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Abstract

We establish a geometric characterization of tripotents in real and complex JB∗-triples. As a con-
sequence we obtain an alternative proof of Kaup’s Banach–Stone theorem for JB∗-triples.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Recently, C.A. Akemann and N. Weaver have established “geometric” characterizatio
of the partial isometries, unitaries, and invertible elements in C∗-algebras in terms of th
norm. More precisely, in [1, Theorem 1] the authors proved that a norm-one elemenx in
a C∗-algebraA is a partial isometry if and only if the sets

D1(x) := {
y ∈ A: there existsα > 0 with ‖x + αy‖ = ‖x − αy‖ = 1

}

and

D2(x) := {
y ∈ A: ‖x + βy‖ = max

{
1,‖βy‖} for all β ∈ C

}

coincide.
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It is well known that every C∗-algebra belongs to the more general class of com
Banach spaces known as JB∗-triples (see definition below). Indeed, every C∗-algebra is a
JB∗-triple with respect to the triple product

{a, b, c} := 2−1(ab∗c + cb∗a)

and the same norm. An elemente in a JB∗-triple E is said to be a tripotent whenev
{e, e, e} = e. WhenA is a C∗-algebra regarded as a JB∗-triple, then it is also known tha
partial isometries and tripotents coincide (cf. [18, 2.2.8]). The question clearly is wh
the coincidence ofD1(x) andD2(x) could be applied to characterize the fact thatx is a
tripotent, whenx is a norm-one element in a JB∗-triple. In Theorem 2.1 we show that th
“geometric” characterization of tripotents elements in C∗-algebras obtained by Akeman
and Weaver is also valid for JB∗-triples. As a consequence, we obtain, in Theorem
an alternative proof of Kaup’s Banach–Stone theorem for JB∗-triples (cf. [15, Proposi-
tion 5.5]). The references [3] and [13, Theorem 4.8] contain also independent proofs
above mentioned result, however, the proof developed in this paper is a novelty with r
to the previous ones. In the last part of the paper we establish geometric characterizatio
of tripotents and complete tripotents in the more general class of real JB∗-triples (see The
orem 2.3 and Corollary 2.5). Finally, we describe in terms of the underlying Banach
structure those real JB∗-triples which are unital JB-algebras.

The basic “geometric” tool applied in our proofs involves results on M-structure in
triples and JBW*-triples and on the dual L-structure in their duals or preduals. It is w
mentioning that the theory of M-structure in JB*-triples and JBW*-triples has focuse
attention of diverse researchers in the last years. For example, the papers [2,6–9,
[5] contains results connected with this theory.

Given a Banach spaceX, we denote byBX , SX , andX∗ the closed unit ball, the un
sphere, and the dual space ofX, respectively.

2. Tripotents in real and complex JB∗-triples

A (complex)JB*-triple is a complex Banach spaceE equipped with a continuous tripl
product

{·, ·, ·} :E ⊗ E ⊗ E → E, (x, y, z) �→ {x, y, z},
which is bilinear and symmetric in the outer variables and conjugate linear in the m
one and satisfies

(a) Jordan identity

L(x, y){a, b, c} = {
L(x, y)a, b, c

}− {
a,L(y, x)b, c

}+ {
a, b,L(x, y)c

}

for all x, y, a, b, c ∈ E, where L(x, y) :E → E is the linear mapping given b
L(x, y)z = {x, y, z};

(b) The mapL(x, x) is an hermitian operator with nonnegative spectrum for allx ∈ E ;
(c) ‖{x, x, x}‖ = ‖x‖3 for all x ∈ E .
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Every C∗-algebra is a JB∗-triple with respect to the triple product{x, y, z} = 2−1(xy∗z+
zy∗x), every JB∗-algebra is a JB∗-triple with triple product{a, b, c} = (a ◦ b∗) ◦ c + (c ◦
b∗) ◦ a − (a ◦ c) ◦ b∗, and the Banach spaceB(H,K) of all bounded linear operators b
tween two complex Hilbert spacesH,K is also an example of a JB∗-triple with product
{R,S,T } = 2−1(RS∗T + T S∗R).

A JBW∗-triple is a JB∗-triple which is also a dual Banach space. The bidual,E∗∗, of
every JB∗-triple,E , is a JBW∗-triple with triple product extending the product ofE (cf. [4]).

