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1. Introduction

In [18], R. Kadison proved that every surjective linear isometry
Φ : A → B between two unital C∗-algebras is of the form

Φ(x) = uT (x), x ∈ A,

where u is a unitary element in B and T is a Jordan ∗-isomorphism
from A to B. This result extends to non-abelian unital C∗-algebras the
classical Banach-Stone Theorem [3, 31] obtained in the 1930’s. Kadi-
son’s result was extended to surjective isometries between C∗-algebras
by A. L. T. Paterson and A. M. Sinclair [27], by replacing the unitary
element u by a unitary element in the multiplier C∗-algebra of the range
algebra. In particular, every surjective isometry between C∗-algebras
preserves the triple products of the form {x, y, z} = 2−1(xy∗z + zy∗x).

In the non-associative case, J. Wright and M. Youngson [34, Theo-
rem 6], established that every unital surjective linear isometry between
two unital JB∗-algebras is a Jordan ∗-isomorphism. In 1995, J. M.
Isidro and A. Rodŕıguez [17, Theorem 1.9] show that every surjective
linear isometry Φ between two JB-algebras is of the form

Φ(x) = bT (x),

where b is a central symmetry in the algebra of multipliers of the range
JB-algebra and T is a surjective algebra isomorphism. It also follows
from [17, Theorem 1.9] that a bijective linear map Φ between two JB-
algebras is an isometry if, and only if, Φ is an triple-isomorphism with
respect to the triple product {x, y, z} = (x◦y)◦z+(z◦y)◦x−(x◦z)◦y.
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Another extensions of the Banach-Stone Theorem for non-associative
Banach algebras can be found in [29] and [19].

C∗-algebras and JB∗-algebras belong to a more general class of
algebraic-topological structures known with the name of (complex)
JB∗-triples (see Section §2 for the definition). The Banach-Stone The-
orem for JB∗-triples, due to W. Kaup [21], establishes that a bijective
linear map Φ between two JB∗-triples is an isometry if, and only if, it
is a triple isomorphism. An alternative proof of Kaup’s version of the
Banach-Stone Theorem was obtained by T. Dang, Y. Friedman and B.
Russo in [8].

Along the history, others extensions of the Banach-Stone
Theorem have come out. One of the first is due to T. Dang, [6],
by studying real linear surjective isometries between (complex) JB∗-
triples. Motivated by the quantum mechanics, it turned out the study
of invertible affine maps on the unit sphere of the dual of a JB∗-triples
and these maps coincide with the adjoints of real (not necessarily com-
plex) linear surjective isometries (compare [6, first paragraph in page
972]). The Banach-Stone Theorem is not, in general, true for real
linear isometries between (complex) JB∗-triples (see [6, Remark 2.7]).
However, T. Dang shows in [6, Theorem 3.1] that if Φ : E → F is a
surjective real linear isometry between two (complex) JB∗-triples such
that E∗∗ does not contain nontrivial Cartan factors of rank 1, then Φ
is a triple isomorphism.

The structures of C∗-algebras, JB∗-algebras and (complex) JB∗-
triples have been generalized to real C∗-algebras, J∗B-algebras and real
JB∗-triples, respectively (see [13, 5], [2] and [16], see also §2 for com-
pleteness). The study of the Banach-Stone Theorem in these last struc-
tures is another line of generalization. For some of this structures, the
corresponding Banach-Stone Theorems have been obtained by several
authors as follows.

In 1990, M. Grzesiak proves an extension of the Banach-Stone
Theorem for abelian real C∗-algebras [23, Corollary 5.2.4]. For non-
necessarily abelian real C∗-algebras the Banach-Stone Theorem was
obtained by C.-H. H. Chu, T. Dang, B. Russo and B. Ventura (see
[5, Theorem 6.4]), showing that a linear bijection between two real
C∗-algebras is an isometry if, and only if, it is a triple isomorphism.

The study of surjective linear isometries between real JB∗-triples
begins in [16], where the authors prove that every triple isomorphism
between real JB∗-triples is an isometry, [16, Theorem 4.8]. However,
as we have seen before, not every surjective isometry is a triple isomor-
phism (see [6, Remark 2.7]). Recently, W. Kaup, [22], has studied the
Banach-Stone Theorem for real Cartan factors (real forms of complex
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Cartan factors, see §2 for completeness). In [22, Theorem 5.18], Kaup
has proved that every surjective real linear mapping from a non excep-
tional real or complex Cartan factor of rank > 1 to a real JBW∗-triple
is a triple isomorphism if, and only if, it is an isometry. In the just re-
ferred paper, the author left open the cases of the two exceptional real
Cartan factors V O0 and V IO0 (compare [22, page 217]). This problem
is the starting point of this paper.

In our first goal, Proposition 2.14, we conclude that every surjective
linear isometry between two real reduced Cartan factors is a triple
isomorphism. The novelties in our techniques lie in the concept of real
reduced JB∗-triple, already introduced by O. Loos [25, 11.9]. Most of
real Cartan factors are real reduced Cartan factors, in particular, the
exceptional real Cartan factors V O0 and V IO0 are real reduced Cartan
factors. This fact and our Proposition 2.14 give a positive answer to
the problem left open by Kaup. Moreover, our result for real reduced
Cartan factors, jointly with Kaup’s result for the non-reduced real or
complex Cartan factors, allow us to remove the hypothesis of non-
exceptionality in [22, Theorem 5.18] (see Corollary 2.16). Finally, in
our main result, Theorem 3.2, we get an extension of Dang’s Banach-
Stone Theorem to the setting of real JB∗-triples. As a consequence
of our main result we also obtain a Banach-Stone Theorem for J∗B-
algebras (Corollary 3.4).

Let X be a real or complex Banach space and let S ⊂ X. We
denote by X∗ and S◦ the dual space of X and the polar of S in X∗,
respectively. If X is a dual Banach space, X∗ will denote a predual of X
and S◦ will stand for the pre-polar of S in X∗. The canonical embedding
of X into X∗∗ will be denoted by j : X → X∗∗. The Banach space
of all bounded linear operator between two Banach spaces X and Y is
denoted by L(X, Y ) and L(X) will stand for L(X, X).

