Little Grothendieck's theorem for real JB*-triples

Antonio M. Peralta ${ }^{\star}$
Dept. Análisis Matemático, Ftad. de Ciencias, Universidad de Granada, 18071 Granada, Spain (e-mail: aperalta@goliat.ugr.es)

Received June 28, 1999; in final form January 28, 2000 /
Published online March 12, 2001 - © Springer-Verlag 2001

Abstract

We prove that given a real JB*-triple E, and a real Hilbert space H, then the set of those bounded linear operators T from E to H, such that there exists a norm one functional $\varphi \in E^{*}$ and corresponding pre-Hilbertian semi-norm $\|\cdot\|_{\varphi}$ on E such that

$$
\|T(x)\| \leq 4 \sqrt{2}\|T\|\|x\|_{\varphi}
$$

for all $x \in E$, is norm dense in the set of all bounded linear operators from E to H. As a tool for the above result, we show that if A is a JB-algebra and $T: A \rightarrow H$ is a bounded linear operator then there exists a state $\varphi \in A^{*}$ such that

$$
\|T(x)\| \leq 2 \sqrt{2}\|T\| \varphi\left(x^{2}\right)
$$

for all $x \in A$.
Mathematics Subject Classification (2000): 17C65, 46K70, 46L05, 46L10, 46L70

1 Introduction

It is well known [Gro] that there is a universal constant K such that if Ω is a compact Hausdorff space and T is a bounded linear operator from $C(\Omega)$

[^0]to a complex Hilbert space H, then there exists a probability measure μ on Ω such that
$$
\|T(f)\|^{2} \leq K^{2}\|T\|^{2}\left(\int_{\Omega}|f|^{2} d \mu\right)
$$
for all $f \in C(\Omega)$. This result is called "Little Grothendieck's inequality" or "Little Grothendieck's Theorem" for commutative C^{*}-álgebras. In the noncommutative case, Pisier ([P1], [P2]) and Haagerup ([H1],[H2]) proved a "Little Grothendieck Theorem" for C^{*}-algebras. That is, if $T: C \rightarrow \mathcal{H}$ is a bounded linear operator from a C^{*}-algebra, C, to a complex Hilbert space, \mathcal{H}, we can find a state ψ of C such that
$$
\|T(x)\| \leq 2\|T\| \psi\left(\frac{1}{2}\left(x x^{*}+x^{*} x\right)\right)^{\frac{1}{2}} \quad(x \in C) .
$$

As is pointed out in [CIL], Pisier's proof of the "Little Grothendieck's theorem" for C^{*}-algebras [P2, Theorem 9.4] can be verbatim extended for JB^{*}-algebras in the following setting. For every bounded linear operator T from a JB^{*}-algebra \mathcal{A}, to a complex Hilbert space \mathcal{H}, there exists a state $\varphi \in \mathcal{A}^{*}$ such that

$$
\|T(z)\| \leq 2\|T\|\left(\varphi\left(z \circ z^{*}\right)\right)^{\frac{1}{2}}
$$

for all $z \in \mathcal{A}$. For the most general class of complex Banach spaces called JB^{*}-triples (which includes C^{*}-algebras and JB^{*}-algebras) a "Little Grothendieck's Theorem" is established by Barton and Friedman [BF, Theorem 1.3]. According to the formulation of that Theorem in [BF], for every bounded linear operator T from a complex JB^{*}-triple \mathcal{E} to a complex Hilbert space \mathcal{H} there is a normalized functional $\varphi \in \mathcal{E}^{*}$ such that

$$
\|T(x)\| \leq \sqrt{2}\|T\|\|x\|_{\varphi}
$$

for every $x \in \mathcal{E}$, where $\|x\|_{\varphi}^{2}=\varphi\{x, x, e\}$ for some tripotent $e \in \mathcal{E}^{* *}$ with $\varphi(e)=1$. However, the Barton-Friedman proof contains a gap. Indeed, they assert, that for T as above, $T^{* *}$ attains its norm (at a complete tripotent), a fact that is not always true. Indeed, consider the operator S from the complex ℓ_{2} space to itself, whose associated matrix is

$$
\left(\begin{array}{ccccc}
\frac{1}{2} & 0 & \ldots & 0 & \ldots \\
0 & \frac{2}{3} & \ldots & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \frac{n}{n+1} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

It is worth mentioning that, although the operator S above does not attain its norm, it satisfies

$$
\|S(x)\| \leq \sqrt{2}\|S\|\|x\|_{\varphi}
$$

for every $x \in \ell_{2}$ and every normalized functional $\varphi \in \ell_{2}^{*}$. Therefore it does not become a counterexample to the Barton-Friedman "Little Grothendieck's Theorem". In fact we do not know if Theorem 1.3 of $[\mathrm{BF}]$ is true.

From the proof of [BF, Theorem 1.3], it may be concluded that if T is a bounded linear operator from a complex JB*-triple \mathcal{E} to a complex Hilbert space \mathcal{H} whose second transpose $T^{* *}$ attains its norm at a complete tripotent, then there exists a norm one functional $\varphi \in \mathcal{E}^{*}$ such that

$$
\|T(x)\| \leq \sqrt{2}\|T\|\|x\|_{\varphi}
$$

for all $x \in \mathcal{E}$, where $\|x\|_{\varphi}^{2}=\varphi\{x, x, e\}$ and $e \in \mathcal{E}^{* *}$ is a tripotent with $\varphi(e)=1$.

If $T^{* *}$ attains its norm, the norm is attained at a complete tripotent (see the proof of Theorem 4.3). Finally, since the set of all operators $T \in B L(\mathcal{E}, \mathcal{H})$ such that $T^{* *}$ attains its norm is norm dense in $B L(\mathcal{E}, \mathcal{H})$, (see [L, Theorem $1]$), the result of Barton and Friedman can be formulated as follows.

Theorem 1.1 Let \mathcal{E} be a complex JB*-triple and let \mathcal{H} be a complex Hilbert space. Then the set of those bounded linear operators T from \mathcal{E} to \mathcal{H} such that there exists a norm one functional $\varphi \in \mathcal{E}^{*}$ satisfying

$$
\|T(x)\| \leq \sqrt{2}\|T\|\|x\|_{\varphi}
$$

for all $x \in \mathcal{E}$, is norm dense in the set of all bounded linear operators from \mathcal{E} to \mathcal{H}.

