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Abstract. We prove that given a real JB*-triplg, and a real Hilbert space
H, then the set of those bounded linear operdfoiom E to H, such that
there exists anorm one functionak E* and corresponding pre-Hilbertian
semi-norm||. ||, on £ such that

IT ()] < 4V2IT] ||z,

forall x € F, is norm dense in the set of all bounded linear operators from
E'to H. As atool for the above result, we show thaflifs a JB-algebra and

T : A — H is a bounded linear operator then there exists a gtateA*
such that

IT ()| < 2V2|Tlle(2?)

forall z € A.

Mathematics Subject Classification (2000y:C65, 46K70, 46L05, 46L10,
46L70

1 Introduction

It is well known [Gro] that there is a universal constdntsuch that if(2 is
a compact Hausdorff space afids a bounded linear operator frofi{2)
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to a complex Hilbert spacH, then there exists a probability measuren
(2 such that

TP < KT ( / !f\Qdu>

forall f € C(£2). This resultis called “Little Grothendieck’s inequality” or
“Little Grothendieck’s Theorem” for commutative Gitgebras. In the non-
commutative case, Pisier ([P1], [P2]) and Haagerup ([H1],[H2]) proved a
“Little Grothendieck Theorem” for C*-algebras. Thatis/if: C — Hisa
bounded linear operator from a C*-algebf3,to a complex Hilbert space,
‘H, we can find a state¢ of C' such that

1
2

T <2l (3 +o0)) " @)

As is pointed out in [CIL], Pisier’s proof of the “Little Grothendieck’s the-
orem” for C*-algebras [P2, Theorem 9.4] can be verbatim extended for
JB*-algebras in the following setting. For every bounded linear opefator
from a JB*-algebrad, to a complex Hilbert spacg, there exists a state

p € A* such that

1

IT)) < 2T (2 02))

for all z € A. For the most general class of complex Banach spaces
called JB*-triples (which includes C*-algebras and JB*-algebras) a “Lit-
tle Grothendieck’s Theorem” is established by Barton and Friedman [BF,
Theorem 1.3]. According to the formulation of that Theorem in [BF], for
every bounded linear operatdrfrom a complex JB*-triple€ to a complex
Hilbert spaceH there is a normalized functional € £* such that

IT(2) < V2|T|ll|zll,

for everyz € £, wherel|z||?, = ¢ {x, z, ¢} for some tripotent € £** with

¢(e) = 1. However, the Barton-Friedman proof contains a gap. Indeed, they
assert, that fof” as above7™* attains its norm (at a complete tripotent), a
factthatis not always true. Indeed, consider the opefafam the complex

{5 space to itself, whose associated matrix is

1

5 0. 0
0 2..0
00 ...7"
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Itis worth mentioning that, although the operascabove does not attain
its norm, it satisfies
IS (@)l < V2[[S[l|zl,

for everyz € ¢, and every normalized functional € ¢5. Therefore it does
notbecome a counterexample to the Barton-Friedman “Little Grothendieck’s
Theorem”. In fact we do not know if Theorem 1.3 of [BF] is true.

From the proof of [BF, Theorem 1.3], it may be concluded thdt i a
bounded linear operator from a complex JB*-trigléo a complex Hilbert
spaceH whose second transpdsé* attains its norm at a complete tripotent,
then there exists a norm one functioga& £* such that

IT(2) < V2| T|ll|=[l,

forallx € &, Where||a:|@ = p{z,z,e} ande € £** is a tripotent with
v(e) = 1.
If T** attains its norm, the norm s attained at a complete tripotent (see the
proof of Theorem 4.3). Finally, since the set of all operaiors BL(E,H)
such thafl™* attains its norm is norm dense BV (€, H), (see [L, Theorem
1]), the result of Barton and Friedman can be formulated as follows.

Theorem 1.1 Let& be a complex JB*-triple and 16¢ be a complex Hilbert
space. Then the set of those bounded linear operdtdrem £ to H such
that there exists a norm one functionak £* satisfying

IT(2) < V2|IT|ll|z[l,

forall z € £, is norm dense in the set of all bounded linear operators from
EtoH.