2. Surjective Isometries Between Real Cartan factors

We recall that a JB*-triple is a complex Banach space E together
with a triple product {., ., .} : E × E × E → E , which is continuous,
symmetric and linear in the outer variables and conjugate linear in the
middle one, satisfying

a) Jordan Identity : for all a, b, x, y, z ∈ E

L(a, b) {x, y, z} = {L(a, b)x, y, z} − {x, L(b, a)y, z}+ {x, y, L(a, b)z} ,

where L(a, b)x := {a, b, x};
b) For each a ∈ E the operator L(a, a) is hermitian with nonneg-

ative spectrum, and ‖L(a, a)‖ = ‖a‖2.
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Every C∗-algebra (respectively, every JB∗-algebra) is a complex
JB∗-triple with respect to the triple product {x, y, z} = 1

2
(xy∗z +zy∗x)

(respectively, {a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗).
A real Banach space E together with a trilinear map

{., ., .} : E × E × E → E is called a real JB*-triple if there is a
complex JB*-triple E and an R-linear isometry λ from E to E such
that λ{x, y, z} = {λx, λy, λz} for all x, y, z in E (see [16]).

Real JB∗-triples are essentially the closed real subtriples of com-
plex JB∗-triples and, by [16, Proposition 2.2], given a real JB∗-triple
E there exists a unique complex JB∗-triple E and a unique conjugation
(conjugate linear and isometric mapping of period 2) τ on E such that
E = Eτ := {x ∈ E : τ(x) = x}. In fact, E = E + iE is the com-
plexification of the vector space E, with triple product extending in a
natural way the triple product of E and a suitable norm. Along the
paper, the complexification of a real JB∗-triple E, equipped with the

structure of complex JB∗-triple, will be denoted by Ê. Given a com-
plex Banach space X and a conjugation τ on X, the real Banach space
Xτ = {x ∈ X : τ(x) = x} is called a real form of X. Given a conjuga-
tion τ on a complex JB∗-triple, then by Kaup’s Banach-Stone Theorem
for complex JB∗-triples [21] we can assure that τ is a conjugate-linear
triple isomorphism and hence, the real JB∗-triples coincide with the
real forms of complex JB∗-triples.

Every complex JB∗-triple is a real JB∗-triple regarded as a real Ba-
nach space. The class of real JB*-triples also includes all JB-algebras
[14], all real C*-algebras [13], and all J*B-algebras [2]. Another ex-
amples of real JB∗-triples are the so-called real and complex Cartan
factors, that are introduced below.

Cartan Factors

Classical Cartan factors can be classified in six different types (see
[20]. The Cartan factor of type 1, denoted by In,m, is the complex
Banach space, L(H, K), of bounded linear operators between two com-
plex Hilbert spaces H and K of dimensions n, m respectively, where
the triple is defined by {x, y, z} = 2−1(xy∗z + zy∗x).

We recall that given a conjugation, q, on a complex Hilbert space
H, we can define the following linear involution x 7→ xt := qx∗q on
L(H). The Cartan factor of type 2, denoted by IIn, (respectively,
type 3, IIIn) is the subtriple of L(H) formed by the skew-symmetric
operators (respectively, symmetric) for the involution t. Moreover, IIn

and IIIn are, up to isomorphism, independent of the conjugation q on
H.
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The Cartan factor of type 4, IVn (also called complex Spin factor),
is a complex Hilbert space provided with an conjugation x 7→ x, triple
product

{x, y, z} = 〈x/y〉 z + 〈z/y〉x− 〈x/z̄〉 ȳ,

and norm given by ‖x‖2 = 〈x/x〉+
√
〈x/x〉2 − | 〈x/x〉 |2.

The Cartan factor of type 6 is the 27-dimensional exceptional JB∗-
algebra
V I = H3(OC) of all symmetric 3 by 3 matrices with entries in the
complex Octonions OC [36]. The Cartan factor of type 5 is the sub-
triple, V = M1,2(OC) , of the Cartan factor of type 6. We also refer
to [14], [1], [30], [32], and [25] as a basic bibliographic about the
exceptional Cartan factors.

Following [22], real Cartan factors are real forms of complex Car-
tan factors. They are completely described in [22, Corollary 4.4] and
[25, pages 11.5-11.7]. Real Cartan factors can be described, up to
isomorphism, as follows:

Let X and Y be two real Hilbert spaces of dimensions n, and m
respectively. Let P and Q be two Hilbert spaces of dimensions p, and
q respectively, over the quaternion field H. Finally let H be a complex
Hilbert space of dimension n.

(1) IR
n,m := L(X, Y )

(2) IH
2p,2q := L(P, Q)

(3) IC
n := {z ∈ L(H) : z∗ = z}

(4) IIR
n := {x ∈ L(X) : x∗ = −x}

(5) IIH
2p := {w ∈ L(P ) : w∗ = w}

(6) IIIR
n := {x ∈ L(X) : x∗ = x}

(7) IIIH
2p :={w ∈L(P ) :w∗=−w}

(8) IV r,s
n := E where E = X1 ⊕`1 X2 and X1,X2 are closed linear

subspaces of a real Hilbert space, X, of dimension greater or
equal three, such that X2 = X1

⊥, with triple product

{x, y, z} = 〈x/y〉 z + 〈z/y〉x− 〈x/z̄〉 ȳ,

where 〈./.〉 is the inner product in X and the involution x → x̄
on E is defined by x̄ = (x1,−x2) for every x = (x1, x2). This
factor is known as real spin factor.