In this paper we prove a similar result for the most general class of Banach spaces called real JB*-triples.

Complex JB*-triples were introduced by Kaup [K1] in the study of bounded symmetric domains in complex Banach spaces. He shows that every bounded symmetric domain in a complex Banach space is biholomorphically equivalent to the open unit ball of a complex JB^{*}-triple [K2]. Every C^{*}-algebra and every JB^{*}-algebra are JB^{*}-triples with triple product $\{x, y, x\}:=x y^{*} x$ and $\{a, b, c\}:=\left(a \circ b^{*}\right) \circ c+\left(c \circ b^{*}\right) \circ a-(a \circ c) \circ b^{*}$ respectively. See [U], [R], [Ru] and [CM] for the general theory of JB*triples.

Definitions of real JB*-triples have been introduced in ([U],[IKR],[DR]) and we adopt the definition of $[I K R]$ in this paper. Real JB*-triples are defined as closed real subtriples of complex $J \mathrm{BB}^{*}$-triples. The class of real JB^{*}-triples is bigger than the class of complex JB^{*}-triples. Every complex JB^{*}-triple, JB -algebra, real C^{*}-algebra and $\mathrm{J} * \mathrm{~B}$-algebra is a real $\mathrm{JB} *$-triple
(see [IKR], [HS], [G] and [A]). Recently real JB*-triples have been the object of intensive investigations (see for example [D], [CDRV], [IKR], [K3], [CGR], [MP] and [PS]).

The aim of this paper is to obtain a "Little Grothendieck's Theorem" for real JB*-triples. Section 2 presents some preliminary results. In Sect. 3 we proceed with the study of the "Little Grothendieck Theorem" in the particular case of a JB-algebra. This result will be very useful in the proof of the main result. Finally Sect. 4 provides a detailed proof of the "Little Grothendieck Theorem" for real JB*-triples. In the complex case the proof of the Little Grothendieck Theorem is based in the fact that $i t(L(a, b)+L(b, a))$ is a derivation for all $t \in \mathbb{R}$ and $a, b \in \mathcal{E}$ where \mathcal{E} is a complex JB*-triple and so $\exp (i t(L(a, b)+L(b, a)))$ is an isometric bijection for every t in $\mathbb{R}, a, b \in \mathcal{E}$. In the real case $i t(L(a, b)+L(b, a))$ does not make sense but we can use that $\delta(a, b):=L(a, b)-L(b, a)$ is a derivation for all a, b in a real $\mathrm{JB} *$-triple E and then $\exp (t(L(a, b)-L(b, a)))$ is an isometric bijection for every t in $\mathbb{R}, a, b \in E$ (see [IKR, Proposition 2.5]). This fact will be the basic idea in the proof of the main result.

2 Background

We recall that a complex JB*-triple is a complex Banach space \mathcal{E} with a continuous triple product $\{., .,\}:. \mathcal{E} \times \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{E}$ which is bilinear and symmetric in the outer variables and conjugate linear in the middle variable, and satisfies:

1. (Jordan Identity) $L(a, b)\{x, y, z\}=\{L(a, b) x, y, z\}-\{x, L(b, a) y, z\}$ $+\{x, y, L(a, b) z\}$ for all a, b, c, x, y, z in \mathcal{E}, where $L(a, b) x:=\{a, b, x\} ;$
2. The map $L(a, a)$ from \mathcal{E} to \mathcal{E} is an hermitian operator with spectrum ≥ 0 for all a in \mathcal{E};
3. $\|\{a, a, a\}\|=\|a\|^{3}$ for all a in \mathcal{E}.

Following [IKR], a real Banach space E together with a trilinear map $\{., .,\}:. E \times E \times E \rightarrow E$ is called a real JB^{*}-triple if there is a complex JB^{*}-triple \mathcal{E} and an \mathbb{R}-linear isometry λ from E to \mathcal{E} such that $\lambda\{x, y, z\}=$ $\{\lambda x, \lambda y, \lambda z\}$ for all x, y, z in E.

Real JB*-triples are essentially the closed real subtriples of complex JB^{*}-triples and, by [IKR, Proposition 2.2], given a real JB*-triple E there exists a unique complex JB^{*}-triple \widehat{E} and a unique conjugation (conjugate linear and isometric mapping of period 2) τ on \widehat{E} such that $E=\widehat{E}^{\tau}:=$ $\{x \in \widehat{E}: \tau(x)=x\}$. In fact, \widehat{E} is the complexification of the vector space E, with triple product extending in a natural way the triple product of E and a suitable norm. For the rest of the paper, given a real JB*-triple E, we will denote by \widehat{E} its complexification and by τ the canonical conjugation on \widehat{E} such that $E=\widehat{E}^{\tau}$.

JBW*-triples (real JBW^{*}-triples resp.) are JB^{*}-triples (real JB*-triples resp.) which are Banach dual spaces [BT] ([MP] resp).

Real and complex JB*-triples are Jordan triples. Therefore, given a tripotent $e(\{e, e, e\}=e)$ in a real or complex JB^{*}-triple U, there exist two decompositions of U

$$
U=U_{0}(e) \oplus U_{1}(e) \oplus U_{2}(e)=U^{1}(e) \oplus U^{-1}(e) \oplus U^{0}(e)
$$

where $U_{k}(e)=\left\{x \in U: L(e, e) x=\frac{k}{2} x\right\}$ for $k=0,1,2$ and $U^{k}(e)$ is the k-eigenspace of the operator $Q(e) x:=\{e, x, e\}$ for $k=1,-1,0$. It is well known that if \mathcal{E} is a complex JB^{*}-triple and $e \in \mathcal{E}$ is a tripotent then $\mathcal{E}_{2}(e)$ is a JB^{*}-algebra with product $x \circ y:=\{x, e, y\}$ and involution $x^{*}:=\{e, x, e\}$. In the case that E is a real JB^{*}-triple and $e \in E$ is a tripotent, $E^{1}(e)$ is a JBalgebra with product $x \circ y:=\{x, e, y\} . E_{k}(e)$ is called the Peirce k-space of e. For a real or complex JB^{*}-triple U the following rules are satisfied:

1. $U_{2}(e)=U^{1}(e) \oplus U^{-1}(e)$ and $U^{0}(e)=U_{1}(e) \oplus U_{0}(e)$
2. $\left\{U^{\mathrm{i}}(e), U^{j}(e), U^{k}(e)\right\} \subseteq U^{\mathrm{i} j k}(e)$ if $i j k \neq 0$
3. $\left\{U_{i}(e), U_{j}(e), U_{k}(e)\right\} \subseteq U_{i-j+k}(e)$, where $i, j, k=0,1,2$ and $U_{l}(e)=$ 0 for $l \neq 0,1,2$.
4. $\left\{U_{0}(e), U_{2}(e), U\right\}=\left\{U_{2}(e), U_{0}(e), U\right\}=0$.