In this paper we prove a similar result for the most general class of
Banach spaces called real JB*-triples.

Complex JB*-triples were introduced by Kaup [K1] in the study of
bounded symmetric domains in complex Banach spaces. He shows that
every bounded symmetric domain in a complex Banach space is biholo-
morphically equivalent to the open unit ball of a complex JB*-triple [K2].
Every C*-algebra and every JB*-algebra are JB*-triples with triple product
{z,y,2} := zy*x and{a, b,c} := (aob*) oc+ (cob*)oa— (aoc) o b*
respectively. See [U], [R], [Ru] and [CM] for the general theory of JB*-
triples.

Definitions of real JB*-triples have been introduced in ([U],[IKR],[DR])
and we adopt the definition of [IKR] in this paper. Real JB*-triples are
defined as closed real subtriples of complex JB*-triples. The class of real
JB*-triples is bigger than the class of complex JB*-triples. Every complex
JB*-triple, JB-algebra, real C*-algebra and J*B-algebra is a real JB*-triple



534 A.M. Peralta

(see [IKR], [HS], [G] and [A]). Recently real JB*-triples have been the
object of intensive investigations (see for example [D], [CDRV], [IKR],
[K3], [CGR], [MP] and [PS]).

The aim of this paper is to obtain a “Little Grothendieck’s Theorem” for
real JB*-triples. Section 2 presents some preliminary results. In Sect. 3 we
proceed with the study of the “Little Grothendieck Theorem”inthe particular
case of a JB-algebra. This result will be very useful in the proof of the main
result. Finally Sect. 4 provides a detailed proof of the “Little Grothendieck
Theorem?” for real JB*-triples. In the complex case the proof of the Little
Grothendieck Theorem is based in the fact théf(a,b) + L(b,a)) is a
derivation for allt € R anda, b € £ wheref is a complex JB*-triple and so
exp(it(L(a,b)+ L(b,a))) is anisometric bijection forevetyin R, a, b € £.

In the real casét(L(a,b) + L(b,a)) does not make sense but we can use
thatd(a,b) := L(a,b)— L(b, a) is a derivation for alk, b in a real JB*-triple

E and therexp(t(L(a,b) — L(b,a))) is an isometric bijection for every
inR, a,b € E (see [IKR, Proposition 2.5]). This fact will be the basic idea
in the proof of the main result.

2 Background

We recall that a complex JB*-triple is a complex Banach spaedth a
continuous triple produdt., .,.} : £ x £ x &€ — £ which is bilinear and
symmetric in the outer variables and conjugate linear in the middle variable,
and satisfies:

1. (Jordan Identity).(a, b){z,y, 2z} = {L(a,b)x,y, 2z} — {z, L(b,a)y, z}

+{z,y, L(a,b)z}foralla,b,c,z,y, zinE,whereL(a, b)z := {a,b, x};

2. The map.(a,a) from & to £ is an hermitian operator with spectrum0
forallain &;
3. |[{a,a,a}| = |ja|® forallain &.

Following [IKR], a real Banach spacE together with a trilinear map
{,,.} 1 Ex ExE — FEIis called a real JB*-triple if there is a complex
JB*-triple £ and arnR-linear isometry\ from E to £ such that\{z, y, z} =
{Az, Ay, A\z} forall z,y, z in E.

Real JB*-triples are essentially the closed real subtriples of complex
JB*-triples and, by [IKR, Proposition 2.2], given a real JB*-triplethere
exists a unique complex JB*-tripIE and a unique conjugation (conjugate
linear and isometric mapping of period 2)on E such thatE = E7 =
{z € E : 7(z) = z}. In fact, E is the complexification of the vector space
E, with triple product extending in a natural way the triple producEatnd
a suitable norm. For the rest of the paper, given a real JB*-tfiphee WI||
denote byE its > complexification and by the canonical conjugation oh
such thatt = E7.
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JBWH*-triples (real JBW*-triples resp.) are JB*-triples (real JB*-triples
resp.) which are Banach dual spaces [BT] ([MP] resp).