(9) V O0 := M1,2(O0)
(10) V O := M1,2(O)

(11) V IO0 := H3(O0)
(12) V IO := H3(O)

Where O0 is the real split Cayley algebra over the field of the
real numbers and O is the real division Cayley algebra (also
called the algebra of real division octonions). The real Cartan
factors 9− 12 are called exceptional real Cartan factors.
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Given a real or complex JB∗-triple U and a tripotent e ∈ U (i. e.
{e, e, e} = e), then e induces the following two decompositions of U

U = U0(e)⊕ U1(e)⊕ U2(e) = U1(e)⊕ U−1(e)⊕ U0(e)

where Uk(e) := {x ∈ U : L(e, e)x = k
2
x} is a subtriple of U and Uk(e) =

{x ∈ U : Q(e)(x) := {e, x, e} = kx} is a real Banach subspace of U
(compare [25, Theorem 3.13]). The natural projection of U onto Uk(e)
(respectively, Uk(e)) will be denoted by Pk(e) (respectively, P k(e)).
The first decomposition is called the Peirce decomposition with respect
to the tripotent e. The following Peirce rules are satisfied for the Peirce
decomposition

{Ui(e), Uj(e), Uk(e)} ⊆ Ui−j+k(e), where i, j, k = 0, 1, 2 and

Ul(e) = 0 for l 6= 0, 1, 2.

{U0(e), U2(e), U} = {U2(e), U0(e), U} = 0.

The following identities and rules are also satisfied

U2(e) = U1(e)⊕ U−1(e), U1(e)⊕ U0(e) = U0(e){
U i(e), U j(e), Uk(e)

}
⊆ U ijk(e), whenever ijk 6= 0.

It is known that for every tripotent e in a real or complex JB∗-triple
U , Q(e) preserves the triple product in U2(e).

Two non zero elements x, y in a real or complex JB∗-triple U are
said to be orthogonal and write x ⊥ y if L(x, y) = 0 (equivalently
L(y, x) = 0). In particular if e and f are tripotents in U , we have
e ⊥ f if and only if e ∈ U0(f); e and f are said to be colinear, e>f , if
e ∈ U1(f) and f ∈ U1(e)). We say that e governs f , e ` f , whenever
f ∈ U2(e) and e ∈ U1(f). A non-zero tripotent e is called minimal if
U1(e) = Re (since in the complex case U−1(e) = i U1(e), this definition
is equivalent to U2(e) = Ce).

A real or complex JBW∗-triple is a JB∗-triple which is a dual Ba-
nach space. Every real or complex JBW∗-triple has a unique predual
and its triple product is separately weak∗-continuous (compare [4] and
[26]).

Following [25, 11.9], we say that a real JB∗-triple E is reduced
whenever E2(e) = Re (equivalently, E−1(e) = 0) for every minimal
tripotent e ∈ E. The reduced real Cartan factors have been studied and
classified in [25, 11.9] in the finite dimensional case and in [22, Table
1] (in the last case they correspond to those factors with the parameter
z = 1). The non reduced real Cartan factors are the following IV n,0

n ,
V O, IH

2p,2q and IIIH
2n the remaining real Cartan factors are all reduced.
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Remark 2.1. Let E be a real Cartan factor of type IV n,0
n . It is easy

to check that every norm-one element, e, in E is a minimal tripotent
which is also unitary (i. e. E2(e) = E), in particular, E1(e) = 0.

Let now E denote the real Cartan factor V O. Let e = (1, 0) in E.
In this case, we can easily see that

E1(e) = {(0, z) : z ∈ O}, E1(e) = Re, and

E−1(e) = {(y, 0) : y ∈ SpanR{e1, . . . , e7}},
where {1, e1, . . . , e7} denotes the canonical basis of O. Every tripotent
element in E1(e) is of the form f = (0, z) with zz∗ = 1, and for such a
tripotent e lies in E1(f).

In the two remaining non reduced real Cartan factors (IH
2p,2q, IIIH

2n)
it is easy to see that given a minimal tripotent e and a tripotent
f ∈ E1(e), we have e ∈ E1(f) ∪ E2(f).

The next lemma shows that the situation studied in the above Re-
mark for non reduced real Cartan factors remains true for every real
JB∗-triple.

Lemma 2.2. Let E be a real or a complex JB*-triple, v a minimal
tripotent in E and e a tripotent in E1(v). Then v ∈ E2(e) ∪ E1(e).

Proof. If E is a complex JB∗-triple, the proof follows from [9,
Lemma 2.1].

Suppose now, that E is a real JB∗-triple. By [16, Lemma 4.2 and
Theorem 4.4], the bidual, E∗∗, of E is a real JBW∗-triple with separate
weak∗-continuous triple product extending the product of E. There-
fore, given a tripotent e ∈ E we can assure, by Banach-Alaouglu’s
Theorem, that

(E∗∗)j(e) = Ej(e)
w∗

and (E∗∗)k(e) = Ek(e)
w∗

,

for every j ∈ {0, 1,−1}, k ∈ {0, 1, 2}. As a consequence, every minimal
tripotent in E is also a minimal tripotent in E∗∗. Thus, we can assume
from now on, that E is a real JBW∗-triple.

By [28, Theorem 3.6] there are two weak∗-closed ideal A and N of
E such that

E = A⊕∞ N,

where A is the weak∗-closed real linear span of all minimal tripotents of
E, N contains no minimal tripotents and A ⊥ N . Moreover it follows
from the proof of [28, Theorem 3.6] that A can be decomposed in the
following `∞-sum

A = ⊕∞Cα,
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where each Cα is real Cartan factors or a complex Cartan factors re-
garded as a real JB∗-triple and every minimal tripotent of E belongs to
a unique Cα. Thus we can suppose that v ∈ Cγ for a unique γ. Since
for β 6= α we have Cα ⊥ Cβ, then E1(v) = (Cγ)1(v). Therefore we can
assume that E = Cγ is a real Cartan factor or a complex Cartan factor
regarded as real.

If E is a complex Cartan factor regarded as real the statement
follows from [9, Lemma 2.1].

Suppose now that E is a reduced real Cartan factor. Then v

is a minimal tripotent in the complexification Ê of E. Therefore

v ∈ Ê2(e) ∪ Ê1(e). But, since τ(v) = v and τ(e) = e, we have

v ∈
(
Ê2(e) ∪ Ê1(e)

)τ

= E2(e) ∪ E1(e).

