in these latter
structures constitutes another line of generalisation. Several authors have obtained
Banach–Stone theorems corresponding to some of these structures.
In 1990, M. Grzesiak proved an extension of the Banach–Stone theorem for abelian

real C∗-algebras [24, corollary 5·2·4]. For not-necessarily abelian real C∗-algebras
the Banach–Stone theorem was obtained by C.-H. H. Chu, T. Dang, B. Russo and
B. Ventura (cf. [5, theorem 6·4]), who showed that a linear bijection between two
real C∗-algebras is an isometry if and only if it is a real triple isomorphism.
The study of surjective linear isometries between real JB∗-triples begins in [17],

where the authors prove that every triple isomorphism between real JB∗-triples is
an isometry, [17, theorem 4·8]. As we have seen before, however, not every surjective
isometry is a triple isomorphism (cf. [6, remark 2·7]). Recently, W. Kaup [23] ob-
tained a Banach–Stone theorem for some real Cartan factors (real forms of complex
Cartan factors, see Section 2 for completeness). In [23, theorem 5·18] Kaup proved
that every real linear mapping from a non-exceptional real or complex rank > 1
Cartan factor onto a real JBW∗-triple is a real triple isomorphism if and only if it
is an isometry. He left open the cases of the two exceptional real Cartan factors V O0

and V IO0 [23, page 217]. This problem forms the starting point of our paper.
As our first goal, Proposition 2·14, we conclude that every surjective linear iso-

metry between two real reduced Cartan factors is a triple isomorphism. The novelty
of our technique resides in the concept of a real reduced JB∗-triple, as already intro-
duced by O. Loos [26, 11.9]. Most real Cartan factors are real reduced Cartan factors,
especially the exceptional real Cartan factors V O0 and V IO0 . This fact, together with
our Proposition 2·14, provides a positive answer to the problem left open by Kaup.
Moreover, our result for real reduced Cartan factors together with Kaup’s result for
non-reduced real and complex Cartan factors allow us to get rid of the hypothesis
of non-exceptionality in [23, theorem 5·18] (cf. Corollary 2·16). Finally, in our main
result, Theorem 3·2, we extend Dang’s Banach–Stone theorem to real JB∗-triples.
As a consequence of our main result we also obtain a Banach–Stone theorem for
J∗B-algebras (Corollary 3·4).
Let X be either a real or complex Banach space and let S ⊂ X. Then X∗ and

S◦ denote the dual space of X and the polar of S in X∗ respectively. If X is a dual
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Banach space,X∗ will denote a predual ofX and S◦ will stand for the pre-polar of S in
X∗. The canonical embedding of X into X∗∗ is denoted by j:X →X∗∗. The Banach
space of all bounded linear operators between two Banach spaces, X and Y , is
denoted by L(X, Y ) and L(X) stands for L(X, X).

2. Surjective isometries between real Cartan factors

Recall that a JB∗-triple is a complex Banach space, E , together with a triple
product {., ., .}: E × E × E → E , which is continuous, symmetric and linear in the
outer variables and conjugate linear in the inner one, satisfying:
(a) Jordan Identity: for all a, b, x, y, z ∈ E

L(a, b) {x, y, z} = {L(a, b)x, y, z} − {x, L(b, a)y, z} + {x, y, L(a, b)z} ,

where L(a, b)x� {a, b, x};
(b) for each a ∈ E the operator L(a, a) is hermitian with non-negative spectrum

and ‖L(a, a)‖= ‖a‖2.
Every C∗-algebra is a complex JB∗-triple with respect to the triple product

{x, y, z} = 1
2 (xy∗z + zy∗x), and in the same way every JB∗-algebra with respect to

{a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗.
A real Banach space, E, together with a trilinear map {., ., .}:E × E × E → E is

called a real JB∗-triple if there is a JB*-triple, E , and an R-linear isometry, λ, from
E to E so that

λ{x, y, z} = {λx, λy, λz}
for all x, y, z in E (cf. [17]).
Real JB∗-triples are essentially the closed real subtriples of complex JB∗-triples

and, by [17, proposition 2·2], given a real JB∗-triple, E, there exists a unique com-
plex JB∗-triple, E , and a unique conjugation (conjugate linear and isometric mapping
of period 2), τ , on E so that E = Eτ �{x∈E : τ (x) =x}. In fact, E =E ⊕ iE is the
complexification of the vector space, E, with a triple product, extending in a nat-
ural way the triple product of E, and a suitable norm. Throughout the paper the
complexification of a real JB∗-triple E, equipped with the structure of a complex
JB∗-triple, will be denoted by Ê. Given a complex Banach spaceX and a conjugation
τ on X, the real Banach space Xτ = {x ∈ X : τ (x) =x} is called a real form of X.
Given a conjugation τ on a complex JB∗-triple then, according to Kaup’s Banach–
Stone theorem for complex JB∗-triples [22], we know that τ is a conjugate-linear
triple isomorphism and hence that the real JB∗-triples coincide with the real forms
of complex JB∗-triples.
Every complex JB∗-triple is a real JB∗-triple when considered as a real Banach

space. The class of real JB∗-triples also includes all JB-algebras [14], all real C∗-
algebras [13] and all J∗B-algebras [2]. Other examples of real JB∗-triples are the
so-called real and complex Cartan factors, which are dealt with below.