The last two rules are known as Peirce arithmetic. In particular, Peirce k-spaces are subtriples.

The projection $P_{k}(e)$ of U onto $U_{k}(e)$ is called the Peirce k-projection of e. These projections are given by

$$
\begin{aligned}
& P_{2}(e)=Q(e)^{2} \\
& P_{1}(e)=2\left(L(e, e)-Q(e)^{2}\right) \\
& P_{0}(e)=I d_{U}-2 L(e, e)+Q(e)^{2}
\end{aligned}
$$

Throughout this paper we will denote by $P^{k}(e)$ the natural projection $P^{k}(e): U \rightarrow U^{k}(e)(k: 1,0,-1)$.

Remark 2.1 Let E be a real JB*-triple, we write \widehat{E} for its complexification and τ for the canonical conjugation on \widehat{E} with $\widehat{E}^{\tau}=E$. Let us consider

$$
\phi: \widehat{E}^{*} \rightarrow \widehat{E}^{*}
$$

by

$$
\phi(f)(z)=\overline{f(\tau(z))}
$$

From [IKR] we can assure that ϕ is a conjugation (conjugate-linear isometry of period 2) on \widehat{E}^{*}. Furthermore the map

$$
\left(\widehat{E}^{*}\right)^{\phi}:=\left\{f \in \widehat{E}^{*}: \phi(f)=f\right\} \rightarrow\left(\widehat{E}^{\tau}\right)^{*}
$$

$$
\left.f \mapsto f\right|_{E}
$$

is an isometric bijection. In the same way if E is a real JBW*-triple and we write \widehat{E} for its complexification (which is a complex JBW*-triple) the predual of E, E_{*} can be regarded as $\left(\widehat{E}_{*}\right)^{\phi}:=\left\{f \in \widehat{E}_{*}: \phi(f)=f\right\}$.

The construction can be realized one more time to get a conjugation $\widehat{\phi}$ on $\widehat{E}^{* *}$ such that

$$
E^{* *} \cong\left(\widehat{E}^{* *}\right)^{\widehat{\phi}} .
$$

It is well known that the surjective linear (resp. conjugate linear) isometries between two complex JB^{*}-triples are exactly the triple linear (resp. conjugate linear) isomorphisms [K2, Proposition 5.5]. Moreover if \mathcal{E} is a JBW*-triple then every surjective linear or conjugate linear isometry on \mathcal{E} is weak* continuous [BT], in particular if we have a JBW*-triple with a conjugation τ then τ is automatically weak* continuous.

We recall [FR, Proposition 2] that if \mathcal{E} is a complex JBW*-triple and $f \in \mathcal{E}_{*}$ then there exists a unique tripotent $e(f)$ in \mathcal{E} such that $f=f P_{2}(e)$ and $\left.f\right|_{\mathcal{E}_{2}(e)}$ is a faithful normal positive functional on the JBW* ${ }^{*}$-algebra $\mathcal{E}_{2}(e)$. This tripotent is called the support tripotent of f.

Since the concept of support tripotent is preserved by weak* continuous automorphisms, given a complex JBW*-triple \mathcal{E} with a conjugation τ, we can find a relationship between the support tripotents of f and $\phi(f)$ for every $f \in \mathcal{E}_{*}$ (Where ϕ is the conjugation constructed from τ like in Remark 2.1).

Lemma 2.2 Let \mathcal{E} be a complex JBW*-triple, let τ be a conjugation on \mathcal{E}, $f \in \mathcal{E}_{*}$ and let e be the support tripotent of f. Then $\tau(e)$ is the support tripotent of $\phi(f)$. In particular if $\phi(f)=f$ and e is its support tripotent then $\tau(e)=e$ (by the uniqueness of the support tripotent).

Proof. The proof is immediate from the previous comments.
Let E be a real JB*-triple and let f be a norm one functional on $E . f$ can be regarded as a norm one functional on the complexification of E, \widehat{E}, such that $\phi(f)=f$ (see Remark 2.1). From [FR, Proposition 2] there exists the support tripotent of f in $\widehat{E}^{* *}$. By the previous Lemma, this support tripotent of f in $\widehat{E}^{* *}$ is in fact in $E^{* *}$ and we call it the support tripotent of f in $E^{* *}$.

The following Lemma is contained in [PS] and we include here by completeness reasons. It will play a very important role in the proof of the main Theorem.

Lemma 2.3 Let E be a real JB*-triple, let e be a tripotent of E and $f \in E^{*}$ such that $\left\|\left.f\right|_{E_{2}(e)}\right\|=\|f\|=1$. Then $f=f \circ P_{2}(e)$. Moreover if $f(e)=1$ then $f=f \circ P^{1}(e)$.