For any JB*-tripleE and a tripotente ∈ E there exist decompositions ofE in terms of
the eigenspaces ofL(e, e) andQ(e) (whereQ(e)(x) = {e, x, e}) given by

E = E0(e) ⊕ E1(e) ⊕ E2(e) = E0(e) ⊕ E1(e) ⊕ E−1(e), (1)

whereEk(e) := {x ∈ E : L(e, e)x = kx/2} is a subtriple ofE (k: 0,1,2), Ek(e) = {x ∈ E :
Q(e)(x) = kx} (k: 0,1,−1). The natural projection ofE onto Ek(e) andEk(e) will be
denoted byPk(e) and Pk(e), respectively. The first decomposition is called the Pe
decomposition with respect to the tripotente and the natural projections are called Pei
projections. The following rules are also satisfied:

E2(e) = E1(e) ⊕ E−1(e), E−1(e) = iE1(e),
{
Ek(e),El(e),Em(e)

} ⊆ Ek−l+m(e),
{
E0(e),E2(e),E

} = {
E2(e),E0(e),E

} = 0,
{
Ep(e),Eq(e),Er (e)

} ⊆ Epqr (e) (p, q, r: 1,−1),

whereEk−l+m(e) = 0 wheneverk − l + m is not in {0,1,2}. It is also known thatE2(e)

is a unital JB∗-algebra with respect to the productx ◦ y = {x, e, y} and involutionx∗ =
{e, x, e}.

Let x be a norm one element in a Banach spaceX. The setD(X,x) of all states ofX
relative tox is define by

D(X,x) := {
f ∈ SX∗ : f (x) = ‖x‖}.

The following theorem generalizes [1, Theorem 1] to the setting of JB∗-triples. It is
worth pointing out that partial isometries and tripotents coincide in the case of a C∗-algebra
regarded as a JB∗-triple.

Theorem 2.1. Let E be a JB∗-triple and let x be a norm-one element in E. Then x is a
tripotent if and only if

D1(x) := {
y ∈ E : there exists α > 0 with ‖x + αy‖ = ‖x − αy‖ = 1

}

coincides with

D2(x) := {
y ∈ E : ‖x + βy‖ = max

{
1,‖βy‖} for all β ∈ C

}
.

Proof. (⇒) Supposex is a tripotent inE . The inclusionD2(x) ⊆ D1(x) holds for every
complex Banach space and every norm-one elementx in it. To see the converse inclusio
fix y ∈ D1(x) andα > 0 such that‖x + αy‖ = ‖x − αy‖ = 1. Letf ∈ D(E, x). It is easy
to check that

1 = ‖x ± αy‖2 �
∣∣f (x ± αy)

∣∣2 = 1+ α2
∣∣f (y)

∣∣2 ± 2α�f (y).
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Thereforef (y) = 0 (for everyf ∈ D(E, x)). It is worth remembering thatE2(x) is a com-
plex JB∗-algebra,P 1(x)(y) is an hermitian element inE2(x) and, by [7, Proposition 1],
for everyf ∈ D(E, x) we havef = fP2(x). ThereforeD(E, x) = D(E2(x), x). It is well
known that the norm of an hermitian elementh in the unital JB∗-algebraE2(x) can be com-
puted as supreme of the set{|f (h)|: f ∈ D(E2(x), x)}. Since for everyf ∈ D(E2(x), x),

f (y) = f
(
P2(x)(y)

) = f
(
P 1(x)(y)

) + f
(
P−1(x)(y)

)

with f (P 1(x)(y)) andif (P−1(x)(y)) in R, we have|f (P 1(x)(y))| � |f (y)|. Therefore,
we get

∥∥P 1(x)(y)
∥∥ = sup

{∣∣f (P 1(x)(y))
∣∣: f ∈ D(E, x)

}

� sup
{∣∣f (y)

∣∣: f ∈ D(E, x)
} = 0.

We can then assumeP2(x)(y) = s ∈ E−1(x) = iE1(x). Thusis ∈ E1(x). The expression

‖is‖ = sup
{∣∣f (is)

∣∣: f ∈ D
(
E2(x), x

)}

= sup
{∣∣f

(
P2(x)(iy)

)∣∣: f ∈ D
(
E2(x), x

)} = {∣∣f
(
y
)∣∣: f ∈ D

(
E2(x), x

)} = 0,

givess = 0. As a consequence,P2(x)(y) = 0 andy = P1(x)(y) + P0(x)(y). We denote
P1(x)(y) = y1 andP0(x)(y) = y0.