Cartan Factors

Cartan factors can be classified into six different types (cf. [21]). The type-1 Cartan
factor, denoted by In,m, is the complex Banach space, L(H, K), of bounded linear
operators between two complex Hilbert spaces, H and K, of dimensions n and m
respectively, where the triple product is defined by {x, y, z} =2−1(xy∗z + zy∗x).



712 F. J. Fernández–Polo, J. Martı́nez and A. M. Peralta

It is worth remembering that, given a conjugation, q, on a complex Hilbert space,
H, we can define the following linear involution x �→ xt�qx∗q on L(H). The type-2
Cartan factor, denoted by IIn, is the subtriple of L(H) formed by the skew-symmetric
operators for the involution t; in the same way the type-3 Cartan factor, IIIn, is
formed by the t-symmetric operators. Moreover, IIn and IIIn are, up to isomorphism,
independent of the conjugation q on H.
The type-4 Cartan factor, IVn (also called complex spin factor) is a complex Hilbert

space of dimension n provided with a conjugation x �→ x, triple product

{x, y, z} = 〈x/y〉 z + 〈z/y〉x − 〈x/z̄〉 ȳ,

and norm given by ‖x‖2 = 〈x/x〉 +
√

〈x/x〉2 − | 〈x/x〉 |2.
The type-6 Cartan factor is the 27-dimensional exceptional JB∗-algebra

V I =H3(OC) of all hermitian three by three matrices with entries in the complex
octonions O

C [37]. The type-5 Cartan factor is the subtriple, V =M1,2(OC), of the
type-6 Cartan factor formed by all one by two matrices with entries in O

C. We also
refer to [1, 14, 26, 31, 34] as basic reading concerning the exceptional Cartan factors.
In accordance with [23], real Cartan factors are real forms of complex Cartan

factors. They are completely described in [23, corollary 4·4] and [26, pages 11·5–
11·7]. Real Cartan factors can be described, up to isomorphism, as follows:
LetX and Y be two real Hilbert spaces of dimensions n andm respectively. Let P

and Q be two Hilbert spaces of dimensions p and q respectively, over the quaternion
field H, and finally, let H be a complex Hilbert space of dimension n.

(i) IR

n,m�L(X, Y )

(ii) IH

2p,2q�L(P, Q)

(iii) IC

n,n�{z ∈ L(H) : z∗ = z}

(iv) IIR

n �{x ∈ L(X) : x∗ =−x}

(v) IIH

2p�{w ∈ L(P ) : w∗ =w}

(vi) IIIR

n �{x ∈ L(X) : x∗ =x}

(vii) IIIH

2p�{w ∈L(P ) :w∗ =−w}

(viii) IV r,s
n �E, where E =X1 ⊕�1 X2 and X1,X2 are closed linear subspaces, of

dimensions r and s, of a real Hilbert space, X, of dimension greater or equal
to three, so that X2 =X1

⊥, with triple product

{x, y, z} = 〈x/y〉 z + 〈z/y〉x − 〈x/z̄〉 ȳ,

where 〈./.〉 is the inner product in X and the involution x → x̄ on E is defined
by x̄= (x1,−x2) for every x= (x1, x2). This factor is known as a real spin factor.

(ix) V O0�M1,2(O0)

(x) V O�M1,2(O)

(xi) V IO0�H3(O0)

(xii) V IO�H3(O)

where O0 is the real split Cayley algebra over the field of the real numbers and
O is the real division Cayley algebra (known also as the algebra of real division
octonions). The real Cartan factors (ix)–(xii) are called exceptional real Cartan
factors.
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Given a real or complex JB∗-triple U and a tripotent e ∈ U (i.e. {e, e, e} = e), then
e induces the following two decompositions of U

U = U0(e)⊕ U1(e)⊕ U2(e) = U 1(e)⊕ U−1(e)⊕ U 0(e)

where Uk(e)�{x∈U :L(e, e)x= k
2x} is a subtriple ofU andUk(e)�{x∈U :Q(e)(x)�

{e, x, e} = kx} is a real Banach subspace of U (compare [26, theorem 3·13]). The
natural projections of U onto Uk(e) and Uk(e) will be denoted by Pk(e) and P k(e),
respectively. The first decomposition is called the Peirce decomposition with respect
to the tripotent, e. The followingPeirce rules are satisfied for the Peirce decomposition

{Ui(e), Uj(e), Uk(e)} ⊆ Ui−j+k(e), where i, j, k = 0, 1, 2 and

Ul(e) = 0 for l � 0, 1, 2.

{U0(e), U2(e), U} = {U2(e), U0(e), U} = 0.

The following identities and rules are also satisfied

U2(e) = U 1(e)⊕ U−1(e), U1(e)⊕ U0(e) = U 0(e)

{U i(e), U j(e), Uk(e)} ⊆ U ijk(e), whenever ijk � 0.