Finally, we assume that E is a non reduced real Cartan factor. By
[22, Table 1, page 210] (see also [25, 11.9]), E is one of the following
IH
2p,2q, IIIH

2n, IV n,0
n , V O. By [22, Proposition 5.8], given two minimal

tripotents u, v ∈ E, there is an automorphism of E interchanging u
and v. This implies that it is enough to check the statement of the
lemma for a particular minimal tripotent in each one of the previous
four factors to finish the proof. Therefore, the statement follows from
Remark 2.1 above. �

Let U be a real or complex JB∗-triple. We recall (see [7]) that an
ordered triplet (v, u, ṽ) of tripotents in U , is called a trangle if v⊥ṽ,
u ` v, u ` ṽ and v = Q(u)ṽ. If u ` v, we say (v, u) form a pre-trangle.
It is easy to see that (u, v, ṽ) form a trangle with ṽ = Q(u)v. An ordered
quadruple (u1, u2, u3, u4) of tripotents is called a quadrangle if u1⊥u3,
u2⊥u4, u1>u2>u3>u4>u1 and u4 = 2 {u1, u2, u3} (The Jordan identity
assures that the above equality is still true if the indices are permutated
cylcically, e.g. u2 = 2 {u3, u4, u1}). If u1, u2, u3 are tripotents such that
u1⊥u3, u1>u2>u3, we say (u1, u2, u3) form a pre-quadrangle). In this
case we have that u4 = 2 {u1, u2, u3} is a tripotent and (u1, u2, u3, u4)
form a quadrangle. The following lemma can be obtained by applying
Peirce rules and the definition of quadrangle.

Lemma 2.3. Let (u1, u2, u3, u4) be a quadrangle in a real or complex
JB*-triple U . Then ε((u1 +u2 +u3 +u4) (respectively, ε((u1 +u2 +u3−
u4)) is a tripotent if, and only if, |ε| = ±2−1 (respectively, |ε| = ±2−

1
2 ).

Lemma 2.2 allows us to translate the result known as “Triple System
Analyzer” (see [7, proposition 2.1]), to the setting of real JB∗-triples
by replacing [9, Lemma 2.1] in the proof of [7, Proposition 2.1] with
Lemma 2.2.
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Proposition 2.4. Let U be a real or complex JBW*-triple contain-
ing a minimal tripotent v. Let u be a tripotent in U1(v). Then exactly
one of the following 3 cases will occur:

(1) u is minimal in U . This ocurrs if and only if u and v are
colinear.

(2) u is not minimal in U but is minimal in U1(v). In this case
(v, u) form a pre-trangle and ṽ = {u, v, u} is a minimal tripo-
tent in U .

(3) Finally if u is not minimal in U1(v), then there exists two
orthogonal minimal tripotents of U , u1, ũ1, contained in U1(v),
such that u = u1 + ũ1. Moreover ṽ = {u, v, u} is a minimal
tripotent of U and (u1, v, ũ1, ṽ) form a quadrangle.

Let U be a real or complex JB∗-triple. We recall that the rank
of a U , r(U), is the minimal cardinal number satisfying card(S) ≤ r
whenever S is an orthogonal subset of U , that is 0 /∈ S and x ⊥ y for
every x 6= y in S. The rank of a JBW∗-triple is preserved by surjective
isometries (see [16, Proposition 3.8 and the Proof of Theorem 4.8]).

Corollary 2.5. Let v be a minimal tripotent in a real or complex
JBW*-triple U . Then rank (U1(v))≤ 2.

Remark 2.6. Following [22] we recall that a real spin factor is a
Banach space E such that E = X1 ⊕`1 X2, where X1,X2 are closed
linear subspaces of a real Hilbert space, X, of dimension greater or
equal three, such that X2 = X1

⊥, with triple product

{x, y, z} = 〈x/y〉 z + 〈z/y〉x− 〈x/z̄〉 ȳ,

where 〈./.〉 is the inner product in X and the involution x → x̄ on
E is defined by x̄ = (x1,−x2) for every x = (x1, x2). When X1 and
X2 are both non zero, then it is easy to check that the set of minimal
tripotents of E is

MinTrip(E) =

{
1

2
(x1 + x2) : x1 ∈ X1, x2 ∈ X2 and ‖x1‖ = ‖x2‖ = 1

}
.

Let u = 1
2
(x1 + x2) be a minimal tripotent in E. It is easy to see that

E0(u) = Rū, E2(u) = Ru, and E1(u) =
(
{x1}⊥ ∩X1

)
⊕

(
{x2}⊥ ∩X2

)
.

When Xi = 0 for some i = 1, 2, then it is easy to see that

MinTrip(E) = {x : x ∈ E, ‖x‖ = 1}.
In the latter case, given a tripotent e ∈ E we have E0(e) = E1(e) = 0,
E2(e) = E, E1(e) = Re, and E−1(e) = {e}⊥.

When X1 and X2 are non zero, then rank(E) = 2, while
rank(E) = 1 whenever X1 or X2 is zero.
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Let (u, v, ũ) be a trangle in E with u, ũ minimal. We note that in
this case rank (E) = 2 and hence X1, X2 6= 0. One can check that u, v, ũ
must have the following form u = 1

2
(x1 + x2), ũ = ±1

2
(x1 − x2), and

v = y, where ‖x1‖ = ‖x2‖ = 1, y is in the disjoint union of
(
{x1}⊥ ∩X1

)
and

(
{x2}⊥ ∩X2

)
, and ‖y‖ = 1. Moreover, since {u, v, ũ} = 1

2
v, it can

be concluded that ε(u + v + ũ) is a minimal tripotent if and only if
ε = ±1

2
while ε(u + v − ũ) is a tripotent if and only if ε = ± 1√

2
.

Lemma 2.7. Let U be a JBW∗-triple and let u, v two orthogonal
minimal tripotents in U . Then U 2(u + v) is C⊕∞ C or a spin factor.

Proof. Since U 2(u + v) is a JBW∗-triple and u, v are
orthogonal minimal tripotents in U 2(u+v), we can assume without loss
of generality that U = U 2(u + v). Under this assumptions, applying
[7, Lemma 2.4], we have

U = Cu⊕ Cv ⊕W ,

where W = U 1(u) ∩ U 1(v) is a JBW∗-triple.
If W = {0}, then it is easy to see that U = C ⊕∞ C. Suppose

dim (W ) = 1. In this case W is generated by a minimal tripotent
w. Therefore, when we apply Proposition 2.4, it follows that only case
(1) or (2) can occur. Since, (u, w, v) form a pre-quadrangle if w is
minimal in U , we could extend it to a quadrangle (see [7, Proposition
1.7]), which contradicts that dim (U) = 3. Thus, only case (2) occur,
and hence w governs u and v. Now we can define a scalar product
〈./.〉 : U × U → C, by

〈αu + βv + γw/δu + λv + µw〉 =
1

2
(αδ̄ + βλ̄ + 2γµ̄)

and a conjugation¯: U → U given by ū = v, v̄ = u and w̄ = w, which
gives U a spin factor structure.