Real and complex JB*-triples are Jordan triples. Therefore, given atripo-
tente ({e,e,e} = e) in a real or complex JB*-tripld/, there exist two
decompositions off/

U = Uple) ®Uy(e) ® Usle) = Ule) U (e) ® U(e)

whereUy(e) = {z € U : L(e,e)x = Ea} for k = 0,1,2 andU*(e) is the
k-eigenspace of the operaiQ(e)x := {e, z,e} fork = 1,—1,0. Itis well
known that if€ is a complex JB*-triple and € £ is a tripotent thegs (e) is
aJB*-algebrawith produatoy := {z, e, y} and involutionz* := {e, z, e}.
In the case thal is a real JB*-triple and < E is a tripotent,E* () is a JB-
algebra with product o y := {x, e, y}. Ex(e) is called the Peircé-space
of e. For a real or complex JB*-tripl& the following rules are satisfied:
1. Us(e) = Ul(e) @ U~t(e) andU®(e) = Ui (e) ® Up(e)
2. {U'(e), U7 (), Uk(e)} C Uk (e) if ijk # 0
3. {Uz (6)7 Uj(e)a Uk’(e)} - Ui—j—i—k(e)?Whereiaja k=0,1, 2andUl(€) =
Oforl#0,1,2.
4. {UO(e)a U2(6)7 U} = {U2(€)a U0(6)7 U} =0.
The last two rules are known as Peirce arithmetic. In particular, Peirce
k-spaces are subtriples.

The projectionPy (e) of U onto Uy (e) is called the Peircé-projection
of e. These projections are given by

Py(e) = Q(e)*;
Pi(e) =2(L(e,e) — Q(e)z);
Py(e) = Idy — 2L(e, e) + Q(e).

Throughout this paper we will denote b§*(e) the natural projection
Pk(e): U — U*(e) (k: 1,0, -1).

Remark 2.1Let E be a real JB*-triple, we writd for its complexification
andr for the canonical conjugation afi with E™ = E. Let us consider

¢E’*—>E*

by

o(f)(z) = f(7(2)).
From [IKR] we can assure thatis a conjugation (conjugate-linear isometry
of period 2) onE*. Furthermore the map

(B = {f e E*: ¢(f) = f} — (E7)*
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[ fle

is an isometric bijection. In the same wayliif is a real JBW*-triple and
we write E for its complexification (which is a complex JBW*-triple) the
predual ofEl, E, can be regarded @*yﬁ ={feE,:o(f)=f}
The construction can be realized one more time to get a conjug&tion
on £** such that R
B = (B0,

It is well known that the surjective linear (resp. conjugate linear) isome-
tries between two complex JB*-triples are exactly the triple linear (resp.
conjugate linear) isomorphisms [K2, Proposition 5.5]. Moreovét i a
JBW?*-triple then every surjective linear or conjugate linear isometry on
is weak* continuous [BT], in particular if we have a JBW*-triple with a
conjugationr thenr is automatically weak* continuous.

We recall [FR, Proposition 2] that & is a complex JBW*-triple and
f € &, then there exists a unique tripoterttf) in £ such thatf = f P (e)
and f|g, () is a faithful normal positive functional on the JBW*-algebra
&s(e). This tripotent is called the support tripotent fof

Since the concept of support tripotent is preserved by weak* continuous
automorphisms, given a complex JBW*-tripfewith a conjugationr, we
can find a relationship between the support tripotenfsafde( f) for every
f € & (Whereg is the conjugation constructed fromlike in Remark 2.1).

Lemma 2.2 Let & be a complex JBW*-triple, let be a conjugation o,
f € &, and lete be the support tripotent of. Thent(e) is the support
tripotent of (f). In particular if ¢(f) = f ande is its support tripotent
thent(e) = e (by the uniqueness of the support tripotent).

Proof. The proof is immediate from the previous comments. a

Let E be areal JB*-triple and lef be a norm one functional afi. f can
be regarded as a norm one functional on the complexificatidf &, such
thato(f) = f (see Remark 2.1). From [FR, Proposition 2] there exists the
support tripotent of in E**, By the previous Lemma, this support tripotent
of fin E**isinfactin E** and we call it thesupport tripotenof f in E**.

The following Lemma is contained in [PS] and we include here by com-
pleteness reasons. It will play a very important role in the proof of the main
Theorem.