It is known that for every tripotent e in a real or complex JB∗-triple U , the
mapping Q(e) is a period-2 conjugate linear automorphism of U2(e).
Two non-zero elements, x and y, in a real or complex JB∗-triple, U , are said to be

orthogonal, and we write x ⊥ y, if L(x, y) = 0 (equivalently L(y, x) = 0). Thus if e and
f are tripotents in U , we have e ⊥ f if and only if e ∈ U0(f ). The tripotents e and
f are said to be colinear, ef , if e ∈ U1(f ) and f ∈ U1(e). We say that e governs f ,
e � f , whenever f ∈ U2(e) and e ∈ U1(f ). A tripotent e is called unitary if U =U2(e),
whilst a non-zero tripotent e is called minimal if U 1(e) =Re (since in the complex
case U−1(e) = i U 1(e), this definition is equivalent to U2(e) =Ce).
A real or complex JBW∗-triple is a real or complex JB∗-triple that is a dual Banach

space. Every real or complex JBW∗-triple has a unique predual and its triple product
is separately weak∗-continuous (compare [4] and [27]).
According to [26, 11.9], we say that a real JB∗-triple E is reduced whenever

E2(e) =Re (equivalently, E−1(e) = 0) for every minimal tripotent e ∈ E. The reduced
real Cartan factors have been studied and classified in [26, 11.9] for the finite dimen-
sional case and in [23, table 1] (in the last case they correspond to those factors with
the parameter z =1). The non-reduced real Cartan factors are the following: IV n,0

n ,
V O, IH

2p,2q and IIIH

2p.

Remark 2·1. Let E be a real Cartan factor of type IV n,0
n . It is easy to check that

every norm-one element, e, in E is a minimal tripotent which is also unitary (i.e.
E2(e) =E), and thus E1(e) = 0.
Let E now denote the real Cartan factor V O and let e= (1, 0) in E. In this case we

can easily see that

E1(e) = {(0, z) : z ∈ O}, E1(e) = Re and

E−1(e) = {(y, 0) : y ∈ Span
R
{e1, . . . , e7}},
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where {1, e1, . . . , e7} denotes the canonical basis of O. Every tripotent element in
E1(e) must have the form f = (0, z), with zz∗ =1. The tripotent e lies in E1(f ).
In the two remaining non-reduced real Cartan factors, IH

2p,2q and IIIH

2p, it is easy
to see that, given a minimal tripotent, e, and a tripotent, f ∈ E1(e), we have e ∈
E1(f ) � E2(f ).

The next lemma shows that the situation in Remark 2·1 for non-reduced real
Cartan factors is the same for every real JB∗-triple.

Lemma 2·2. Let E be a real or a complex JB∗-triple, v a minimal tripotent in E and
e a tripotent in E1(v). Then v ∈ E2(e) � E1(e).

Proof. If E is a complex JB∗-triple, the proof follows from [9, lemma 2·1].
Suppose now that E is a real JB∗-triple. By [17, lemma 4·2 and theorem 4·4]

the bidual, E∗∗, of E is a real JBW∗-triple with a separate weak∗-continuous triple
product, extending the product of E. Therefore, given a tripotent e∈E we can
ascertain via Banach–Alaoglu’s theorem that

(E∗∗)j(e) = Ej(e)
w∗

and (E∗∗)k(e) = Ek(e)
w∗

,

for every j ∈ {0, 1,−1}, k ∈ {0, 1, 2} and consequently every minimal tripotent in E
is also a minimal tripotent in E∗∗. Thus, we can assume from now on that E is a real
JBW∗-triple.
By [29, theorem 3·6] there are two weak∗-closed ideals, A and N of E, so that

E = A ⊕∞ N,

whereA is the weak∗-closed real linear span of all minimal tripotents ofE,N contains
no minimal tripotents andA ⊥ N . Moreover it follows from the proof of [29, theorem
3·6] that A can be decomposed in the following �∞-sum

A = ⊕∞Cα,

where each Cα is a real Cartan factor or a complex Cartan factor when considered
as a real JB∗-triple and every minimal tripotent of E belongs to a unique Cα. Thus
we can suppose that v ∈ Cγ for a unique γ. Since for β � α we have Cα ⊥ Cβ, then
E1(v) = (Cγ)1(v). Therefore we can assume that E =Cγ is either a real Cartan factor
or a complex Cartan factor when considered as real.
If E is a complex Cartan factor when considered as real the statement follows from

[9, lemma 2·1].
Suppose now that E is a reduced real Cartan factor. Then v is a minimal tripotent

in Ê, the complexification of E. Therefore v ∈ Ê2(e) � Ê1(e). But, since τ (v) = v and
τ (e) = e, we have v ∈ (Ê2(e) � Ê1(e))τ =E2(e) � E1(e).
Finally, we assume that E is a non-reduced real Cartan factor. By [23, table 1,

page 210] (see also [26, 11·9]), E is one of the following IH

2p,2q, IIIH

2p, IV n,0
n , V O.

By [23, proposition 5·8], given two minimal tripotents, u and v ∈ E, there is an
automorphism of E interchanging u and v. This implies that to finish the proof it is
enough to check the statement of the lemma for one particular minimal tripotent in
each one of the previous four factors . Therefore, the statement follows from Remark
2·1 above.
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LetU be a real or complex JB∗-triple. Recall (cf. [7]) that an ordered triplet (v, u, ṽ)

of tripotents in U , is called a triangle if v⊥ṽ, u� v, u� ṽ and v =Q(u)ṽ. If u� v, we
say that (v, u) forms a pre-triangle. It is easy to see that (v, u, ṽ) forms a triangle with
ṽ =Q(u)v. An ordered quadruple (u1, u2, u3, u4) of tripotents is called a quadrangle if
u1⊥u3, u2⊥u4, u1u2u3u4u1 and u4 = 2 {u1, u2, u3} (the Jordan Identity main-
tains the above equality to still be true if the indices are permutated cyclically, e.g.
u2 = 2 {u3, u4, u1}). If u1, u2, u3 are tripotents in such a way that u1⊥u3, u1u2u3,
we say that (u1, u2, u3) forms a pre-quadrangle. In this case u4 = 2 {u1, u2, u3} is a
tripotent and (u1, u2, u3, u4) forms a quadrangle. The following lemma can be ob-
tained by applying Peirce rules and the definition of quadrangle.