Suppose now dim (W) ≥ 2. By [7, Case 3. Proposition, page 312],
it is enough to show that rank U1(u) = 2.

We claim that W contains a minimal tripotent w1. Otherwise,
taking a tripotent e in W we have e is not minimal in W . By Propo-
sition 2.4(3), we can assure that there are two minimal tripotents in U
contained in W (and hence minimal in W) such that e is the sum of
them, which contradicts that W contains no minimal tripotents.

Suppose first that w1 is also minimal in U . Then Q(u+v)(w1) ∈ W
is a minimal tripotent in U , which is orthogonal to w1. Therefore, rank
U 1(u) ≥ 2, and it follows from Corollary 2.5 that rank U 1(u) = 2.

Suppose now that w1 is not minimal in U . If W 0(w1) 6= {0}, there
exits a tripotent in W 0(w1) ⊆ W that is orthogonal to w1, therefore
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rank U1(u) = 2. Suppose, on the contrary, that W 0(w1) = {0}. Since
dim (W) ≥ 2 and

W = W 2(w1)⊕W 1(w1) = Cw1 ⊕W 1(w1)

then, following the same reasoning given to obtain w1 ∈ W , it follows
that there exist another minimal tripotent w2 in W 1(w1). If w2 is not
minimal in W , by Proposition 2.4(2), then Q(w2)(w1) is a minimal
tripotent in W which is orthogonal to w1. This implies rank W ≥ 2
and hence rank U 1(u) = 2, as we wanted. We can finally suppose that
w2 is minimal in W and hence, by Proposition 2.4(1), w1>w2. In this
case we have two minimal tripotents w1,w2 in W that are not minimal
in U . By Proposition 2.4(2), applied to u, w1 and v, w2, we obtain
{w1, u, w1} is a minimal tripotent in U 0(u) = Cv. On the other hand,
by the Peirce rules {w1, u, w1} ∈ U 0(w2). This contradicts v ∈ U 2(w2).

�

In [22, page 215], Kaup affirms that E2(u + v) is a spin factor
whenever u, v are minimal tripotents in the real JBW∗-triple E = IR

n,m.
Since the latter is a real reduced JBW∗-triple, our next result include
the above affirmation.

Corollary 2.8. Let E be a real reduced JBW∗-triple and let u, v
be orthogonal minimal tripotent in E. Then E2(u + v) is R⊕∞ R or a
real spin factor.

Proof. Clearly E2(u+ v) = Ru⊕Rv⊕ [E1(u)∩E1(v)]. If E1(u)∩
E1(v)] = {0} , we have that E2(u + v) can be identified as real
JBW∗-triple with R ⊕∞ R. Otherwise, since u, v are two

orthogonal minimal tripotents in Ê, we have Ê2(u + v) is a

JBW∗-triple with dimÊ2(u + v) ≥ 3. Now by the above lemma we

have that Ê2(u + v) is a spin factor, so E2(u + v) is a real spin
factor. �

The next proposition summarizes some known facts about surjec-
tive isometries between real JB*-triples from [16].

Proposition 2.9. Let Φ : E → F be a surjective linear isometry
between two real JB*-triples. The following assertions holds

(1) Φ(x) ⊥ Φ(y) iff x ⊥ y;
(2) Φ({x, x, x}) = {Φ(x), Φ(x), Φ(x)};
(3) For every tripotent e ∈ E, Φ maps the spaces E1(e), E0(e),

and E−1(e)⊕E1(e) into the corresponding spaces with respect
to Φ(e);
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(4) Φ preserves the symmetrized triple product

< x, y, z >=
1

3
({x, y, z}+ {z, x, y}+ {y, z, x}).

Proof. By passing to the bi-transpose of Φ we can suppose that
we have a surjective weak∗-continuous linear isometry between two real
JBW∗-triples. Since in a real JBW∗-triple the algebraic elements are
dense (compare (i) ⇒ (ii) in the proof of [16, Theorem 4.8]), the
statement follows from [16, Proposition 3.8, Theorem 4.8]. �

When we have a surjective real linear isometry from a complex
Cartan factor with a unitary element to another complex Cartan factor,
we can deduce, from the last statement of the above proposition, that
the isometry is in fact a triple isomorphism.

Corollary 2.10. Let Φ : E → F be a surjective real linear isom-
etry between two complex Cartan factors. Suppose that E contains a
unitary element u. Then Φ is a triple isomorphism.

Proof. We may assume rank of E > 1. By [22, Proposition
5.7], we have F = Φ(E) = Φ(E2(u)) = F2(Φ(u)), which assures that
v = Φ(u) is a unitary element in F . It is well known that E (respec-
tively, F) is a JBW∗-algebra with product x ◦1 y = {x, u, y} and invo-
lution x]1 = {u, x, u} (respectively, x ◦2 y = {x, v, y}, x]2 = {v, x, v})
[33, Proposition 19.13]. Moreover, in this case, the the triple product
is determined by the algebraic structure through the identity

{x, y, z} = (x ◦ y∗) ◦ z + (z ◦ y∗) ◦ x− (x ◦ z) ◦ y∗.

Therefore, Φ is a unital surjective real linear isometry between two
JBW∗-algebras. By Proposition 2.9 (4), Φ preserves the symmetrized
triple product and is unital. Then it can be easily seen that Φ]1 = ]2Φ,
Φ(x◦1 y) = Φ(x)◦2 Φ(y), (x, y ∈ E). Thus Φ is a Jordan ∗-isomorphism
and hence a triple isomorphism. �

The following result is the main tool for the study of surjective
isometries between real reduced JB∗-triples.

