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Abstract

We establish a geometric characterization of tripotents in real and comptexigi®s. As a con-
sequence we obtain an alternative proof of Kaup’s Banach—Stone theorent foipl8s.
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Recently, C.A. Akemann and N. Weaver haveblished “geometric” characterizations
of the partial isometries, unitaries, and invertible elements*iral@ebras in terms of the
norm. More precisely, in [1, Theorem 1] the authors proved that a norm-one elenrent
a C*-algebraA is a partial isometry if and only if the sets

D1(x) := {y € A: there existsx > 0 with [|x + ay|| = [x — ay| =1}
and
Da(x):={y € A: |lx + Byl =max{1, |Byl} for all g € C}

coincide.
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It is well known that every €algebra belongs to the more general class of complex
Banach spaces known as*3Biples (see definition below). Indeed, every-@lgebra is a
JB*-triple with respect to the triple product

{a,b,c}:=2"Yab*c + cb*a)

and the same norm. An elementin a JB-triple £ is said to be a tripotent whenever
{e,e,e} = e. WhenA is a C'-algebra regarded as a'3Biple, then it is also known that
partial isometries and tripotents coincide (cf. [18, 2.2.8]). The question clearly is whether
the coincidence oDj(x) and D2 (x) could be applied to characterize the fact thas a
tripotent, wherx is a norm-one element in a 3Briple. In Theorem 2.1 we show that the
“geometric” characterizatimof tripotents elements in*Galgebras obtained by Akemann

and Weaver is also valid for JBriples. As a consequence, we obtain, in Theorem 2.2,
an alternative proof of Kaup’s Banach—Stone theorem fortiles (cf. [15, Proposi-

tion 5.5]). The references [3] and [13, Theorem 4.8] contain also independent proofs of the
above mentioned result, however, the proof developed in this paper is a novelty with respect
to the previous ones. In the last part of the pape establish geometric characterizations

of tripotents and complete tripotesnin the more general class of real3Biples (see The-

orem 2.3 and Corollary 2.5). Finally, we describe in terms of the underlying Banach space
structure those real JBriples which are unital JB-algebras.

The basic “geometric” tool applied in our proofs involves results on M-structure in JB*-
triples and JBW*-triples and on the dual L-structure in their duals or preduals. It is worth
mentioning that the theory of M-structure in JB*-triples and JBW*-triples has focused the
attention of diverse researchers in the last years. For example, the papers [2,6-9,12] and
[5] contains results connected with this theory.

Given a Banach spacg, we denote byBx, Sx, and X* the closed unit ball, the unit
sphere, and the dual spaceXfrespectively.

2. Tripotentsin real and complex JB*-triples
A (complex)JB*-tripleis a complex Banach spa€eequipped with a continuous triple
product
{77}5®5®5_)5’ (xsysz)'_){-x’y’Z}’

which is bilinear and symmetric in the outer variables and conjugate linear in the middle
one and satisfies

(a) Jordan identity
L(x,y){a,b,c}= {L(x, y)a, b, c} - {a, L(y,x)b, c} + {a, b, L(x, y)c}

for all x,y,a,b,c € £, where L(x,y):£ — £ is the linear mapping given by
L(x,y)z={x,y,z};

(b) The mapL(x, x) is an hermitian operator with nonnegative spectrum fox &l&;

(©) IHx,x,x}=lx|®forall x € £.
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Every C'-algebra is a JBtriple with respect to the triple produgt, y, z} = 2~ 1(xy*z+
zy*x), every JB-algebra is a JB-triple with triple product{a, b,c} = (@ o b*)oc+ (co
b*) oa — (a o ¢) o b*, and the Banach spa@ H, K) of all bounded linear operators be-
tween two complex Hilbert spacd$, K is also an example of a JBriple with product
(R, S, T} =2"YRS*T + T S*R).

A IBW*-triple is a JB-triple which is also a dual Banach space. The bidu&f, of
every JB-triple, £, is a JBW -triple with triple product extending the productS{cf. [4]).