Lemma 2·3. Let (u1, u2, u3, u4) be a quadrangle in a real or complex JB∗-triple U .
Then ε(u1 + u2 + u3 + u4) is a tripotent if and only if |ε|=2−1, and in the same way
ε(u1 + u2 + u3 − u4) is a tripotent if and only if |ε|=2−

1
2 .

Lemma 2·2 allows us to translate the result known as “Triple System Analyzer”
(cf. [7, proposition 2·1]) to the setting of real JB∗-triples, replacing [9, lemma 2·1] in
the proof of [7, proposition 2·1] with Lemma 2·2.

Proposition 2·4. Let U be a real or complex JBW∗-triple containing a minimal
tripotent v. Let u be a tripotent in U1(v). Then exactly one of the following 3 cases will
pertain:
(i) u is minimal in U ; this happens if and only if u and v are colinear;
(ii) u is not minimal in U but is minimal in U1(v); in this case (v, u) forms a pre-

triangle and ṽ = {u, v, u} is a minimal tripotent in U ;
(iii) if u is not minimal in U1(v), then two orthogonal minimal tripotents of U , u1,

ũ1 exist, both contained in U1(v), so that u=u1 + ũ1. Moreover ṽ = {u, v, u} is a
minimal tripotent of U and (u1, v, ũ1, ṽ) forms a quadrangle.

Let U be a real or complex JB∗-triple. We recall that the rank of U , r(U ), is
the minimal cardinal number r satisfying card(S) � r whenever S is an orthogonal
subset of U , i.e. 0 � S and x ⊥ y for every x � y in S. The rank of a real or complex
JB∗-triple is preserved by surjective isometries (cf. Proposition 2·9).

Corollary 2·5. Let v be a minimal tripotent in a real or complex JB∗-triple U . Then
r(U1(v))� 2, i.e., U1(v) does not contain more than two mutually orthogonal tripotents.

Remark 2·6. Let E =X1 ⊕�1 X2 be a real spin factor of dimension � 3.
If X1 and X2 are both non-zero, then it is easy to check that the set of minimal

tripotents of E is

MinTrip(E) =
{
1
2
(x1 + x2) : x1 ∈ X1, x2 ∈ X2 and ‖x1‖ = ‖x2‖ = 1

}
.

Let u= 1
2 (x1 + x2) be a minimal tripotent in E. It can be seen that E0(u) =Rū,

E2(u) =Ru, and E1(u) = ({x1}⊥ � X1)⊕ ({x2}⊥ � X2).
If Xi =0 for some i=1, 2, then

MinTrip(E) = {x : x ∈ E, ‖x‖ = 1}.

In the latter case, given a tripotent e∈E we have E0(e) =E1(e) = 0, E2(e) =E,
E1(e) =Re, and E−1(e) = {e}⊥.
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When X1 and X2 are non-zero then r(E) = 2, while r(E) = 1 whenever X1 or X2 is
zero.
Let (u, v, ũ) be a triangle in E with u, ũminimal. We note that in this case r(E) = 2

and hence X1, X2 � 0. One can check that u, v, ũ must have the following form
u= 1

2 (x1 + x2), ũ= ± 1
2 (x1 − x2) and v = y, where ‖x1‖= ‖x2‖=1, y is in the disjoint

union of
(
{x1}⊥ � X1

)
and

(
{x2}⊥ � X2

)
and ‖y‖=1. Moreover, since {u, v, ũ} = 1

2v,
it may be concluded that ε(u + v + ũ) is a minimal tripotent if and only if ε= ± 1

2 ,
whilst ε(u + v − ũ) is a tripotent if and only if ε= ± 1√

2
.

The following lemma is well known and immediately follows from the classification
of JB∗-triples of finite rank (c.f. [21, theorem 4·10]).

Lemma 2·7. Let U be a JBW∗-triple and let u and v be two orthogonal minimal
tripotents in U . Then U 2(u + v) is either C ⊕∞

C or a spin factor.

In [23, page 215], Kaup affirms that E2(u + v) is a spin factor whenever u and
v are minimal tripotents in the real JBW∗-triple E = IR

n,m. Since the latter is a real
reduced JBW∗-triple, our next result includes the above affirmation.

Corollary 2·8. Let E be a real reduced JBW∗-triple and let u, v be orthogonal
minimal tripotents in E. Then E2(u + v) is either R ⊕∞

R or a real spin factor.

Proof. Clearly E2(u + v) =Ru ⊕ Rv ⊕ [E1(u) � E1(v)]. If E1(u) � E1(v) = {0}, then
E2(u + v) can be identified as a real JBW∗-triple with R ⊕∞

R. Otherwise, since u
and v are two orthogonal minimal tripotents in Ê, then Ê2(u + v) is a JBW∗-triple
with dimÊ2(u + v) � 3. Now, by the above lemma, we may conclude that Ê2(u + v)
is a spin factor, and thus E2(u + v) is a real spin factor.

The next proposition summarizes some known facts about surjective isometries
between real JB∗-triples from [17].