Proof. By [MP, Lemma 2.9] we have $f=f \circ P_{2}(e)$. Let $y \in E^{-1}(e)$. We may assume without loss of generality $f(y) \geq 0$. Therefore $\{e, e, y\}=y$, $\{e, y, e\}=-y$ and we have the order estimate

$$
\begin{aligned}
\{e+t y, e+t y, e+t y\} & =\{e, e, e\}+2 t\{e, e, y\}+\{e, y, e\}+O\left(|t|^{2}\right) \\
& =e+t y+O\left(|t|^{2}\right)
\end{aligned}
$$

for $t>0$ in \mathbb{R}. Hence by induction we get

$$
(e+t y)^{3^{n}}=e+t y+O\left(|t|^{2}\right) \quad(n=1,2, \ldots) .
$$

Therefore, for $t>0$,

$$
\begin{aligned}
&\|e+t y\| \geq f(e+t y)=1+t f(y) \\
&(1+t f(y))^{3^{n}} \leq\|e+t y\|^{3^{n}}=\left\|(e+t y)^{3^{n}}\right\| \\
&=\left\|e+t y+O\left(|t|^{2}\right)\right\| \\
& \leq 1+t\|y\|+O\left(|t|^{2}\right) \\
& 1+3^{n} t f(y)+O\left(|t|^{2}\right) \leq 1+t\|y\|+O\left(|t|^{2}\right) \\
& 3^{n} f(y)+O(|t|) \leq\|y\|+O(|t|) .
\end{aligned}
$$

Thus, for $t \downarrow 0$, we obtain

$$
f(y) \leq \frac{1}{3^{n}}\|y\| \quad(n=1,2, \ldots) .
$$

It follows $f(y)=0$ for every $y \in E^{-1}(e)$. Since $E_{2}(e)=E^{1}(e) \oplus E^{-1}(e)$ and $f=f P_{2}(e)$, we conclude $f=f \circ P^{1}(e)$.

The next Lemma extends [BF, Proposition 1.2] to real JB*-triples.
Lemma 2.4 Let E be a real JB*-triple, $f \in E^{*}$ with $\|f\|=1$ and let $e \in E$ such that $f(e)=\|e\|=1$. Then

$$
\begin{gathered}
f\{x, y, e\}=f\{y, x, e\} \\
f\{x, x, e\} \geq 0
\end{gathered}
$$

for all $x, y \in E$, and the Cauchy-Schwartz inequality holds:

$$
|f\{x, y, e\}|^{2} \leq f\{x, x, e\} f\{y, y, e\}
$$

Moreover if $z \in E$ with $f(z)=\|z\|=1=$ then

$$
f\{x, x, e\}=f\{x, x, z\}
$$

for all $x \in E$ and if we define $\|x\|_{f}:=(f\{x, x, e\})^{\frac{1}{2}} \forall x \in E$ then

$$
\|x\|=\operatorname{Sup}\left\{\|x\|_{f}:\|f\|=1\right\} .
$$

Proof. Let \widehat{E} denote the complexification of E. By Remark 2.1 we can see f as an element of \widehat{E}^{*} with $\|f\|=f(e)=1$ and $\phi(f)=f$. From [BF, Proposition 1.2]

$$
\begin{gathered}
f\{a, b, e\}=\overline{f\{b, a, e\}}, \\
f\{a, a, e\} \geq 0, \\
|f\{a, b, e\}|^{2} \leq f\{a, a, e\} \quad f\{b, b, e\}
\end{gathered}
$$

$\forall a, b \in \widehat{E}$. Moreover if $z \in \widehat{E}$ with $f(z)=\|z\|=1=$ then

$$
f\{a, a, e\}=f\{a, a, z\}
$$

for all $a \in \widehat{E}$. Now applying that $\phi(f)=f\left(f \in E^{*}\right)$ we have that $f(E) \subseteq \mathbb{R}$ and then we obtain the first three statements.

For the last affirmation we proceed as follows. Let $x \in E$ with $\|x\|=1$, by the Hahn-Banach Theorem there exists $f \in E^{*}$ with $\|f\|=f(x)=1$. We consider $f \in \widehat{E}^{*}$ with $\phi(f)=f$. Let $u \in \widehat{E}^{* *}$ the support tripotent of f. Again by [BF, Proof of Proposition 1.2] $\|x\|=f\{x, x, u\}=\|x\|_{f}$ in \widehat{E}. Since $\phi(f)=f$, Remark 2.1 and Lemma 2.2, assure that the support tripotent u of f is in the bidual of E, i. e. $u \in E^{* *}$. Therefore we obtain the last statement.

From this Lemma, as in the complex case [BF], given a real JB*-triple E and a norm one functional f we can build a pre-Hilbertian seminorm $\|\cdot\|_{f}$ on E, a real Hilbert space H_{f} and a natural map $J_{f}: E \rightarrow H_{f}$ with $\left\|J_{f}(x)\right\| \leq\|x\|$ for all $x \in E$. The real Hilbert space H_{f} is the completion of E / N_{f} where $N_{f}:=\left\{x \in E:\|x\|_{f}=0\right\}$ and J_{f} is the natural projection.

$$
\left\|J_{f} x\right\|_{f}=\|x\|_{f}=(f\{x, x, e\})^{\frac{1}{2}} \leq\|x\|
$$

where e is the support tripotent of f in $E^{* *}$.

3 JB-Algebras

One of the most important examples of real JB*-triples are JB-algebras. We recall that every JB-algebra is a real JB*-triple with triple product given by $\{x, y, z\}:=(x \circ y) \circ z+(z \circ y) \circ x-(x \circ z) \circ y$. This section is devoted to prove a "little Grothendieck's Theorem" in the case of a JB-algebra.

If \mathcal{A} is a (complex) JB*-algebra, \mathcal{A} can be regarded as (complex) JB*triple under the triple product $\{x, y, z\}:=\left(x \circ y^{*}\right) \circ z+\left(z \circ y^{*}\right) \circ x-(x \circ$ $z) \circ y^{*}$. The "Grothendieck's Theorem" for (complex) JB*-algebras (which is a verbatim extension of Haagerup's proof for C^{*}-algebras [H2]), is stated by Chu, Iochum and Loupias in [CIL, Theorem 2.].

Theorem 3.1 (Little Grothendieck's Theorem for JB*-algebras) Let \mathcal{A} be a (complex) JB*-algebra, let \mathcal{H} be a complex Hilbert space and $T: \mathcal{A} \rightarrow$ \mathcal{H} a bounded linear operator. Then there is a state $\varphi \in \mathcal{A}^{*}$ such that

$$
\|T(z)\| \leq 2\|T\|\left(\varphi\left(z \circ z^{*}\right)\right)^{\frac{1}{2}}
$$

for all $z \in \mathcal{A}$.
We can now state the analogue of "Little Grothendieck's Theorem" for (real) JB-algebras.