For any JB*-triple€ and a tripotent € £ there exist decompositions éfin terms of
the eigenspaces df(e, ¢) and Q(e) (whereQ(e)(x) = {e, x, e}) given by

£ =Eo(e) ®Erle) ® Ex(e) = E%e) ® EX(e) ® E7L(e), (1)

where&y(e) := {x € £ L(e, e)x = kx/2} is a subtriple of (k: 0,1,2), EX(e) = {x € &:
Q(e)(x) = kx} (k: 0,1, —1). The natural projection of onto & (e) and £X(e) will be
denoted byP,(e) and PX(e), respectively. The first decomposition is called the Peirce
decomposition with respect to the tripotersind the natural projections are called Peirce
projections. The following rules are also satisfied:

Eae)=E)BE ), EMe)=iEYe),
{&(e). Ei(e), Em(e)} S Ex—tymle),

{€o(e). E2(e). £} = {&a(e), En(e). £} =0,

{€P(e). E9(e). E (&)} SEPT(e) (p.q.r: 1,-1),

where&_;+m(e) = 0 wheneverk — [ + m is not in {0, 1, 2}. It is also known thats(e)
is a unital JB-algebra with respect to the product y = {x, ¢, y} and involutionx™ =
{e, x, e}.

Let x be a norm one element in a Banach sp&c& he setD(X, x) of all states ofX
relative tox is define by

D(X,x):={f €8x f(x)=|xll}.

The following theorem generalizes [1, Theorem 1] to the setting &ftdiBles. It is
worth pointing out that partial isometries and tripotents coincide in the case’cbig€bra
regarded as a JBtriple.

Theorem 2.1. Let £ be a JB*-triple and let x be a norm-one element in E. Then x isa
tripotent if and only if

Di(x) := {y € & thereexistsa > Owith ||x + ay|| = |lx —ay| = 1}
coincideswith

Da(x):={y €& |lx + Byl =max{1,||Byll} for all g € C}.
Proof. (=) Supposex is a tripotent in€. The inclusionD2(x) € D1(x) holds for every
complex Banach space and every norm-one elemémit. To see the converse inclusion

fix y € D1(x) anda > 0 such thatjx + ay| = ||x —ay| = 1. Let f € D(E, x). Itis easy
to check that

1=x£ayl® > |f(c 2 ay) > =1+ 2| f()]° £ 209 (7).
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Thereforef (y) = 0 (for everyf € D(&, x)). Itis worth remembering thak (x) is a com-
plex JB-algebra,P1(x)(y) is an hermitian element ifix(x) and, by [7, Poposition 1],
forevery f € D(E, x) we havef = f P2(x). ThereforeD(E, x) = D(E2(x), x). Itis well
known that the norm of an hermitian elemérih the unital JB-algebrafz(x) can be com-
puted as supreme of the ¢f (h)|: f € D(E2(x), x)}. Since for everyf € D(E2(x), x),

f) = F(P2)) = F(Pr@M) + (P O))

with £ (P1(x)(y)) andif (P~1(x)(y)) in R, we havel f (P1(x)(»))| < | £ (). Therefore,
we get

[P ()| = sup|| £ (P ())]: f e DE, x)}
<sup{|f)|: feDE x)}=0.

We can then assum® (x)(y) =s € E~Y(x) =i E1(x). Thusis € E1(x). The expression

lisl =sup{|f(is)|: f e D(Ex), x)}
=sup{| f(P2(x)(iy))|: f € D(&20x),x)} ={|f(y)|: f€D(Exx).x)}=0,

givess = 0. As a consequenc@,(x)(y) = 0 andy = P1(x)(y) + Po(x)(y). We denote
P1(x)(y) = y1 and Po(x)(y) = yo.