Proposition 2·9. Let Φ:E →F be a surjective linear isometry between two real JB∗-
triples. The following assertions hold:
(i) Φ(x) ⊥ Φ(y) iff x ⊥ y;
(ii) for every tripotent e ∈ E, Φ maps the spaces E1(e), E0(e), and E−1(e) ⊕ E1(e)

into the corresponding spaces with respect to Φ(e);
(iii) Φ preserves the symmetrized triple product

〈x, y, z〉 = 1
3
({x, y, z} + {z, x, y} + {y, z, x}).

Proof. By passing to the bi-transpose of Φ we can suppose that we have a surjective
weak∗-continuous linear isometry between two real JBW∗-triples [17, lemma 4·2].
Since in a real JBW∗-triple the algebraic elements are dense (compare (i) ⇒ (ii) in
the proof of [17, theorem 4·8]), the statement follows from [17, proposition 3·8,
theorem 4·8].

When we have a surjective real linear isometry from a complex Cartan factor with
a unitary element to another complex Cartan factor we can deduce from the last
statement of the above proposition that the isometry is in fact a triple isomorphism.

Corollary 2·10. Let Φ: E →F be a surjective real linear isometry between two com-
plex Cartan factors. Suppose that E contains a unitary element u. Then Φ is a real triple
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isomorphism. Here the factor E can be any of the following: In,n, II2k, IIIn, IVn, and
V I.

Proof. We may assume r(E)> 1. By [23, proposition 5·7], we have F =Φ(E) =
Φ(E2(u)) =F2(Φ(u)), which proves that v =Φ(u) is a unitary element in F . It is well
known that E and F are JBW∗-algebras with products and involutions given by

x ◦1 y = {x, u, y} , x ◦2 y = {x, v, y} ,

x�1 = {u, x, u} , x�2 = {v, x, v} ,

respectively [33, propositions 19·13 and 19·7]. Moreover, in this case the triple product
is determined by the algebraic structure via the identity

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x − (x ◦ z) ◦ y∗,

where ◦ denotes ◦1 and ◦2 and ∗ denotes �1 and �2, respectively. Therefore, Φ is a unital
surjective real linear isometry between two JBW∗-algebras. By Proposition 2·9 (iii),
Φ preserves the symmetrized triple product and is unital. Then it is easy to see that
Φ�1 = �2Φ, Φ(x ◦1 y) =Φ(x) ◦2 Φ(y), (x, y ∈ E). Thus Φ is a Jordan ∗-isomorphism
and hence a triple isomorphism. The last statement in the corollary follows by [15,
proposition 2] and the fact that every complex spin factor has a unitary element [7,
corollary, page 313].

The following result is the main tool for the study of surjective isometries between
real reduced JB∗-triples.

Theorem 2·11. Let Φ:E → F be a surjective linear isometry between two real reduced
JBW∗-triples. Then Φ preserves quadrangles consisting of minimal tripotents. Moreover,
if (u, v, ũ) is a triangle in E with u, ũ minimal, then (Φ(u),Φ(v),Φ(ũ)) is a triangle in
F .

Proof. By Proposition 2·9, Φ preserves tripotents and the relations of minimal-
ity and orthogonality between them. Φ also preserves colinearity since E and F
are reduced. Hence, if (u1, u2, u3, u4) is a quadrangle of minimal tripotents in E,
then (Φ(u1),Φ(u2),Φ(u3),Φ(u4)) forms a quadrangle, except possibly for the property
Φ(u4) = 2 {Φ(u1),Φ(u2),Φ(u3)}. The rest of the proof is devoted to establishing the
last equality.
Denote by vi =Φ(ui) for i=1, 2, 3, 4. By Corollary 2·8, since v2 and v4 belong to

F2(v1 +v3), F2(v1 +v3) is a real spin factor of dimension � 4 and rank 2. Furthermore,
since Q(e) is an automorphism, we get that 2 {v1, v2, v3} =Q(v1 + v3)(v2) is a minimal
tripotent in F orthogonal to v2. Therefore, since in a real spin factor of rank 2 the
orthogonal space relative to a minimal tripotent has dimension 1 (see Remark 2·6),
then 2 {v1, v2, v3} = ± v4. Suppose that 2 {v1, v2, v3} = − v4. By Lemma 2·3, 1√

2
(u1 +

u2 +u3−u4) is a tripotent while its image by Φ, 1√
2
(v1 +v2 +v3−v4), is not a tripotent,

which contradicts the fact that Φ preserves tripotents.
To see the last statement of the theorem, let (u, v, ũ) be a triangle in E with u, ũ

minimal. As we have seen in the first part of the proof,

Φ(E1(u)) = F1(Φ(u)), Φ(E1(ũ)) = F1(Φ(ũ))
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and hence, by [7, lemma 2·4], it follows that

Φ|E2(u+ũ):E2(u + ũ) −→ F2(Φ(u) + Φ(ũ))

is a surjective isometry between two real spin factors of rank 2 (compare Remark
2·6). Since v is a tripotent in E1(u)� E1(ũ), and E is reduced, then Φ(v) ∈ F1(Φ(u))�
F1(Φ(ũ)). By Lemma 2·2, Proposition 2·4 and the fact that Φ(v) is not minimal, it
follows that Φ(v) � Φ(u) and Φ(v) � Φ(ũ). Therefore we only have to show that

Q(Φ(v))(Φ(u)) = Φ(ũ)

to get the statement. By Peirce rules and since Q(Φ(v)) is an automorphism on
F2(Φ(v), we have Q(Φ(v))(Φ(u)) ∈ F0(Φ(u)) =RΦ(ũ), which implies that

Q(Φ(v))(Φ(u)) = ±Φ(ũ).