Lemma 2.3 Let E be areal JB*-triple, lek be a tripotentof and f € £*
suchthat|f|g, )|l = [ fll = 1. Thenf = f o P»(e). Moreover iff(e) = 1
thenf = f o Pl(e).
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Proof. By [MP, Lemma 2.9] we hav¢ = f o Py(e). Lety € E~(e). We
may assume without loss of generaljtyy) > 0. Therefore{e, e, y} = v,
{e,y,e} = —y and we have the order estimate
{etty.etty.etty}={eeet+2{eey}+{ey et +0(tf)
=e+ty+O(|t])
for ¢t > 0in R. Hence by induction we get
(e+ty)*" =e+ty+O(t]) n=1,2,...).
Therefore, fort > 0,

le +tyll > fle+ty) =1+ tf(y)
(L+tf)* <le+tyl* = ll(e+ty)*"|
= [le + ty + O(|t]*)]]
< 1+tyll + O(|t]*)
143" f(y) + O(t1*) < 1+tllyl + O(|t*)
3" f(y) + O(lt]) < [lyll + O(]t]).

Thus, fort | 0, we obtain

f@) <l (=12,

<
It follows f(y) = 0 for everyy € E~'(e). SinceEy(e) = E'(e) @ E~1(e)
andf = fP»(e), we concludef = f o Pl(e). O

The next Lemma extends [BF, Proposition 1.2] to real JB*-triples.

Lemma 2.4 LetE be areal IB*-triple,f € E*with||f|| = 1andlete € E
such thatf(e) = ||e|]| = 1. Then

Hz vy, e} = fly, e}
fAz,z,e} >0
for all x,y € E, and the Cauchy-Schwartz inequality holds:
\f{z.y. e} P < flz,2,e} fly,y,e}

Moreover ifz € E with f(z) = ||z|| = 1 = then

fAz,z e} = f{z,x, 2z}
forall z € E and if we defing|z|| s := (f {z,x, e})% Vz € E then

2|l = Sup{llzllf : [IfIl = 1}.
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Proof.Let £ denote the complexification df. By Remark 2.1 we can see
f as an element of* with || f|| = f(e) = 1 and¢(f) = f. From [BF,
Proposition 1.2]

flab.e} = f{ba,e},
fla,a,e} >0,
[f{a,be} | < f{a,a.e} f{bb,e}
Va,b € E. Moreover ifz € E with f(z) = ||z|| = 1 = then

f{a,a,e} = f{a,a,z}

foralla € E. Now applyingthat(f) = f(f € E*)wehavethaf(F) C R
and then we obtain the first three statements.
For the last affirmation we proceed as follows. ket E with ||z|| = 1,
by the Hahn-Banach Theorem there exigts £E* with ||f|| = f(z) = 1.
We considerf € E* with o(f) = f. Letu € E** the support tripotent of
f. Again by [BF, Proof of Proposition 1.2Jx|| = f {z,z,u} = ||z|/f in
E. Since¢(f) = f, Remark 2.1 and Lemma 2.2, assure that the support
tripotentu of f is in the bidual ofF, i. e.u € E**. Therefore we obtain the
last statement. O

From this Lemma, as in the complex case [BF], given a real JB*-triple
E and a norm one functiong we can build a pre-Hilbertian seminorm
|.Ilr on E, a real Hilbert spacéf; and a natural mag; : E — Hy with
| J¢(z)|| < |lz| forallz € E. Thereal Hilbert spacH ; is the completion of
E/N¢whereN; := {z € E : ||z||; = 0} andJ; is the natural projection.

1
[Tyl = Nzl = (f {z,2,e})2> < [|z]

wheree is the support tripotent of in £**.

3 JB-Algebras

One of the most important examples of real JB*-triples are JB-algebras. We
recall that every JB-algebra is a real JB*-triple with triple product given by
{z,y,2} :=(xoy)oz+ (z0y)ox — (x 0 z)oy. This section is devoted
to prove a “little Grothendieck’s Theorem” in the case of a JB-algebra.