By [7, Lemma 1.5] the element{y1, y1, x} is hermitian and positive inE2(x). Given
f ∈ D(E, x) = D(E2(x), x), by Peirce rules we have

f
({y, y, x}) = f

({y1, y1, x}).
Again by Peirce rules, the positivity of{y1, y1, x} in E2(x), and the inequality

1 = ‖x + αy‖2 � f
({x + αy,x + αy,x})

= f (x) + α2f
({y1, y1, x}) = 1+ α2f

({y1, y1, x}),
we conclude thatf ({y1, y1, x}) = 0 (for all f ∈ D(E, x) = D(E2(x), x)). This shows tha
{y1, y1, x} = 0 and by [7, Lemma 1.5] we gety1 = 0. Thereforey = y0 ∈ E0(x) and now
[7, Lemma 1.3] ascertains that

‖x + βy‖ = max
{
1,‖βy‖},

and hencey ∈ D2(x).
(⇐) Suppose thatx is not a tripotent inE . Let C be the JB∗-subtriple ofE generated

by x. It is known that there exists a locally compact subsetSx ⊆ [0,1] such thatSx ∪ {0}
is compact and a surjective triple isomorphism (and hence an isometry)F :C → C0(Sx),
whereC0(Sx) is the C∗-algebra of all complex valued continuous functions onSx vanish-
ing at 0, andF(x)(t) = t for all t ∈ Sx (compare [14, 4.8] and [15, 1.15]).

SinceF(x) is not a tripotent inC0(Sx) we haveSx ∩ ]0,1[ �= ∅. Takeg in C0(Sx) given
by g(t) := (t − t3)9. Since the minimum value of(1 − t)(t − t3)−9 in (0,1) is strictly
greater than 1, we have(1− t) � g(t) for all t ∈ Sx . Then it follows that‖F(x) ± g‖ = 1.
Sinceg ∈ C0(Sx) there existst0 ∈ Sx such that‖g‖ = g(t0). Notice that, sinceg > 0 and
g(1) = 0 we must have 0< t0 < 1. Therefore
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‖g‖g

∥∥∥∥ �
∣∣∣∣t0 + g(t0)

‖g‖
∣∣∣∣ = 1+ t0 > 1.

Finally, we can takey = F−1(g) to get an element inD1(x) \ D2(x). �
One of the most celebrated results on the category of JB∗-triples is Kaup’s Banach–

Stone theorem for JB∗-triples which assures that the surjective isometries between
JB∗-triples coincide with the triple isomorphisms between them (cf. [15]). The geom
characterization of tripotents in JB∗-triples obtained in the previous theorem allows
to obtain an alternative proof of Kaup’s Banach–Stone theorem, following more o
known arguments.

Theorem 2.2. Let Φ : E →F be a surjective isometry between two JB∗-triples. Then Φ is
a triple isomorphism.

Proof. The bi-transpose ofΦ, Φ∗∗ :E∗∗ → F∗∗, is also a surjective isometry.E∗∗ and
F∗∗ are JBW∗-triples with triple products extending the ones ofE andF , respectively.
Therefore, except consideringΦ∗∗ instead ofΦ, we can assume thatΦ is a surjective
isometry between two JBW∗-triples.

By Theorem 2.1 we know thatΦ preserves tripotents. We claim thatΦ also preserve
orthogonal tripotents. Indeed, two tripotentse1, e2 in E are orthogonal if and only ife1±e2
is a tripotent ofE (compare [13, Lemma 3.6]). Therefore,Φ(e1), Φ(e2), andΦ(e1)±Φ(e2)

are tripotents inF . This shows thatΦ(e1) andΦ(e2) are orthogonal tripotents inF .
Let a ∈ E be an algebraic element, i.e.,a = ∑m

j=1 λj ej , whereλj ∈ C ande1, . . . , em

are orthogonal tripotents inE . SinceΦ preserves orthogonal tripotents we can see
Φ({a, a, a}) = {Φ(a),Φ(a),Φ(a)}. By [11, Lemma 3.11], for every elementx ∈ E there
is a sequence of algebraic elements converging in norm tox. Since the triple product i
jointly norm-continuous andΦ preserves cubes of algebraic elements, it can be concl
thatΦ preserves cubes. The expression

{x, y, x} = 4−1
3∑

k=0

(−i)k{x + iky, x + iky, x + iky} (x, y ∈ E)

allows us to assure thatΦ preserves triple products of the form{x, y, x} (x, y in E). Fi-
nally, since the triple product is symmetric in the outer variables, we get thatΦ is a triple
isomorphism. �

Following [13] we define a real JB∗-triple as a real closed subtriple of a JB∗-triple.
Clearly every JB∗-triple is a real JB∗-triple regarded as a real Banach space. Another
amples of real JB∗-triples are the real C∗-algebras and the Banach spaceB(H,K) of all
bounded real linear operator between two real Hilbert spacesH andK, with respect to the
triple product{a, b, c} = (1/2)(ab∗c + cb∗a).