Theorem 3.2 (Little Grothendieck's Theorem for JB-algebras) Let A be a JB-algebra, let H be a real Hilbert space and let $T: A \rightarrow H$ be a bounded linear operator. Then there is a state $\varphi \in A^{*}$ such that

$$
\|T(x)\| \leq 2 \sqrt{2}\|T\|\left(\varphi\left(x^{2}\right)\right)^{\frac{1}{2}}
$$

for all $x \in A$.
Proof. We denote by \widehat{A} and \mathcal{H} the complexifications of A and H respectively. \widehat{A} is a JB*-algebra whose self-adjoint part is A and \mathcal{H} is a complex Hilbert space. Consider $\widehat{T}: \widehat{A} \rightarrow \mathcal{H}$ the complex linear extension of T. It is easy to check that $\|\widehat{T}\|^{2} \leq 2\|T\|^{2}$. From Theorem 3.1 there exists a state $\psi \in \widehat{A}^{*}$ such that

$$
\|\widehat{T}(z)\|^{2} \leq 4\|\widehat{T}\|^{2} \psi\left(z \circ z^{*}\right) \leq 8\|T\|^{2} \psi\left(z \circ z^{*}\right)
$$

for all $z \in \widehat{A}$.
In particular if $x \in A$

$$
\|T(x)\|^{2} \leq 8\|T\|^{2} \psi(x \circ x) .
$$

Since ψ is a state of $\widehat{A},\left.\psi\right|_{A}$ is a state of A, and the proof is concluded.

4 Main Result

This section will be devoted to the proof of the "Little Grothendieck's Theorem for real JB*-triples". We start introducing some terminology.

Definition 4.1 If E is a real $J B^{*}$-triple and H is a real Hilbert space, we will say that a bounded linear operator T from E to H satisfies the "Little Grothendieck's inequality" if there exists a norm one functional $\varphi \in E^{*}$ with

$$
\|T(x)\| \leq 4 \sqrt{2}\|T\|\|x\|_{\varphi}
$$

for all $x \in E$. Let $L G(E, H)$ denote the set of all operators $T \in B L(E, H)$ satisfying the "Little Grothendieck's inequality".

We have seen (Lemma 2.4) that if E is a real JB^{*}-triple, and f is a norm one functional on E, we can define a pre-Hilbertian seminorm $\|\cdot\|_{f}$ on E given by $\|x\|_{f}^{2}=f\{x, x, e\}$ where e is the support tripotent of f in $E^{* *}$. Suppose that e is a complete tripotent $\left(E_{0}(e)=0\right)$ of E such that $f(e)=1$. The following Lemma states that the projections associated with $e, P_{k}(e)(k: 0,1,2)$ and $P^{k}(e)(k: 1,-1,0)$ are $\|\cdot\|_{f}$-contractive.

Lemma 4.2 Let E be a real JB*-triple, and let e be a complete tripotent of E. Suppose that f is a norm one functional on E such that $f(e)=1$ then

1. $\|x\|_{f}^{2}=\left\|P_{1}(e) x\right\|_{f}^{2}+\left\|P_{2}(e) x\right\|_{f}^{2}(x \in E)$.
2. $\left\|P_{2}(e) x\right\|_{f}^{2}=\left\|P^{1}(e) x\right\|_{f}^{2}+\left\|P^{-1}(e) x\right\|_{f}^{2}(x \in E)$.

In particular $P_{k}(e)(k: 0,1,2)$ and $P^{k}(e)(k: 1,-1,0)$ are $\|\cdot\|_{f}$-contractive.

Proof. Let $x \in E$ and let us denote by $x^{k}:=P^{k}(e) x$ and $x_{k}:=P_{k}(e) x$. Since e is complete $P_{0}(e)=0\left(x=x_{1}+x_{2} \forall x \in E\right)$. Using Lemma 2.4, Peirce Arithmetic and Lemma 2.3 we can check that

$$
\begin{aligned}
\|x\|_{f}^{2} & =\left\|x_{1}+x_{2}\right\|_{f}^{2}=f\left\{x_{1}+x_{2}, x_{1}+x_{2}, e\right\} \\
& =f\left\{x_{1}, x_{1}, e\right\}+f\left\{x_{2}, x_{2}, e\right\}+2 f\left\{x_{1}, x_{2}, e\right\} \\
& =f\left\{x_{1}, x_{1}, e\right\}+f\left\{x_{2}, x_{2}, e\right\}=\left\|x_{1}\right\|_{f}^{2}+\left\|x_{2}\right\|_{f}^{2} .
\end{aligned}
$$

Similar considerations show that $\left\{x^{1}, x^{-1}, e\right\} \in E^{1(-1) 1}(e)=E^{-1}(e)$ hence applying Lemma 2.3 again

$$
\begin{aligned}
\left\|P_{2}(e) x\right\|_{f}^{2} & =\left\|x^{1}+x^{-1}\right\|_{f}^{2} \\
& =\left\|x^{1}\right\|_{f}^{2}+\left\|x^{-1}\right\|_{f}^{2}+2 f\left\{x^{1}, x^{-1}, e\right\}=\left\|x^{1}\right\|_{f}^{2}+\left\|x^{-1}\right\|_{f}^{2}
\end{aligned}
$$

This completes the proof.
We can now state the analogue of [BF, Theorem 1.3] for real JB*-triples. As we have mentioned in the introduction this is a "Little Grothendieck's Theorem" with an additional hypothesis for $T^{* *}$. Concretely we are going to prove that if T is a bounded linear operator from a real JB^{*}-triple E to a real Hilbert space H such that $T^{* *}$ attains its norm, then $T \in L G(E, H)$.

Theorem 4.3 Let E be a real JB*-triple, let H be a real Hilbert space and let $T: E \rightarrow H$ be a bounded linear operator. Suppose that $T^{* *}$ attains its norm. Then there exists a norm one functional φ on E such that

$$
\|T(x)\| \leq 4 \sqrt{2}\|T\|\|x\|_{\varphi}
$$

for all $x \in E$.