If Ais a (complex) JB*-algebrad can be regarded as (complex) JB*-
triple under the triple produdtc, y, 2} := (zoy*) oz + (zoy*)ox — (z 0
z) oy*. The “Grothendieck’s Theorem” for (complex) JB*-algebras (which
is a verbatim extension of Haagerup’s proof for C*-algebras [H2]), is stated
by Chu, lochum and Loupias in [CIL, Theorem 2.].
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Theorem 3.1 (Little Grothendieck’s Theorem for JB*-algebras)Let.A
be a (complex) JB*-algebra, 181 be a complex Hilbert space add: A —
‘H a bounded linear operator. Then there is a state A* such that

1

1T < 21T (2 02))
forall z € A.

We can now state the analogue of “Little Grothendieck’s Theorem” for
(real) JB-algebras.

Theorem 3.2 (Little Grothendieck’s Theorem for JB-algebras)Let A
be a JB-algebra, lefd be a real Hilbert space and Ief : A — H be a
bounded linear operator. Then there is a state A* such that

1

17 (@) < 2V2IT ((2%))
forall x € A.

Proof.We denote byl and? the complexifications afl andH respectively.
Ais a JB*- algebra whose self-adjoint partdsand# is a complex Hilbert
space. ConsidéF : A — H the complex linear extension @f. It is easy to
check tha11|T|]2 < 2||T||?. From Theorem 3.1 there exists a state A*
such that

TP < 4l TIPe(z 0 2) < 8| T|Py(z 0 2*)

forall z € A.
In particular ifz € A

IT()]* < 8|ITI*4(x o ).

Sincey is a state ofd, 1|4 is a state of4, and the proof is concluded. O

4 Main Result

This section will be devoted to the proof of the “Little Grothendieck’s The-
orem for real JB*-triples”. We start introducing some terminology.

Definition 4.1 If E is a real JB*-triple andH is a real Hilbert space, we
will say that a bounded linear operat@r from E to H satisfies the “Little
Grothendieck’s inequality” if there exists a norm one functiopak E*
with

IT ()l < 4vV2(|T| [l]le
forallz € E.LetLG(E, H) denote the set of all operato¥se BL(E, H)
satisfying the “Little Grothendieck’s inequality”.
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We have seen (Lemma 2.4) that/f is a real JB*-triple, andf is a
norm one functional o/, we can define a pre-Hilbertian seminofj| s
on E given bny||fc = f{x,z,e} wheree is the support tripotent of
in E**. Suppose that is a complete tripotentHy(e) = 0) of E such that
f(e) = 1. The following Lemma states that the projections associated with
e, Py(e) (k:0,1,2) andP¥(e) (k : 1,—1,0) are||.|| ;-contractive.

Lemma 4.2 Let E be a real JB*-triple, and let be a complete tripotent of
E. Suppose thaf is a norm one functional o’ such thatf(e) = 1 then

L |zl = [P(e)z} + [ P2(e)z} (= € E).

2. | Pa(e)zllF = [P (e)z||} + |1P~ (e)]|} (x € E).

In particular Py(e) (k : 0,1,2) and P*(e) (k : 1,—1,0) are ||| ;-contrac-
tive.

Proof. Let z € E and let us denote by* := P*(e)x andxy, := Py(e)x.
Sincee is completePy(e) = 0 (z = z1 + z2 Vz € E). Using Lemma 2.4,
Peirce Arithmetic and Lemma 2.3 we can check that

Hx”?c = |jz1 + $2H?c = f{x1 + z2, 21 + 22, €}
= f{xlv'xlve} + f{$27332)6} + 2f {1'1,582,6}
= f{zr, 21, e} + [ {2, 22, €} = [l [|F + [|l22]|F-
Similar considerations show thft!, 271, e} € EX=Dl(e) = E1(e)
hence applying Lemma 2.3 again
1P2(e)al} = |zt +a7
= 2!} + e +2f {at a7 e} = [l 17 + =717

This completes the proof. a

We can now state the analogue of [BF, Theorem 1.3] for real JB*-triples.
As we have mentioned in the introduction this is a "Little Grothendieck’s
Theorem” with an additional hypothesis fot*. Concretely we are going
to prove that ifT" is a bounded linear operator from a real JB*-triilé¢o a
real Hilbert spacd{ such thatl™* attains its norm, theft' € LG(E, H).