Let E be a real JB∗-triple. It is known (cf. [13]) that there exists a unique complex J∗-
triple structure on the complexification̂E = E ⊕ iE and a unique conjugation (conjuga
linear isometry of period 2)τ on Ê such that

E = Êτ = {
z ∈ Ê: τ (z) = z

}
.



440 F.J. Fernández-Polo et al. / J. Math. Anal. Appl. 295 (2004) 435–443

r-
es

1,
ed for
ld

-

ing

ch
orem is

to
d to
By Kaup’s Banach–Stone theorem we can assure thatτ is a conjugate linear triple isomo
phism onÊ. Given a tripotente in a real JB∗-triple E, then the decompositions and rul
described in (1) are also satisfied byE except perhapsE−1(e) = iE1(e).

In the light of the geometric characterization of tripotents provided by Theorem 2.
the question clearly is whether the geometric characterization can be also obtain
tripotents in real JB∗-triples. LetE be a real JB∗-triple. The first observation that we shou
make is that the set calledD2(x) in Theorem 2.1 must be changed by

D′
2(x) = {

y ∈ E: ‖x + βy‖ = max
{
1,‖βy‖} for all β ∈ R

}
,

sinceE is only a real Banach space. We can state nowthe geometric characterization of
tripotents in a real JB∗-triple.

Theorem 2.3. Let E be a real JB∗-triple and let x be a norm-one element in E. Then x is
a tripotent if and only if

D1(x) := {
y ∈ E : there exists α > 0 with ‖x + αy‖ = ‖x − αy‖ = 1

}

coincides with

D′
2(x) := {

y ∈ E : ‖x + βy‖ = max
{
1,‖βy‖} for all β ∈ R

}
.

Proof. (⇒) Supposex is a tripotent inE; thenx is also a tripotent inÊ, the complexifi-
cation ofE. By Theorem 2.1 we have

DC

1 (x) = {
y ∈ Ê: there existsα > 0 with ‖x ± αy‖ = 1

}
(2)

= DC

2 (x) = {
y ∈ Ê: ‖x + βy‖ = max

{
1,‖βy‖} for all β ∈ C

}
. (3)

Takey ∈ D1(x) it is clear thaty ∈ DC

1 (x) = DC

2 (x) and hence

‖x + βy‖ = max
{
1,‖βy‖}

for all β ∈ R, which shows thaty ∈ D′
2(x). Therefore, we haveD1(x) ⊆ D′

2(x). The con-
verse inclusion is always true for any norm-one elementx in a real Banach space.

(⇐) Suppose now thatx is not a tripotent inE. Let Ê denote the complexifica
tion of E and τ the canonical conjugation satisfyinĝEτ = E. Since x neither is a
tripotent in Ê, it follows from the last part of the proof of Theorem 2.1 that tak
y = {{z, z, z}, {z, z, z}, {z, z, z}}, where z = x − {x, x, x}, we have‖x ± y‖ = 1 and
‖x + y/‖y‖‖ �= 1. Finally, sinceτ preserves the triple products, andτ (x) = x, we obtain
thatτ (y) = y, which givesy ∈ D1(x) \ D′

2(x). �
Remark 2.4. Since every JB∗-triple is a real JB∗-triple when is regarded as a real Bana
space and the concept of tripotent does not depend on the base field, the above The
also valid for JB∗-triples.

Let e be a tripotent in a real JB∗-triple E. Since the Peirce projections associatede
onE coincide with the restrictions of the corresponding Peirce projections associatee

on its complexification, it follows, by [7, Lemma 1.3], thatE0(e) ⊆ D′ (e).
2
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In [16, Proposition 3.5], W. Kaup and H. Upmeier proved that the extreme points o
unit ball of a complex JB∗-triple E are nothing but the complete tripotents ofE (cf. [16,
Proposition 3.3]). In [13, Lemma 3.3], J.M. Isidro et al. proved that the same concl
holds for real JB∗-triples. It is worth mentioning that a tripotente in a real or complex
JB∗-triple E is called complete ifE0(e) = 0.

We can see now how our geometric characterization of tripotents provides an alternativ
proof of the above fact. Lete be a norm-one element in a real or complex JB∗-triple E.
Then e is an extreme point of the unit ball ofE if and only if D1(e) = {0} (see com-
ments preceding [1, Theorem 2]). Let us suppose thate is a complete tripotent inE.
From the proofs of Theorems 2.1 and 2.3 it may be concluded thatD1(e) = E0(e).