Theorem 2.11. Let Φ : E → F be a surjective linear isometry
between two real reduced JBW∗-triples. Then Φ preserves quadrangles
consisting of minimal tripotents. Moreover, if (u, v, ũ) is a trangle in
E with u, ũ minimal, then (Φ(u), Φ(v), Φ(ũ)) is a trangle in F .

Proof. By Proposition 2.9, Φ preserves tripotents and the rela-
tions of minimality and orthogonality between them. Φ also preserves
colinearity since E and F are reduced. Hence, if (u1, u2, u3, u4) is a
quadrangle of minimal tripotents in E, we have that
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(Φ(u1), Φ(u2), Φ(u3), Φ(u4)) form a quadrangle unless maybe for the
property Φ(u4) = 2 {Φ(u1), Φ(u2), Φ(u3)}. The rest of the proof is
devoted to prove the last equality.

Denote by vi = Φ(ui) for i = 1, 2, 3, 4. By Corollary 2.8,
F2(v1 + v3) is a real spin factor of dimension ≥ 4 and rank 2, since
v2 and v4 belongs to F2(v1 + v3). In the other hand, we have that
2 {v1, v2, v3} = Q(v1 +v3)(v2) is a minimal tripotent in F orthogonal to
v2, since Q(e) is an automorphism. Therefore, since in a real Spin fac-
tor of rank 2, the orthogonal space relative to a minimal tripotent has
dimension 1 (see Remark 2.6), we have 2 {v1, v2, v3} = ±v4. Suppose
that 2 {v1, v2, v3} = −v4. By Lemma 2.3, 1√

2
(u1 + u2 + u3 − u4) is a

tripotent while its image by Φ, 1√
2
(v1 + v2 + v3− v4), is not a tripotent,

which contradicts that Φ preserves tripotents.
To see the last statement let (u, v, ũ) be a trangle in E with u, ũ

minimal. As we have seen in the first part of the proof,

Φ|E2(u+ũ) : E2(u + ũ) → F2(Φ(u) + Φ(ũ))

is a surjective isometry between two real spin factors of rank 2 (compare
Remark 2.6). Since v is a tripotent in E1(u)∩E1(ũ), and E is reduced,
then Φ(v) ∈ F1(Φ(u))∩F1(Φ(ũ)). By Lemma 2.2, Proposition 2.4 and
the fact that Φ(v) is not minimal, it follows that Φ(v) ` Φ(u) and
Φ(v) ` Φ(ũ). Therefore we only have to show that Q(Φ(v))(Φ(u)) =
Φ(ũ) to get the statement. By Peirce rules and since Q(Φ(v)) is an
automorphism on F2(Φ(v), we have Q(Φ(v))(Φ(u)) ∈ F0(Φ(u)) =
RΦ(ũ), which implies that Q(Φ(v))(Φ(u)) = ±Φ(ũ). Suppose that
Q(Φ(v))(Φ(u)) = −Φ(ũ), in which case (Φ(u), Φ(v),−Φ(ũ)) is a tran-
gle. By Remark 2.6, 1

2
(u + v + ũ) is a tripotent in E, while

Φ(1
2
(u + v + ũ)) = 1

2
(Φ(u) + Φ(v) + Φ(ũ)) is not a tripotent. �

Remark 2.12. Let C be a complex Cartan factor of rank > 1.
By [7], there exist a rectangular grid, a symplectic grid, an hermitian
grid, a spin grid, or an exceptional grid of type one or two built up
from trangles and quadrangles in C. Moreover, if C is not a type III
Cartan factor, then it is the weak∗-closed linear span of the elements of
the corresponding grid and all the non vanishing triples product among
the elements of the grid are those associated to quadrangles of minimal
tripotents or to trangles (u, v, ũ) with u, ũ minimal.

If C is a type IR
n,m, IH

2p,2q, IIR
n or IIIH

2p real Cartan factor, then we
can define, as in the complex case, a grid built up from quadrangles
of minimal tripotents (compare [22, Proofs of Propositions 5.14, 5.16
and 5.17]).
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Let C = IV r,s
n = X1 ⊕`1 X2 be a real spin factor. We can always

assume that r ≥ s. Let {ei}i∈I and {fj}j∈J be orthonormal basis of
X1 and X2, respectively. By hypothesis, there is a set J1 such that
I = J ∪ J1. We define ui = 2−1(ei + fi), ũi = 2−1(ei − fi) = ui,
whenever i ∈ J while ui = ei for all i ∈ I\J = J1. It is easy to see that

(1) ui is a minimal tripotent for all i ∈ J and ui is a tripotent for
all i ∈ J1;

(2) uj ` ui, uj ` ũi, Q(uj)(uk) = −uk, for all j ∈ J1, i ∈ J and
k ∈ I;

(3) (ui, uj, ũi, ũj) are odd quadrangles for i 6= j, i, j ∈ J ;
(4) C = C2(ui + ũi) = C2(uj) for all i ∈ J and j ∈ J1;
(5) The non vanishing triple products among elements of the set

correspond to those described in (2) and (3).

The family {ui, ũi, uj : i ∈ J, j ∈ J1} is called a real spin grid.
If C is a type IC

n,n = {z ∈ L(H) : z∗ = z} (respectively, IIIR
n or IIH

2p)
real Cartan factor (see [22, Theorem 4.1]). The real “hermitian grid” in
this case is as follows {vl

α,β}, where vl
α,β = (leα⊗eβ +eβ⊗ leα) if α 6= β,

vl
α,α = eα ⊗ eα, such that {eα} is an orthonormal basis of the complex

(respectively, real or Hilbertian) Hilbert space H (respectively, X or
P ), l = 1, i (respectively, l = 1, l = 1, i, j, k) and (h⊗ k)(x) = (x|k)h.

Finally, we study the grids in the exceptional real Cartan factors.
Let C be a type V O0 real Cartan factor. It is easy to check that C
contains two minimal orthogonal tripotents v, ṽ, such that dim (C2(v+
ṽ)) = 8 and C1(v+ ṽ) 6= 0. Therefore, having in mind that C is reduced
and Proposition 2.4, the proof of [7, Proposition in page 322] can be
literally adapted to get an exceptional grid of the first type in C. By
adapting the proof of [7, Proposition in page 323], the above arguments
can be applied to get an exceptional grid of the second type in V IO0 .