Theorem 4.3 Let E be a real JB*-triple, letH be a real Hilbert space and
letT : E — H be a bounded linear operator. Suppose tfiat attains its
norm. Then there exists a norm one functiopain £ such that

IT ()| < 4V2|Tlllll,

forall z € E.



Real JB*-triples 541

Proof.We can suppose thif'|| = 1. We first prove that, in fac** attains

its norm at a complete tripotemt € E**. By hypothesisT™** attains its
norm, so we know that7**|| = || T**(¢)|| = ||T|| = 1 for ¢ € E**. Let

us considep(x) =< T**(z)|T**(c) >. Itis clear thaf is a norm one and
weak*-continuous functional oR**, so by Alaoglu’s Theorem, the Krein-
Milman Theorem and the characterization of the complete tripotents, there
exists a complete tripoteate E** such that

1T = ple) = (T ()T (c)) < 1T ()| 1T ()]
= [T () < [[T*]],

thus
1T (e)[| = [T

Now we suppose that' is a real IBW*-triple and” is norm one and
wx*-continuous (we can considér™* : E** — H) and there is a complete
tripotente € E such that|T'|| = ||T'(e)||. Let us define

(x) :=<T(x)/T(e) > (x€E).

Itis clear thatl = ||£]| = &(e).

Leta € E and let us denote* := P*(e)a anday, := Py(e)a. It is well
known [IKR, Proposition 2.5] thatxp(¢(L(a, e) — L(e, a))) is an isometric
bijection for allt € R anda, e € E. Then

> [ T(expt(E(ae) — Liesa)))e)
— (&) + #T(Lla, ) - Lie,a))e)
2
+ET(Lla,0) - Lea)e) P+ O(t)

for all t € R. Therefore

I7(e) + T((L(a,¢) — Le.a))e) + = T((L(ae) — L{e, a))%e)]

2
<1+0(t
2
|T(e) —tT((L(a,e) — L(e,a))e) + ! T((L( e) — L(e,a))’e)|”
<1+ 0(t?

Now from the parallelogram law we obtain that

2
|T(e) + %T((L(m e) — L(e,a))?e)||* + [tT((L(a, €) — L(e, a))e)||”
<1+0(t) (t.1)
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Since
2 2
HT(@) + §T((L(a e) — L(e, a))2e)
9 2
> (70 + 5T((20,6) - Lie.0))/T(0)

(t.1) shows that
2| T((L(a,e) = L(e, a))e)|* < t2¢(—(L(a,e) — L(e, a))?e) + O(|t]*)
and
IT((L(a, )~ L(e, a)e)|* < &(—(L(a,e) = L(e,a))?e) + O(|t]) (t € R)
And lettingz — 0 we obtain that
IT((L(a,e) = L(e,a))e)|* < &(=(L(a,e) — L(e,a))?e)  (t.2)

Now we must computé(—(L(a, e) — L(e, a))?e). In this part of the proof
Lemma 2.4 and Peirce Arithmetic play a very important reléL(a, e) —

L(e,a))’e = —{a, e,.{a,e,e_}} + {_a,e,{e,a, et} + {e,a,{a,e,e}} —
{e,a,{e,a,e}}. By Peirce Arithmetic{{e, a,e},a,e} = {e,{a,e,a},e}.
Now using Peirce Arithmetic, Lemma 2.4 and Lemma 2.3
§({e,a.{e,a,e}}) = E({e {a, e,a} ,e})

=&({{a e, a} e e}

= 5({{(11’ €, al} ) €, 6}) + 2&({{6117 €, a2} ) €, e})
+6({{az, €, a2} ¢, €})
f({{a% €, a2} ) €, e})
£({az, e, az})
£({a,e,a}) (t.3)

By the same method

£({a,e,{e.a,e}}) = E({ar. e, {e,az,e}} + {az, e, {e, a2, e}})

=¢{({az, e, {e,a2,e}})

= 2({az, az, e}) — &({e, {az, az, e} ,e})

= 2§({az, a2, e}) — {({{az, a2, e}, e,e})