Suppose that

Q(Φ(v))(Φ(u)) = −Φ(ũ),

in which case (Φ(u),Φ(v),−Φ(ũ)) is a triangle. By Remark 2·6, 1
2 (u + v + ũ) is a

tripotent in E, whilst

Φ
(
1
2
(u + v + ũ)

)
=
1
2
(Φ(u) + Φ(v) + Φ(ũ))

is not a tripotent, which is a contradiction.

Remark 2·12. Let C be a rank > 1 complex Cartan factor. By [7], there exist
a rectangular grid, a symplectic grid, a hermitian grid, a spin grid, or a first- or
second-type exceptional grid, built up of triangles and quadrangles in C. Moreover,
if C is not a type IIIn Cartan factor, then C is the weak∗-closed linear span of the
elements of the corresponding grid and all the non-vanishing triple products among
the elements of the grid are those associated to quadrangles of minimal tripotents or
to triangles (u, v, ũ) with u, ũ minimal.
If C is a type IR

n,m, I
H

2p,2q, IIR

n or IIIH

2p real Cartan factor, then, as in the complex
case, we can define a grid built up of quadrangles of minimal tripotents (compare
[23, proofs of propositions 5·14, 5·16 and 5·17]).
Let C = IV r,s

n =X1 ⊕�1 X2 be a real spin factor. We may assume that r � s. Let
{ei}i∈I and {fj}j∈J be orthonormal bases of X1 and X2 respectively. By hypothesis,
there is a set, J1, so that I = J � J1. We define ui =2−1(ei + fi), ũi =2−1(ei − fi) =ui,
whenever i ∈ J whilst ui = ei for all i ∈ I\J = J1. It thus follows that:
(i) ui is a minimal tripotent for all i ∈ J and ui is a tripotent for all i ∈ J1;
(ii) uj � ui, uj � ũi, Q(uj)(uk) =−uk, for all j ∈ J1, i ∈ J and k ∈ I;
(iii) (ui, uj , ũi, ũj) are odd quadrangles for i� j, i, j ∈ J ;
(iv) C =C2(ui + ũi) =C2(uj) for all i ∈ J and j ∈ J1;
(v) the non-vanishing triple products among elements of the set correspond to

those described in (2) and (3).
The family {ui, ũi, uj : i ∈ J, j ∈ J1} is called a real spin grid.
If C is a type IC

n,n real Cartan factor, the real “hermitian grid” in this case is
{vl

α,β}, where vl
α,β = (leα ⊗ eβ + eβ ⊗ leα) if α � β, vl

α,α = eα ⊗ eα, and {eα} is an
orthonormal basis of the complex Hilbert space H, l=1, i and (h ⊗ k)(x) = (x|k)h.
The same ideas hold good for IIIR

n and IIH

2p taking real and quaternionic Hilbert
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spaces,X and P , and l=1 and l=1, i, j, k, where 1, i, j, k is the quaternion’s canonical
basis, repectively. The same reasoning can be applied to get a hermitian grid for the
exceptional JB-algebra, V IO =H3(O).
Finally, we study the grids in the exceptional real Cartan factors. Let C be a type

V O0 real Cartan factor. It is easy to check that C contains two minimal orthogonal
tripotents, v and ṽ, so that dim (C2(v + ṽ)) = 8 and C1(v + ṽ)� 0. Therefore, bearing
in mind Proposition 2·4 and the fact that C is reduced, the proof of [7, proposition
on page 322] can be literally adapted to get an exceptional grid of the first type in C.
By adapting the proof of [7, proposition on page 323], the above arguments can be
applied to get an exceptional grid of the second type in V IO0 .

It is proved in [6, lemma 2·5] that every surjective real linear isometry between two
complex Cartan factors of greater rank than one is w∗-continuous. Our next result
shows that the same conclusion continues to be true for surjective linear isometries
between real JBW∗-triples.
Let X be a real or complex Banach space. Following [11], we define B(X) as the

set of all functionals ϕ ∈ X∗∗∗ so that for every non-empty closed convex subset,
C ⊂ X, the mapping

ϕ|
C

σ (X ∗∗,X ∗ ) :
(
C

σ(X∗∗,X∗)
, σ(X∗∗, X∗)

)
−→ F

has at least one point of continuity, where F denotes the base field. The universal
frame of X, γ(X), is defined as

γ(X) = (B(X) � j(X)◦)◦.

The space X is called well-framed if and only if γ(X) = j(X). In [11, théorème 16]
it is shown that the well-framed property is inherited by subspaces. The duals (and
hence the preduals) of von Neumann algebras and real and complex JBW∗-triples
are examples of well-framed Banach spaces (compare [11, théorème 18], [16], [27,
lemma 2·2]).

Lemma 2·13. Every linear surjective isometry between real JBW∗-triples is w∗-
continuous.

Proof. By [27, lemma 2·2], the predual of every real JBW∗-triple is well-framed.
This fact establishes that the predual of every JBW∗-triple satisfies the condition (∗)
of [12, theorem V·1]. Finally, the statement follows by [12, theorem VII·8].

Our next goal is to prove that the surjective real linear isometries between two
real reduced Cartan factors are triple isomorphisms.