By [7, Lemma 1.5] the elemerity;, y1, x} is hermitian and positive ig2(x). Given
f e D(,x)=D(Ex), x), by Peirce rules we have

f(y.y.x}) = f({y1. y1. x}).
Again by Peirce rules, the positivity ¢$1, y1, x} in £2(x), and the inequality

1=|x+ayl®> f({x +ay. x +ay.x})
= () + o2 f({y1. y1.x}) = L+ o2 f ({y1. y1. x}),

we conclude thay ({y1, y1,x}) =0 (for all f € D(E, x) = D(E2(x), x)). This shows that
{y1, y1,x} =0 and by [7, Lemma 1.5] we get = 0. Thereforey = yp € £(x) and now
[7, Lemma 1.3] ascertains that

lx + Byl = max{1, [ Byll},

and hence € Da(x).

(<) Suppose that is not a tripotent ir€. Let C be the JB-subtriple of€ generated
by x. It is known that there exists a locally compact sulfset [0, 1] such thatS, U {0}
is compact and a surjective triple isomorphism (and hence an isonfeti§)— Co(S;),
whereCo(S,) is the C-algebra of all complex valued continuous functionsServanish-
ing at 0, andF (x)(¢) =1t for all t € S, (compare [14, 4.8] and [15, 1.15]).

SinceF (x) is not a tripotent inCo (S, ) we haveS, N 10, 1[ £ @. Takeg in Co(Sy) given
by g(r) := (t — 13)%. Since the minimum value ofl — 1)(t — t3)~% in (0, 1) is strictly
greater than 1, we hav@ — r) > g(¢) for all t € Sy. Then it follows thatl| F (x) + g|| = 1.
Sinceg € Co(S,) there existgg € S, such thatl|g|| = g(¢p). Notice that, sincg > 0 and
g(1) =0 we must have & 19 < 1. Therefore
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1 1
HF(x>+—gH > ‘t0+—g( 0
Il lll

Finally, we can take = F~1(g) to get an element ib1(x) \ D2(x). O

=1+1>1

One of the most celebrated results on the category dftdples is Kaup’s Banach—
Stone theorem for JBtriples which assures that the surjective isometries between two
JB*-triples coincide with the triple isomorphisms between them (cf. [15]). The geometric
characterization of tripotents in JBriples obtained in the previous theorem allows us
to obtain an alternative proof of Kaup’s Banach—Stone theorem, following more or less
known arguments.

Theorem 2.2. Let @ : £ — F be a surjective isometry between two JB*-triples. Then @ is
a triple isomorphism.

Proof. The bi-transpose o®, @**:&** — F**, is also a surjective isometrg.** and
F** are JBW -triples with triple products extending the ones&fand F, respectively.
Therefore, except considerirg** instead ofd, we can assume that is a surjective
isometry between two JBWhriples.

By Theorem 2.1 we know thad preserves tripotents. We claim thatalso preserves
orthogonal tripotents. Indeed, two tripotentse; in £ are orthogonal if and only #1 + ez
is atripotent of (compare [13, Lemma 3.6]). Therefor(e1), @ (e2), andd (e1) =D (e2)
are tripotents inF. This shows thatb (e1) and® (e2) are orthogonal tripotents i

Leta € £ be an algebraic element, i.e.=3"_; 1 je;, wherei; € C andey, ..., ey
are orthogonal tripotents i&i. Since® preserves orthogonal tripotents we can see that
®{a,a,a}) ={®(a), P(a),®(a)}. By [11, Lemma 3.11], for every elemente £ there
is a sequence of algebraic elements converging in norm ®ince the triple product is
jointly norm-continuous an@ preserves cubes of algebraic elements, it can be concluded
that® preserves cubes. The expression

3
{x,y,x)} =4_1Z(—i)k{x +ify x +ify, x+ify) (x,yed)
k=0
allows us to assure that preserves triple products of the forfm, y, x} (x, y in £). Fi-
nally, since the triple product is symmetric in the outer variables, we getithaia triple
isomorphism. O

Following [13] we define a real JBtriple as a real closed subtriple of a*3Biple.
Clearly every JB-triple is a real JB-triple regarded as a real Banach space. Another ex-
amples of real JBtriples are the real Galgebras and the Banach spa®@, K) of all
bounded real linear operator beten two real Hilbert spacd$ and K, with respect to the
triple product{a, b, ¢} = (1/2)(ab*c + cb*a).