In [6, Lemma 2.5] it is proved that every surjective real linear isom-
etry between two complex Cartan factors of rank greater than one is
w∗-continuous. Our next result shows that the same conclusion still
being true for surjective linear isometries between real JBW∗-triples.

Let X be a real or complex Banach space. Following [11], we define
B(X) as the set of all functionals ϕ ∈ X∗∗∗ such that for every non-
empty closed convex subset C ⊂ X, the mapping

ϕ : (C
σ(X∗∗,X∗)

, σ(X∗∗, X∗)) → F

has at least one point of continuity, where F denotes the base field.
The universal frame of X, γ(X), is defined as

γ(X) = (B(X) ∩ j(X)◦)◦.
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The space X is called well-framed iff γ(X) = j(X). In [11, Théorème
16] it is shown that the well-framed property is inherited by subspaces.
The duals (and hence the preduals) of von Neumann algebras and real
or complex JBW∗-triples are examples of well-framed Banach spaces
(compare [11, Théorème 18], [15], [26, Lemma 2.2]).

Lemma 2.13. Every linear surjective isometry between real JBW*-
triples is w∗-continuous.

Proof. By [26, Lemma 2.2], the predual of every real JBW∗-triple
is well-framed. This fact assures that the predual of every JBW∗-triple
satisfies the condition (*) of [12, Theorem V.1]. Finally, the statement
follows by [12, Theorem VII.8]. �

Our next goal will consist in proving that the surjective real linear
isometries between two real reduced Cartan factors are triple isomor-
phisms.

Proposition 2.14. Let Φ : E → F be a surjective linear isometry
between two real reduced Cartan factors. Then Φ is a triple
isomorphism.

Proof. Let us assume first that both factors are of rank greater
than one. Since, as we have seen in Remark 2.12 above, each reduced
real Cartan factor of rank greater than one, except the types IIIR

n ,
IC
n,n, IIH

2p, and V IO, is the w∗-closed real linear span of a grid built up
from quadrangles of minimal tripotents and trangles (u, v, ũ) with u, ũ
minimal, the result follows from Theorem 2.11 and Lemma 2.13. When
both factors are reduced of rank one, then they coincide with a type
IR
1,n real Cartan factor (compare [22, Proposition 5.4] and [25, 11.9]).

By [22, Lemma 5.12] every surjective isometry between type IR
1,n real

Cartan factors is a triple isomorphism.
The factors V IO, IC

n,n, IIH
2p, and IIIR

n are JB-algebras and hence
every surjective isometry between them is a triple isomorphism by [17].

�

Following, [22, page 214], we denote by IS the class of all real
JB∗-triples E where the surjective (real)-linear isometries Φ : E → E
coincides with the triple automorphisms. Our Proposition 2.14 assures
that every real reduced Cartan factor is in the class IS. The excep-
tional real Cartan factors V O0 and V IO0 are real reduced Cartan factors
(compare [22, Table 1, page 210]), and hence, they are in the class IS.
This gives a positive answer to the question posed by Kaup in [22,
page 217].
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Our techniques (Proposition 2.14) are not valid for non-reduced real
or complex Cartan factors. The remaining (i. e. the non-reduced real
or complex Cartan factor of rank greater than one) are all the complex
Cartan factors of rank > 1, IH

2p,2q and IIIH
2n (compare [22, Table 1]).

In [6, Proposition 2.6], Dang shows that every complex Cartan factor
of rank > 1 is in the class IS. Finally, Kaup shows in [22, Theorem
5.18] that every non-exceptional real or complex Cartan factor of rank
greater than one is in the class IS. In fact, our result and Kaup’s one
overlap showing that every non-exceptional real Cartan factor of rank
> 1 is in the class IS. The following corollary follows now from these
results.

Corollary 2.15. Every real or complex Cartan factor of rank
greater than one is in the class IS.

The previous corollary allows us to extend [22, Theorem 5.18] to
exceptional real Cartan factors of rank > 1, by the same arguments
given in [22].

Corollary 2.16. Let C be a real or complex Cartan factor of
rank greater than one and F a real JBW*-triple. Then a bijective R-
linear map Φ : C → F is an isometry if, and only if, it is a triple
isomorphism.

3. Real JB∗-triples

We begin with the following Gelfand-Naimark type theorem for real
JB∗-triples whose proof, as in the complex case (see [10]), is based in
the atomic decomposition of a real JBW∗-triple.

Proposition 3.1. Let E be a real JB*-triple. Then E can be iso-
metrically embedded as a real subtriple of an `∞-sum of real Cartan
factors and complex Cartan factors regarded as real. More concretely,
if A denotes the atomic part of E∗∗ and π : E∗∗ → A is the canonical
projection, then A is an `∞-sum of real or complex Cartan factors and
the mapping π ◦ j : E → A is an isometric triple embedding.

Proof. It is known that E∗∗ is a real JBW∗-triple whose triple
product extends the product of E. In particular, j : E → E∗∗ is a triple
homomorphism. We recall [28, Theorem 3.6] that E∗∗ decomposes in
the form

E∗∗ = A⊕∞ N,

where A and N are weak∗-closed ideals, A being the weak∗-closed real
linear span of all minimal tripotents of E∗∗, N contains no minimal
tripotents and A ⊥ N . It follows by the proof of [28, Theorem 3.6]
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that A is an `∞-sum of real and complex Cartan factors. It is clear
that π : E∗∗ → A is a triple homomorphism, and hence, π ◦ j is a
triple homomorphism with norm less or equal to one. Therefore, we
only have to show that π ◦ j is an isometry to get the statement.

Let x ∈ E with ‖x‖ = 1. By the Kreim-Milman, Hahn-Banach and
Banach-Alaoglu’s Theorems there exists a extreme point of the unit
ball of E∗, ϕ, such that ϕ(x) = 1. By [28, Corollary 2.1 and Lemma
2.7], there is a minimal tripotent u ∈ E∗∗ such that ϕ = ϕ ◦ P 1(u). In
particular ϕ(N) = 0 and hence ϕ = ϕ ◦ π. Finally

1 = ‖x‖ = ‖j(x)‖ ≥ ‖π(j(x))‖ ≥ ϕ(π(j(x))) = ϕ(x) = 1,

which assures that π ◦ j is an isometry. �

The following Theorem extends [6, Theorem 3.1] to the real setting.