= 5({(127@276}) (t-4)
£({e,a,{a,e,e}}) =E&({{a e e}, a,e})

=¢{({a,{a,e,e},e})

= £(

faz,a2,}) + 5€({ar,a1,}) (+5)
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and

5({‘1’67{(17676}}) = 5({a’67a}) (t6)
We conclude from (t.3),(t.4),(t.5) y (t.6) that
f(—(L(a, 6) - L(e7 a))26)
= —2¢{a,e,a} + 2 {ag,as,e} + %5 {a1,a1,€e}
=2¢{{e,e,a},{e,e,a}, e} —2¢{a, e, a}

Finally from (t.2) we have

||T({a> €, 6} - {67a7 6})”2
<2(({{e,e,a},{e,e,a} e} —{a,e,a}) (a € E) (t.7)

Sincee is a complete tripotentl(e, e) is a bijection. Hence if we denote
x = {e, e, a}, Peirce Arithmetic and (t.7) show that

IT(z — {e,z,eD)|” < 26({z, 2.} —{z,e,2}) (x € B)  (1.8)

In particular, as:;; € Ej(e) by Peirce Arithmetic and Lemma 2{38, 21, e}
= {z1,e,21} = 0 then from (t.8)

T (z1)|? < 26 {w1, 21, e} = 212 (t.9)
Similarly asz! € E~*(e) ({e,z™ !, e} = —z~!) then
1Tz NI <&{a a7l e} = a2 (t.10)

The problem is that frongt.8) we are unable to estimatd’(x!)|| <
M ||z||¢ forallz! inthe JBW-algebrd (e) (with unite), and some positive
constantM, as we have made before for € E;(e) andz~! € E~1(e).
At this point we apply Theorem 3.2 to obtain a statef £ (e) such that

HT(xl)H2 < 8yY(zt o :cl) =8 {xl, z!, e}
=8||z'[l} (z' € E'(e)) (t.11)

We can see = ¢ P!(e) as a linear functional o/ using Lemma 2.3.
Letz € Efrom (t.9), (t.10) and (t.10)7(z)|| < [|T(z1) ||+ || T (x4 ||+
IT(z")[| < v8|la! |l + =~ |e + v/2|z1 ]|e. Hence Lemma 4.2 shows that

IT @) < V8llzlly + lzlle + v2]lle

= V8|izlly + (1 + v2)llzlle < VB(llzlly + llz]le)
IT(@)I1* < 8(ll (13, + llll + 2ll=llylzlle) <
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< 16([llf + [l][2) = 16(¢ {2, 2, e} + & {z, 2, e}) =

Y +¢
=327 {z,z,e} =32 ¢ {z,x,¢} = 32 (e
wherep = “+£ is a norm one functional off andy(e) = 1. 0

Remark 4.4In the setting of the proof of the previous Theorem, we can
see that if we can estimad’(z')[|> < M?||z"|? for z! € E'(e) (where
£(z) =< T(z)/T(e) >) thenitis easy to obtain thaT (z)|| < (1+v2+
M)||ze. Itis trivial to estimate]| T'(x!)||* = [|='(|7 whene is a minimal
tripotent £ (e) = Re).

So if E is a real JB*-triple anck is a minimal tripotent ofE!. From
[PS] Ex(e) is a real Hilbert space (with inner produet a,b >:= i
{a+b,a+0b,e} —{a—b,a—b,e})). Qe) : E — Es(e) is a bounded
linear operator withQ(e)|| = 1 = ||Q(e)e|| so from the previous Remark

1Q(e)al < 2+ V2)(& {w,2,¢})? (x € E)

where

§(z) =< Q(e)z/e >
= i({Q(e)x teQ(e)r+e e —{Qe)r—e Qe)r —e e}).

From the previous Theorem 4.3 we can now prove the analogous of
Theorem 1.1 for real JB*-triples which is the main result of the paper.

Theorem 4.5 Let E be a real JB*-triple and let be a real Hilbert space.
Then the sefLG(E, H) is norm dense in the set of all bounded linear
operator fromFE to H.

Proof. The proof straightforward from Theorem 4.3 and the norm denseness
of the set of all bounded linear operators whose second transpose attains its
norm [L]. a
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