Proposition 2·14. Let Φ:E → F be a surjective linear isometry between two real
reduced Cartan factors. Then Φ is a triple isomorphism.

Proof. We assume first that both factors are of rank greater than one. Since, as
we have seen in Remark 2·12 above, each reduced real Cartan factor of rank greater
than one, except types IIIR

n , I
C

n,n, IIH

2p and V IO, is the w∗-closed real linear span of
a grid built up of quadrangles of minimal tripotents and triangles (u, v, ũ) with u, ũ
minimal, the result follows from Theorem 2·11 and Lemma 2·13. When both factors
are rank-one reduced, they coincide with a type IR

1,n real Cartan factor (compare
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[23, proposition 5·4] and [26, 11·9]). By [23, lemma 5·12] every surjective isometry
between type IR

1,n real Cartan factors is a triple isomorphism.
Factors V IO, IC

n,n, IIH

2p, and IIIR

n are JB-algebras and hence every surjective
isometry between them is a triple isomorphism [18].

Following [23, page 214] we denote by IS the class of all real JB∗-triples, E, where
the surjective (real)-linear isometries Φ:E → E coincide with the triple automorph-
isms. Proposition 2·14 establishes that every real reduced Cartan factor is in the
class IS. The exceptional real Cartan factors V O0 and V IO0 are real reduced Cartan
factors (compare [23, table 1, page 210]), and hence, they are in the class IS. This
gives a positive answer to the question posed by Kaup in [23, page 217].
Our techniques (Corollary 2·10 and Proposition 2·14) cannot be applied to the

non-reduced real Cartan factors IH

2p,2q and IIIH

2n (compare [23, table 1]) nor to the
type In,m complex Cartan factor with n � m, n, m � 2, II2k−1 with k � 3, and V .
The remaining rank > 1 complex Cartan factors are in the class IS by [6] and the
non-reduced real Cartan factors not covered by our result are also in the class IS
according to [23, theorem 5·18]. In fact, our results overlap those of Dang [6] and
Kaup [23]. Actually Corollary 2·10 is an alternative proof of [6, proposition 2·6] for
those complex Cartan factors with a unitary element and Proposition 2·14 overlaps
Kaup’s results, showing that every non-exceptional rank > 1 real Cartan factor is in
the class IS. The following corollary holds good.

Corollary 2·15. Every real or complex Cartan factor of rank greater than one is in
the class IS.

The previous corollary allows us to extend [23, theorem 5·18] to exceptional rank
> 1 real Cartan factors by the same arguments given in [23].

Corollary 2·16. Let C be a real or complex Cartan factor of rank greater than one
and F a real JBW∗-triple. Then a bijective R-linear map Φ:C → F is an isometry if
and only if it is a real triple isomorphism.

3. Real JB∗-triples

We begin with the following Gelfand–Naimark type theorem for real JB∗-triples,
the proof of which, as in the complex case (cf. [10]), is based upon the atomic
decomposition of a real JBW∗-triple.

Proposition 3·1. Let E be a real JB∗-triple. Then E can be isometrically embedded
as a real subtriple of an �∞-sum of real Cartan factors and complex Cartan factors
regarded as real. More specifically, if A denotes the atomic part of E∗∗ and π:E∗∗ → A
is the canonical projection, then A is an �∞-sum of real or complex Cartan factors and
the mapping π ◦ j:E → A is an isometric triple embedding.

Proof. It is known that E∗∗ is a real JBW∗-triple, the triple product of which
extends the product of E [17]. In particular, j:E → E∗∗ is a triple homomorphism.
It should be remembered [29, theorem 3·6] that E∗∗ decomposes in the form

E∗∗ = A ⊕∞ N,

where A and N are weak∗-closed ideals, A being the weak∗-closed real linear span of
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all the minimal tripotents of E∗∗, N containing no minimal tripotents and A ⊥ N .
It follows by the proof of [29, theorem 3·6] that A is an �∞-sum of real and complex
Cartan factors. It is clear that π:E∗∗ → A is a triple homomorphism, and hence, π ◦j
is a triple homomorphism with norm less or equal to one. Therefore, we only have to
show that π ◦ j is an isometry to get the statement.
Let x ∈ E with ‖x‖=1. By the Krein–Milman, Hahn–Banach and Banach–

Alaoglu theorems there exists an extreme point of the unit ball of E∗, ϕ, such
that ϕ(x) = 1. By [29, corollary 2·1 and lemma 2·7], there is a minimal tripotent
u ∈ E∗∗ such that ϕ=ϕ ◦ P 1(u). Thus ϕ(N ) = 0 and hence ϕ=ϕ ◦ π. Finally

1 = ‖x‖ = ‖j(x)‖ � ‖π(j(x))‖ � ϕ(π(j(x))) = ϕ(x) = 1,

which proves that π ◦ j is an isometry.

The following theorem extends [6, theorem 3·1] to the real setting.

Theorem 3·2. Let Φ:E → F be a surjective linear isometry between two real JB∗-
triples. Suppose that E∗∗ does not contain (real or complex) rank-one Cartan factors.
Then Φ is a triple isomorphism.