Theorem 3.2. Let Φ : E → F be a surjective isometry between two
real JB*-triples. Suppose that E∗∗ does not contain (real or complex)
Cartan factors of rank one. Then Φ is a triple isomorphism.

Proof. The mapping Φ∗∗ : E∗∗ → F ∗∗ is a surjective weak∗

continuous real-linear isometry between JBW∗-triples. By Proposi-
tion 2.9, Φ∗∗ preserves tripotents and the relations of minimality and
orthogonality between them. Therefore, Φ∗∗ maps the atomic part of
E∗∗, AE∗∗ = ⊕`∞Cα, into the atomic part of F ∗∗, AF ∗∗ = ⊕`∞Cβ. Thus

Ψ = Φ∗∗|AE∗∗ : ⊕`∞Cα → ⊕`∞Cβ

is a surjective real-linear isometry from an `∞-sum of a family of real
or complex Cartan factors of rank > 1 to another `∞-sum of the same
type.

We claim that for every Cα, there is a unique Cβ such that
Ψ(Cα) ⊆ Cβ. Indeed, since every real or complex Cartan factor of rank
greater than one is spanned by a grid built up from quadrangles of
minimal tripotents and trangles, (u, v, ũ), with u, ũ minimal (compare
Remark 2.12 and [7]), we only have to show that every quadrangle or
trangle as above is mapped by Ψ into a unique Cβ. Let (u1, u2, u3, u4)
be a quadrangle of minimal tripotents in a fixed Cα. Since Ψ maps
minimal tripotents into minimal tripotents and every minimal tripo-
tent belongs to a unique Cβ, it follows that each Ψ(ui) belongs to a
unique Cβ. Now, if Ψ(u1) and Ψ(u2) (respectively, Ψ(u2) and Ψ(u3) or
Ψ(u3) and Ψ(u4)) lie in different factors then they, an hence u1 and u2

(respectively, u2 and u3 or u3 and u4), must be orthogonal, which is
impossible. Let now (u, v, ũ) be a trangle in Cα. Since the grids formed
by trangles appear only in the case of a spin factor, we can assume that
Cα is a spin factor. By Remark 2.6, m = 2−1(u + v + ũ) is a minimal
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tripotent in Cα which is not orthogonal to u nor ũ. As in the case of
quadrangle, this implies that the trangle is contained in a unique Cβ.

Therefore, Ψ|Cα : Cα → Cβ is a (real) linear surjective isometry
between two real or complex Cartan factors of rank greater than one
and then a triple isomorphism by Corollary 2.15. This implies that Ψ is
a triple isomorphism. Finally, let πE : E∗∗ → AE∗∗ , πF : F ∗∗ → AF ∗∗ ,
jE, and jF be the canonical projections of E∗∗ and F ∗∗ onto their atomic
parts and the canonical embeddings of E and F into their biduals,
respectively. Since (πF ◦jF )◦Φ = Ψ◦(πE◦jE), it follows, by Proposition
3.1 and the fact that Ψ is a triple isomorphism, that Φ is a triple
isomorphism. �

Remark 3.3. The conclusion of Theorem 3.2 is not true when E∗∗

contains a rank one Cartan factor. Indeed, let E and F be a type IR
1,n

and a type IV n,0
n real Cartan factor respectively. Then the identity

map from E to F , both regarded as n-dimensional real Hilbert spaces,
is a surjective isometry which is not a triple isomorphism. Another
example of this fact can be found in [6, Remark 2.7].

The following result is an application of our main theorem to the
case of a (real) J∗B-algebra extending [6, Corollary 3.2 ]. Following
[2], we recall that a (real) J∗B-algebra is a real Jordan Algebra with
unit 1 and an involution ∗ equipped with a complete algebra norm
such that ‖Ux(x

∗)‖ = ‖x‖3 and ‖x∗ ◦ x‖ ≤ ‖x∗ ◦ x + y∗ ◦ y‖, where
Ux(y) := 2x ◦ (x ◦ y) − x2 ◦ y. In [2, Theorem 4.4] it is shown that
the complexification of every J∗B-algebra is a complex JB∗-algebra,
and hence a complex JB∗-triple, with a norm extending the original.
Therefore, every J∗B-algebra is a real JB∗-triple with triple product
{a, b, c} = a ◦ (b∗ ◦ c) + c ◦ (b∗ ◦ a)− (a ◦ c) ◦ b∗.

Corollary 3.4. Let Φ : A → B be a surjective isometry between
two (real) J*B-algebras. Then Φ is a triple isomorphism. If Φ is also
unital then it is a ∗-isomorphism.

Proof. The unit of A is a unitary element of A∗∗ regarded as a
real JB∗-triple. This implies that every factor in the atomic part of A∗∗

contains a unitary element. If A∗∗ contains no real or complex rank one
Cartan factors we conclude by Theorem 3.2. Otherwise, let C be a real
or complex Cartan factor of rank one contained in the atomic part of
A∗∗. If C is a complex Cartan factor or a reduced real Cartan factor,
it follows that C coincides with C or R, since C contains a unitary
element and every tripotent is minimal. If C is a non reduced rank
one real Cartan factor with a unitary element, it can be seen that C
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coincides with a type IV n,0
n real Cartan factor with n ≥ 3 (compare,

[25, 11.9] or [22, Proposition 5.4]).
Suppose that A∗∗ contains a non-trivial rank one real Cartan fac-

tor Cα ≡ IV n,0
n (n ≥ 3). Now adapting the proof of Theorem 3.2

to this particular case, we can show that F ∗∗ contains another non-
trivial rank one real Cartan factor Cβ ≡ IV n,0

n (n ≥ 3), such that
Φ∗∗(Cα) = Cβ. By [22, Lemma 5.13] we get that Φ∗∗|Cα : Cα → Cβ is
a triple isomorphism. The proof can be now concluded as in Theorem
3.2. �
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