Let E be areal JB-triple. It is known (cf. [13]) that there exists a unique complex-JB
triple structure on the complexificatidﬁ = E @i E and a unique conjugation (conjugate
linear isometry of period 2) on E such that

E=E"={zeE: t(2) =z}
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By Kaup’s Banach—Stone theorem we can assurertisaé conjugate linear triple isomor-
phism onE. Given a tripotent in a real JB-triple E, then the decompositions and rules
described in (1) are also satisfied Byexcept perhapg —1(e) =i E1(e).

In the light of the geometric characteriiman of tripotents provided by Theorem 2.1,
the question clearly is whether the geometric characterization can be also obtained for
tripotents in real JB-triples. LetE be a real JB-triple. The first observation that we should
make is that the set calledy(x) in Theorem 2.1 must be changed by

Dy(x)={y € E: |lx + Byll=max{1,||Byll} forall g € R},

sinceE is only a real Banach space. We can state tfmwgeometric charcterization of
tripotents in a real JBtriple.

Theorem 2.3. Let E be areal JB*-triple and let x be a norm-one element in E. Then x is
atripotent if and only if

Di(x) :={y € & thereexistsa > O with [|x + oy | = [lx — ayl| = 1}
coincideswith

Dy(x):={y €& |lx+ Byl =max{1,|By|} for all B e R}.

Proof. (=) Supposer is a tripotent inE; thenx is also a tripotent irt, the complexifi-
cation of E. By Theorem 2.1 we have

Df (x) = |y € E: there exists > 0 with || x £ ay| =1} (2)
=D5(x)={yeE: |lx+Byll=max{1,||py|} forall g € C}. (3)
Takey € D1 (x) itis clear thaty € D (x) = DS (x) and hence

llx + Byl = max{, [ Byll}

for all g € R, which shows thay € D5(x). Therefore, we hav®;(x) € D,(x). The con-
verse inclusion is always true for any norm-one elemeinta real Banach space.

(<) Suppose now that is not a tripotent inE. Let E denote the complexifica-
tion of E and t the canonical conjugation satisfyin§f* = E. Since x neither is a
tripotent in £, it follows from the last part of the proof of Theorem 2.1 that taking
y ={{z.2, 2}, {z, 2z, 2}, {2z, z. 2}}, wherez = x — {x,x,x}, we have|x £ y| =1 and
lx + y/llyllll # 1. Finally, sincer preserves the triple products, angx) = x, we obtain
thatz(y) =y, which givesy € D1(x) \ D,(x). O

Remark 2.4. Since every JB-triple is a real JB-triple when is regarded as a real Banach
space and the concept of tripotent does not depend on the base field, the above Theorem is
also valid for JB-triples.

Let e be a tripotent in a real JBtriple E. Since the Peirce projections associated to
on E coincide with the restrictions of the corresponding Peirce projections associated to
on its complexification, it follows, by [7, Lemma 1.3], thAb(e) € D5 (e).
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In [16, Proposition 3.5], W. Kaup and H. Upmeier proved that the extreme points of the
unit ball of a complex JB-triple £ are nothing but the complete tripotentséf{cf. [16,
Proposition 3.3]). In [13, Lemma 3.3], J.M. Isidro et al. proved that the same conclusion
holds for real JB-triples. It is worth mentioning that a tripoteatin a real or complex
JB*-triple E is called complete ifEg(e) = 0.

We can see now how our geometric charactéioreof tripotents provides an alternative
proof of the above fact. Let be a norm-one element in a real or complex-liple E.
Thene is an extreme point of the unit ball af if and only if D1(e) = {0} (see com-
ments preceding [1, Theorem 2]). Let us suppose ¢hat a complete tripotent irk.