Proof. The mapping Φ∗∗:E∗∗ → F ∗∗ is a surjective weak∗- continuous real-linear
isometry between JBW∗-triples. By Proposition 2·9, Φ∗∗ preserves tripotents and
the relations of minimality and orthogonality between them. Therefore, Φ∗∗ maps
the atomic part of E∗∗, AE∗∗ = ⊕�∞ Cα, into the atomic part of F ∗∗, AF∗∗ = ⊕�∞ Cβ.
Thus

Ψ = Φ∗∗|AE ∗∗ : ⊕�∞ Cα −→ ⊕�∞Cβ

is a surjective real-linear isometry from an �∞-sum of a family of real or complex
rank > 1 Cartan factors to another �∞-sum of the same type.
We claim that for every Cα, there is a unique Cβ such that Ψ(Cα) ⊆ Cβ. Indeed,

since every real reduced or complex Cartan factor of rank greater than one is spanned
by a grid built up of quadrangles of minimal tripotents or triangles, (u, v, ũ), with u, ũ
minimal (compare Remark 2·12 and [7]), we only have to show that each of the above
quadrangles or triangles is mapped by Ψ into a unique Cβ. Let (u1, u2, u3, u4) be a
quadrangle of minimal tripotents in a fixedCα. Since Ψmaps minimal tripotents into
minimal tripotents and every minimal tripotent belongs to a unique Cβ, it follows
that each Ψ(ui) belongs to a unique Cβ. Now, if Ψ(u1) and Ψ(u2) lie in different
factors then they, and hence u1 and u2, must be orthogonal, which is impossible. The
same reasoning holds for (Ψ(u2),Ψ(u3)) and (Ψ(u3),Ψ(u4)) and (u2, u3) and (u3, u4),
respectively.
Let now (u, v, ũ) be a triangle in Cα. Since the subtriple E2(u+ ũ) = (Cα)2(u+ ũ) is a

spin factor, we can assume that Cα is a spin factor. By Remark 2·6,m=2−1(u+v+ ũ)
is a minimal tripotent in Cα, which is not orthogonal to u nor ũ. As in the case of
quadrangle, this implies that the triangle is contained in a unique Cβ.
Therefore, Ψ|Cα

:Cα → Cβ is a (real) linear surjective isometry between two real
or complex Cartan factors of rank greater than one and then a triple isomorphism
by Corollary 2·16. This implies that Ψ is a real triple isomorphism. Finally, let
πE:E∗∗ → AE∗∗ , πF :F ∗∗ → AF∗∗ , jE, and jF be the canonical projections of E∗∗

and F ∗∗ onto their atomic parts and the canonical embeddings of E and F into their
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biduals, respectively. Since (πF ◦ jF ) ◦Φ=Ψ ◦ (πE ◦ jE), it follows, by Proposition 3·1
and the fact that Ψ is a real triple isomorphism, that Φ is a real triple isomorphism.

Remark 3·3. The conclusion of Theorem 3·2 is not always true when E∗∗ contains
a rank-1 Cartan factor. Indeed, let E and F be a type IR

1,n and a type IV n,0
n real

Cartan factor respectively. Then the identity map from E to F , both regarded as
n-dimensional real Hilbert spaces, is a surjective linear isometry which is not a triple
isomorphism. Another example of this fact can be found in [6, remark 2·7].

The following result is an application of our main theorem to the case of a real
J∗B-algebra extending [6, corollary 3·2]. Following [2], a J∗B-algebra is a real Jordan
algebra with unit 1 and an involution ∗ equipped with a complete algebra norm so
that ‖Ux(x∗)‖= ‖x‖3 and ‖x∗ ◦x‖ � ‖x∗ ◦x+y∗ ◦y‖, where Ux(y)�2x◦ (x◦y)−x2 ◦y.
It is shown in [2, theorem 4·4] that the complexification of every J∗B-algebra is a
complex JB∗-algebra, and hence a complex JB∗-triple, with a norm extending the
given one. Therefore, every J∗B-algebra is a real JB∗-triple with triple product

{a, b, c} = a ◦ (b∗ ◦ c) + c ◦ (b∗ ◦ a)− (a ◦ c) ◦ b∗.

Corollary 3·4. Let Φ:A → B be a surjective linear isometry between two J∗B-
algebras. Then Φ is a real triple isomorphism. If Φ is also unital then it is a ∗-algebra-
isomorphism.

Proof. The unit of A is a unitary element of A∗∗ when considered as a real JB∗-
triple. This implies that every factor in the atomic part of A∗∗ contains a unitary
element. If A∗∗ contains no real or complex rank one Cartan factors the proof is
provided by Theorem 3·2. Otherwise, let C be a real or complex Cartan factor of
rank one contained in the atomic part of A∗∗. If C is a complex Cartan factor or a
reduced real Cartan factor, it follows that C coincides with C or R, since C contains
a unitary element and every tripotent is minimal. If C is a non-reduced rank-1 real
Cartan factor with a unitary element, it can be seen that C coincides with a type
IV n,0

n real Cartan factor with n � 3 (compare, [26, 11·9] or [23, proposition 5·4]).
Suppose that A∗∗ contains a non-trivial rank one real Cartan factor Cα ≡ IV n,0

n

(n � 3). Now, by adapting the proof of Theorem 3·2 to this particular case we can
show that F ∗∗ contains another non-trivial rank-1 real Cartan factor Cβ ≡ IV n,0

n

(n � 3), so that Φ∗∗(Cα) =Cβ. By [23, lemma 5·13], we get that Φ∗∗|Cα
:Cα → Cβ is

a triple isomorphism. Now the proof proceeds as in Theorem 3·2.
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