Proof. We can suppose that $\|T\|=1$. We first prove that, in fact, $T^{* *}$ attains its norm at a complete tripotent $e \in E^{* *}$. By hypothesis, $T^{* *}$ attains its norm, so we know that $\left\|T^{* *}\right\|=\left\|T^{* *}(c)\right\|=\|T\|=1$ for $c \in E^{* *}$. Let us consider $\rho(x)=<T^{* *}(x) \mid T^{* *}(c)>$. It is clear that ρ is a norm one and weak*-continuous functional on $E^{* *}$, so by Alaoglu's Theorem, the KreinMilman Theorem and the characterization of the complete tripotents, there exists a complete tripotent $e \in E^{* *}$ such that

$$
\begin{aligned}
\left\|T^{* *}\right\| & =\rho(e)=\left\langle T^{* *}(e) \mid T^{* *}(c)\right\rangle \leq\left\|T^{* *}(e)\right\|\left\|T^{* *}(c)\right\| \\
& =\left\|T^{* *}(e)\right\| \leq\left\|T^{* *}\right\|
\end{aligned}
$$

thus

$$
\left\|T^{* *}(e)\right\|=\left\|T^{* *}\right\| .
$$

Now we suppose that E is a real JBW*-triple and T is norm one and $w *$-continuous (we can consider $T^{* *}: E^{* *} \rightarrow H$) and there is a complete tripotent $e \in E$ such that $\|T\|=\|T(e)\|$. Let us define

$$
\xi(x):=<T(x) / T(e)>\quad(x \in E)
$$

It is clear that $1=\|\xi\|=\xi(e)$.
Let $a \in E$ and let us denote $a^{k}:=P^{k}(e) a$ and $a_{k}:=P_{k}(e) a$. It is well known [IKR, Proposition 2.5] that $\exp (t(L(a, e)-L(e, a)))$ is an isometric bijection for all $t \in \mathbb{R}$ and $a, e \in E$. Then

$$
\begin{aligned}
1 \geq & \|T(\exp (t(L(a, e)-L(e, a))) e)\|^{2} \\
= & \| T(e)+t T((L(a, e)-L(e, a)) e) \\
& +\frac{t^{2}}{2} T\left((L(a, e)-L(e, a))^{2} e\right) \|^{2}+O\left(|t|^{3}\right)
\end{aligned}
$$

for all $t \in \mathbb{R}$. Therefore

$$
\begin{aligned}
& \left\|T(e)+t T((L(a, e)-L(e, a)) e)+\frac{t^{2}}{2} T\left((L(a, e)-L(e, a))^{2} e\right)\right\|^{2} \\
& \quad \leq 1+O\left(|t|^{3}\right) \\
& \left\|T(e)-t T((L(a, e)-L(e, a)) e)+\frac{t^{2}}{2} T\left((L(a, e)-L(e, a))^{2} e\right)\right\|^{2} \\
& \quad \leq 1+O\left(|t|^{3}\right)
\end{aligned}
$$

Now from the parallelogram law we obtain that

$$
\begin{align*}
& \left\|T(e)+\frac{t^{2}}{2} T\left((L(a, e)-L(e, a))^{2} e\right)\right\|^{2}+\|t T((L(a, e)-L(e, a)) e)\|^{2} \\
& \quad \leq 1+O\left(|t|^{3}\right) \tag{t.1}
\end{align*}
$$

Since

$$
\begin{aligned}
& \left\|T(e)+\frac{t^{2}}{2} T\left((L(a, e)-L(e, a))^{2} e\right)\right\|^{2} \\
& \quad \geq\left\langle T(e)+\frac{t^{2}}{2} T\left((L(a, e)-L(e, a))^{2} e\right) / T(e)\right\rangle^{2} \\
& \quad=\left(1+\frac{t^{2}}{2} \xi\left((L(a, e)-L(e, a))^{2} e\right)\right)^{2}
\end{aligned}
$$

($t .1$) shows that

$$
t^{2}\|T((L(a, e)-L(e, a)) e)\|^{2} \leq t^{2} \xi\left(-(L(a, e)-L(e, a))^{2} e\right)+O\left(|t|^{3}\right)
$$

and

$$
\|T((L(a, e)-L(e, a)) e)\|^{2} \leq \xi\left(-(L(a, e)-L(e, a))^{2} e\right)+O(|t|) \quad(t \in \mathbb{R})
$$

And letting $t \rightarrow 0$ we obtain that

$$
\begin{equation*}
\|T((L(a, e)-L(e, a)) e)\|^{2} \leq \xi\left(-(L(a, e)-L(e, a))^{2} e\right) \tag{t.2}
\end{equation*}
$$

Now we must compute $\xi\left(-(L(a, e)-L(e, a))^{2} e\right)$. In this part of the proof Lemma 2.4 and Peirce Arithmetic play a very important role. $-(L(a, e)-$ $L(e, a))^{2} e=-\{a, e,\{a, e, e\}\}+\{a, e,\{e, a, e\}\}+\{e, a,\{a, e, e\}\}-$ $\{e, a,\{e, a, e\}\}$. By Peirce Arithmetic $\{\{e, a, e\}, a, e\}=\{e,\{a, e, a\}, e\}$.
Now using Peirce Arithmetic, Lemma 2.4 and Lemma 2.3

$$
\begin{align*}
\xi(\{e, a,\{e, a, e\}\})= & \xi(\{e,\{a, e, a\}, e\}) \\
= & \xi(\{\{a, e, a\}, e, e\} \\
= & \xi\left(\left\{\left\{a_{1}, e, a_{1}\right\}, e, e\right\}\right)+2 \xi\left(\left\{\left\{a_{1}, e, a_{2}\right\}, e, e\right\}\right) \\
& +\xi\left(\left\{\left\{a_{2}, e, a_{2}\right\}, e, e\right\}\right) \\
= & \xi\left(\left\{\left\{a_{2}, e, a_{2}\right\}, e, e\right\}\right) \\
= & \xi\left(\left\{a_{2}, e, a_{2}\right\}\right) \\
= & \xi(\{a, e, a\}) \tag{t.3}
\end{align*}
$$