From the proofs of Theorems 2.1 and 2.3 it may be concluded Eh&t) = Eg(e).
Sincee is complete he hav&g(e) = {0} and consequently is an extreme point of the
unit ball of E. We assume now that is an extreme point of the unit ball df. Then
{0} € D5(e) € D1(e) = {0}. Now Theorem 2.3 implies thatis a tripotent ofE. Since we
also haveEo(e) € D)(e) = {0}, we deduce that is a complete tripotent of. We have
thus proved the following corollary.

Corollary 2.5. Let E beareal or complex JB*-tripleand let e be a norm-oneelementin E.
The following are equivalent:

(a) e isa complete tripotent.
(b) e isan extreme point of the unit ball of E.
(c) Di(e)={0}.

By a real JBW-triple we mean a real JBtriple E whose underlying Banach space
is a dual Banach space in such a way that the triple produét of separately wedk
continuous. It is known that the separate weakntinuity of the triple product can be
dropped (cf. [17]). The bidual of a real 38riple is a real IBW-triple [13, Lemma 4.2].

It is also known that the algeaic elements in a real JB¥riple are norm dense (cf.
[13, proof of Theorem 4.8, (ix= (ii)]). Therefore, when in the proof of Theorem 2.2,
Theorem 2.3 replaces Theorem 2. % arrive at the following result.

Theorem 2.6. Let @ : E — F bea surjective isometry between two real JB*-triples. Then
@ preserves cubes, i.e., @{a,a,a} ={P(a), P(a), P(a)}.

The conclusion of the above theorem is the best result we could have expected for
surjective isometries between realJBiple (compare [13, Example 4.12]).

The geometric characterization of the partial isometries in*algebraA given by
C. Akemann and N. Weaver was accompanieditwlar characterizations of the unitaries
and invertible elements id, where only the structure of Banach space is needed (cf. [1,
Theorems 2 and 4]). The techniques developed in [1] could be analogously applied to get
a geometric characterization ¢fet unitary elements in a complex’}8iple. Nevertheless,
a shorter proof of the geometric charagzation of the unitary elements in &-@lgebra
(and in a complex JBtriple) has been recently obtamhdy A. Rodriguez-Palacios in
[20]. The following theorem establishing the just quoted geometric characterization of the
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unitary elements in a JBtriple is included for compleness reasons. We recall that an
elementy in a real or complex JBtriple E is called unitary if and only if_ (u«, u) = Idg.

Theorem 2.7 [20, Theorem 2.1]Let £ be a (complex) JB*-triple and let u be a norm-one
element in E. The following are equivalent:

(a) uisaunitary elementin £.
(b) D(E,u) spans E*.
(c) u isavertex of the closed unit ball of £.

Itis worth mentioning that a norm-one elemerin a Banach spack is a vertex of the
closed unit ball ofY if and only if D(X, x) separates the points &f. It is well known that
in the case of a real JBtriple the above theorem is false in general. More concretely, if
is a unitary element in a real JBriple then conditions (b) and (c) in the above theorem
need not be satisfied. In the setting of reat-dBples we can establish the following result.

Proposition 2.8. Let E be a real JB*-triple and let u be a norm-one element in E. The
following conditions are equivalent:

(@) D(E, u) spans E*.
(b) u isa vertex of the closed unit ball of E.
(c) E isaJB-algebrawith unit u and product x o y := {x, u, y}.

Moreover any of the above conditionsimpliesthat « isa unitary element in E.

Proof. The implication (a)= (b) follows straightforwardly even in a general Banach
space. To see (b} (c), let us suppose thatis a vertex ofE. Since every vertex of the
closed unit ball of a Banach space is an extreme point of the closed unit ball, Corollary 2.5
ascertains that is a complete tripotent itE. Therefore,E = EX(u) ® E~1(u) ® E1(u).

By [19, Lemma 2.7], we have (y) = O for every f € D(E,u) andy € E~1(u) ® E1(u).
Finally, sinceu is a vertex of the closed unit ball we conclude tiia¢ E*(u), which is a
JB-algebra with uniz and produck o y := {x, u, y}. The implication (c)= (a) is known

to be true (cf. [10, Lemmas 3.6.8 and 1.2.6]11
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