Sincee is complete he haveE0(e) = {0} and consequentlye is an extreme point of th
unit ball of E. We assume now thate is an extreme point of the unit ball ofE. Then
{0} ⊆ D′

2(e) ⊆ D1(e) = {0}. Now Theorem 2.3 implies thate is a tripotent ofE. Since we
also haveE0(e) ⊆ D′

2(e) = {0}, we deduce thate is a complete tripotent ofE. We have
thus proved the following corollary.

Corollary 2.5. Let E be a real or complex JB∗-triple and let e be a norm-one element in E.
The following are equivalent:

(a) e is a complete tripotent.
(b) e is an extreme point of the unit ball of E.
(c) D1(e) = {0}.

By a real JBW∗-triple we mean a real JB∗-triple E whose underlying Banach spa
is a dual Banach space in such a way that the triple product ofE is separately weak∗-
continuous. It is known that the separate weak∗-continuity of the triple product can b
dropped (cf. [17]). The bidual of a real JB∗-triple is a real JBW∗-triple [13, Lemma 4.2].
It is also known that the algebraic elements in a real JBW∗-triple are norm dense (c
[13, proof of Theorem 4.8, (i)⇒ (ii)]). Therefore, when in the proof of Theorem 2.
Theorem 2.3 replaces Theorem 2.1, we arrive at the following result.

Theorem 2.6. Let Φ :E → F be a surjective isometry between two real JB*-triples. Then
Φ preserves cubes, i.e., Φ{a, a, a} = {Φ(a),Φ(a),Φ(a)}.

The conclusion of the above theorem is the best result we could have expec
surjective isometries between real JB∗-triple (compare [13, Example 4.12]).

The geometric characterization of the partial isometries in a C∗-algebraA given by
C. Akemann and N. Weaver was accompanied by similar characterizations of the unitarie
and invertible elements inA, where only the structure of Banach space is needed (c
Theorems 2 and 4]). The techniques developed in [1] could be analogously applied
a geometric characterization of the unitary elements in a complex JB∗-triple. Nevertheless
a shorter proof of the geometric characterization of the unitary elements in a C∗-algebra
(and in a complex JB∗-triple) has been recently obtained by A. Rodríguez-Palacios i
[20]. The following theorem establishing the just quoted geometric characterization
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unitary elements in a JB∗-triple is included for completeness reasons. We recall that
elementu in a real or complex JB∗-triple E is called unitary if and only ifL(u,u) = IdE .

Theorem 2.7 [20, Theorem 2.1].Let E be a (complex) JB∗-triple and let u be a norm-one
element in E. The following are equivalent:

(a) u is a unitary element in E .
(b) D(E, u) spans E∗.
(c) u is a vertex of the closed unit ball of E .

It is worth mentioning that a norm-one elementx in a Banach spaceX is a vertex of the
closed unit ball ofX if and only if D(X,x) separates the points ofX. It is well known that
in the case of a real JB∗-triple the above theorem is false in general. More concretely,u

is a unitary element in a real JB∗-triple then conditions (b) and (c) in the above theor
need not be satisfied. In the setting of real JB∗-triples we can establish the following resu

Proposition 2.8. Let E be a real JB∗-triple and let u be a norm-one element in E. The
following conditions are equivalent:

(a) D(E,u) spans E∗.
(b) u is a vertex of the closed unit ball of E.
(c) E is a JB-algebra with unit u and product x ◦ y := {x,u, y}.

Moreover any of the above conditions implies that u is a unitary element in E.

Proof. The implication (a)⇒ (b) follows straightforwardly even in a general Bana
space. To see (b)⇒ (c), let us suppose thatu is a vertex ofE. Since every vertex of th
closed unit ball of a Banach space is an extreme point of the closed unit ball, Corolla
ascertains thatu is a complete tripotent inE. Therefore,E = E1(u) ⊕ E−1(u) ⊕ E1(u).
By [19, Lemma 2.7], we havef (y) = 0 for everyf ∈ D(E,u) andy ∈ E−1(u) ⊕ E1(u).
Finally, sinceu is a vertex of the closed unit ball we conclude thatE = E1(u), which is a
JB-algebra with unitu and productx ◦ y := {x,u, y}. The implication (c)⇒ (a) is known
to be true (cf. [10, Lemmas 3.6.8 and 1.2.6]).�
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