By the same method

$$
\begin{align*}
\xi(\{a, e,\{e, a, e\}\}) & =\xi\left(\left\{a_{1}, e,\left\{e, a_{2}, e\right\}\right\}+\left\{a_{2}, e,\left\{e, a_{2}, e\right\}\right\}\right) \\
& =\xi\left(\left\{a_{2}, e,\left\{e, a_{2}, e\right\}\right\}\right) \\
& =2 \xi\left(\left\{a_{2}, a_{2}, e\right\}\right)-\xi\left(\left\{e,\left\{a_{2}, a_{2}, e\right\}, e\right\}\right) \\
& =2 \xi\left(\left\{a_{2}, a_{2}, e\right\}\right)-\xi\left(\left\{\left\{a_{2}, a_{2}, e\right\}, e, e\right\}\right) \\
& =\xi\left(\left\{a_{2}, a_{2}, e\right\}\right) \tag{t.4}\\
\xi(\{e, a,\{a, e, e\}\}) & =\xi(\{\{a, e, e\}, a, e\}) \\
& =\xi(\{a,\{a, e, e\}, e\}) \\
& =\xi\left(\left\{a_{2}, a_{2}, e\right\}\right)+\frac{1}{2} \xi\left(\left\{a_{1}, a_{1}, e\right\}\right) \tag{t.5}
\end{align*}
$$

and

$$
\begin{equation*}
\xi(\{a, e,\{a, e, e\}\})=\xi(\{a, e, a\}) \tag{t.6}
\end{equation*}
$$

We conclude from (t.3),(t.4),(t.5) y (t.6) that

$$
\begin{aligned}
\xi(& \left.-(L(a, e)-L(e, a))^{2} e\right) \\
& =-2 \xi\{a, e, a\}+2 \xi\left\{a_{2}, a_{2}, e\right\}+\frac{1}{2} \xi\left\{a_{1}, a_{1}, e\right\} \\
& =2 \xi\{\{e, e, a\},\{e, e, a\}, e\}-2 \xi\{a, e, a\}
\end{aligned}
$$

Finally from (t.2) we have

$$
\begin{align*}
& \|T(\{a, e, e\}-\{e, a, e\})\|^{2} \\
& \quad \leq 2 \xi(\{\{e, e, a\},\{e, e, a\}, e\}-\{a, e, a\})(a \in E) \tag{t.7}
\end{align*}
$$

Since e is a complete tripotent, $L(e, e)$ is a bijection. Hence if we denote $x=\{e, e, a\}$, Peirce Arithmetic and (t.7) show that

$$
\begin{equation*}
\|T(x-\{e, x, e\})\|^{2} \leq 2 \xi(\{x, x, e\}-\{x, e, x\})(x \in E) \tag{t.8}
\end{equation*}
$$

In particular, as $x_{1} \in E_{1}(e)$ by Peirce Arithmetic and Lemma $2.3\left\{e, x_{1}, e\right\}$ $=\left\{x_{1}, e, x_{1}\right\}=0$ then from (t.8)

$$
\begin{equation*}
\left\|T\left(x_{1}\right)\right\|^{2} \leq 2 \xi\left\{x_{1}, x_{1}, e\right\}=2\left\|x_{1}\right\|_{\xi}^{2} \tag{t.9}
\end{equation*}
$$

Similarly as $x^{-1} \in E^{-1}(e)\left(\left\{e, x^{-1}, e\right\}=-x^{-1}\right)$ then

$$
\begin{equation*}
\left\|T\left(x^{-1}\right)\right\|^{2} \leq \xi\left\{x^{-1}, x^{-1}, e\right\}=\left\|x^{-1}\right\|_{\xi}^{2} \tag{t.10}
\end{equation*}
$$

The problem is that from $(t .8)$ we are unable to estimate $\left\|T\left(x^{1}\right)\right\| \leq$ $M\left\|x^{1}\right\|_{\xi}$ for all x^{1} in the JBW-algebra $E^{1}(e)$ (with unit e), and some positive constant M, as we have made before for $x_{1} \in E_{1}(e)$ and $x^{-1} \in E^{-1}(e)$. At this point we apply Theorem 3.2 to obtain a state ψ of $E^{1}(e)$ such that

$$
\begin{align*}
\left\|T\left(x^{1}\right)\right\|^{2} \leq 8 \psi\left(x^{1} \circ x^{1}\right) & =8 \psi\left\{x^{1}, x^{1}, e\right\} \\
& =8\left\|x^{1}\right\|_{\psi}^{2} \quad\left(x^{1} \in E^{1}(e)\right) \tag{t.11}
\end{align*}
$$

We can see $\psi=\psi P^{1}(e)$ as a linear functional on E using Lemma 2.3.
Let $x \in E$ from (t.9), (t.10) and (t.11) $\|T(x)\| \leq\left\|T\left(x_{1}\right)\right\|+\left\|T\left(x^{-1}\right)\right\|+$ $\left\|T\left(x^{1}\right)\right\| \leq \sqrt{8}\left\|x^{1}\right\|_{\psi}+\left\|x^{-1}\right\|_{\xi}+\sqrt{2}\left\|x_{1}\right\|_{\xi}$. Hence Lemma 4.2 shows that

$$
\begin{gathered}
\|T(x)\| \leq \sqrt{8}\|x\|_{\psi}+\|x\|_{\xi}+\sqrt{2}\|x\|_{\xi} \\
=\sqrt{8}\|x\|_{\psi}+(1+\sqrt{2})\|x\|_{\xi} \leq \sqrt{8}\left(\|x\|_{\psi}+\|x\|_{\xi}\right) \\
\|T(x)\|^{2} \leq 8\left(\|x\|_{\psi}^{2}+\|x\|_{\xi}^{2}+2\|x\|_{\psi}\|x\|_{\xi}\right) \leq
\end{gathered}
$$

$$
\begin{gathered}
\leq 16\left(\|x\|_{\psi}^{2}+\|x\|_{\xi}^{2}\right)=16(\psi\{x, x, e\}+\xi\{x, x, e\})= \\
=32 \frac{\psi+\xi}{2}\{x, x, e\}=32 \varphi\{x, x, e\}=32\|x\|_{\varphi}^{2}
\end{gathered}
$$

where $\varphi=\frac{\psi+\xi}{2}$ is a norm one functional on E and $\varphi(e)=1$.
Remark 4.4 In the setting of the proof of the previous Theorem, we can see that if we can estimate $\left\|T\left(x^{1}\right)\right\|^{2} \leq M^{2}\left\|x^{1}\right\|_{\xi}^{2}$ for $x^{1} \in E^{1}(e)$ (where $\xi(x):=<T(x) / T(e)>)$ then it is easy to obtain that $\|T(x)\| \leq(1+\sqrt{2}+$ $M)\|x\|_{\xi}$. It is trivial to estimate $\left\|T\left(x^{1}\right)\right\|^{2}=\left\|x^{1}\right\|_{\xi}^{2}$ when e is a minimal tripotent $\left(E^{1}(e)=\mathbb{R} e\right)$.

So if E is a real JB^{*}-triple and e is a minimal tripotent of E. From [PS] $E_{2}(e)$ is a real Hilbert space (with inner product $<a, b>:=\frac{1}{4}$ $(\{a+b, a+b, e\}-\{a-b, a-b, e\})) . Q(e): E \rightarrow E_{2}(e)$ is a bounded linear operator with $\|Q(e)\|=1=\|Q(e) e\|$ so from the previous Remark

$$
\|Q(e) x\| \leq(2+\sqrt{2})(\xi\{x, x, e\})^{\frac{1}{2}} \quad(x \in E)
$$

where

$$
\begin{gathered}
\xi(x)=<Q(e) x / e> \\
=\frac{1}{4}(\{Q(e) x+e, Q(e) x+e, e\}-\{Q(e) x-e, Q(e) x-e, e\})
\end{gathered}
$$

From the previous Theorem 4.3 we can now prove the analogous of Theorem 1.1 for real JB^{*}-triples which is the main result of the paper.

Theorem 4.5 Let E be a real JB*-triple and let H be a real Hilbert space. Then the set $L G(E, H)$ is norm dense in the set of all bounded linear operator from E to H.

Proof. The proof straightforward from Theorem 4.3 and the norm denseness of the set of all bounded linear operators whose second transpose attains its norm [L].

Acknowledgements. The author wishes to express his thanks to J. M. Isidro, J. Martínez and A. Rodríguez for their helpful suggestions during the preparation of this paper.

References

[A] Alvermann, K.: Real normed Jordan algebras with involution, Arch. Math. 47, 135-150 (1986)
[BF] Barton, T., Friedman Y.: Grothendieck's inequality for JB*-triples and applications, J. London Math. Soc. (2) 36 513-523 (1987)
[BT] Barton, T., Timoney, R. M.: Weak*-continuity of Jordan triple products and its applications, Math. Scand. 59, 177-191 (1986)
[CDRV] Chu, C-H., Dang, T., Russo, B., Ventura, B.: Surjective isometries of real C*algebras, J. London Math. Soc. 47, 97-118 (1993)
[CGR] Chu, C-H., Galindo, A. M.., Rodr íguez, A.: On prime real JB*-triples, Contemporary Math. 232, 105-109 (1999)
[CIL] Chu, C-H., Iochum, B., Loupias, G.: Grothendieck's theorem and factorization of operators in Jordan triples, Math. Ann. 284, 41-53 (1989)
[CM] Chu, C-H., Mellon, P.: Jordan structures in Banach spaces and symmetric manifolds, Expo. Math. 16, 157-180 (1998)
[D] Dang, T.: Real isometries between JB*-triples, Proc. Amer. Math. Soc. 114, 971980 (1992)
[DR] Dang, T., Russo, B.: Real Banach Jordan triples, Proc. Amer. Math. Soc. 122, 135-145 (1994)
[FR] Friedman, Y., Russo, B.: Structure of the predual of a JBW*-triple, J. Reine u. Angew. Math. 356, 67-89 (1985)
[G] Goodearl, K. R.: Notes on real and complex C*-algebras, Shiva Publ. 1982
[Gro] Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paolo 8, 1-79 (1956)
[H1] Haagerup, U.: Solution of the similarity problem for cyclic representations of C*-algebras, Ann. of Math. 118, 215-240 (1983)
[H2] Haagerup, U.: The Grothendieck inequality for bilinear forms on C^{*}-algebras, Avd. Math. 56 93-116 (1985)
[HS] Hanche-Olsen, H., Størmer, E.: Jordan operator algebras, Monographs and Studies in Mathematics 21, Pitman, London-Boston-Melbourne 1984
[IKR] Isidro, J. M., Kaup, W., Rodriguez, A.: On real forms of JB*-triples, Manuscripta Math. 86, 311-335 (1995)
[K1] Kaup, W.: Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228, 39-64 (1977)
[K2] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183, 503-529 (1983)
[K3] Kaup, W.: On real Cartan factors, Manuscripta Math. 92, 191-222 (1997)
[KU] Kaup, W., Upmeier, H.: Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. 157, 179-200, (1977)
[L] Lindenstrauss, J.: On operators which attain their norm, Israel J. Math. 1, 139-148 (1963)
[MP] Martínez, J., Peralta A.M.: Separate weak*-continuity of the triple product in dual real JB*-triples, Math. Z. 234, 635-646 (2000)
[PS] Peralta, A. M., Stachó, L.: Atomic decomposition of real JBW*-triples, Quart. J. Math. Oxford (2), to appear
[P1] Pisier, G.: Grothendieck's theorem for non commutative C^{*}-algebras with an appendix on Grothendieck's constant, J. Funct. Anal. 29, 397-415 (1978)
[P2] Pisier, G.: Factorization of linear operators and geometry of Banach spaces, Publ. Amer. Math. Soc. CBMS 60, Am. Math. Soc. 1986
[R] Rodríguez A.: Jordan structures in Analysis. In Jordan algebras: Proc. Oberwolfach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon and H. Petersson), 97-186. Walter de Gruyter, Berlin, 1994
[Ru] Russo B.: Structure of JB*-triples. In Jordan algebras: Proc. Oberwolfach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon, H. Petersson), 209-280. Walter de Gruyter, Berlin, 1994
[U] Upmeier, H.: Symmetric Banach Manifolds and JC*-algebras, Mathematics Studies 104, (Notas de Matemática, ed. by L. Nachbin) North Holland 1985

[^0]: * Partially supported by D.G.I.C.Y.T, project no. PB98-1371, Junta de Andalucía grant FQM 01999, and the Bilateral Spanish-Hungarian Research Cooperation grant No. TET E-3/97

