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Nest algebras provide examples of partial Jordan ∗–triples. If A is a nest algebra and As = A∩A∗,
where A∗ is the set of the adjoints of the operators lying in A, then (A, As) forms a partial Jordan
∗–triple. Any weak∗–closed ideal in the nest algebra A is also an ideal in the partial Jordan ∗–triple
(A, As). An analysis of the ideal structure of (A, As) shows that, for a large class of nest algebras,
the converse is also true.

1 Introduction

The work of Kaup and Upmeier [12, 14, 15] and Vigué [30, 31, 32, 33] shows how the holomorphic
structure of the open unit ball in a complex Banach space A leads to the existence of a closed subspace
As of A, known as the symmetric part of A, and a partial triple product (a, b, c) �→ {a b c} mapping
A × As × A to A. The purely algebraic properties of the partial triple product, namely the linearity
and symmetry in the outer variables, the conjugate linearity in the second variable and the existence
of a Jordan triple identity, relate any complex Banach space to the Jordan triple systems studied in
the late sixties and in the seventies by Koecher [16], Loos [17] and Meyberg [18]. However, in Jordan
triple systems, the triple product is universally, not partially, defined. Complex Banach spaces A which
coincide with their symmetric parts As, and, thus, possessing a globally defined triple product, are said
to be symmetric. Although, the category of symmetric complex Banach spaces or, equivalently, the
category of JB∗–triples has been widely investigated, little is known about spaces the symmetric parts
of which are proper subspaces. In fact, to determine the symmetric part of a non–symmetric space
has sometimes proved to be an elusive task [4]. In some cases, the symmetric part is merely the null
space. However, interesting examples exist in which As is neither A nor {0}. Relevant examples of
non–symmetric spaces can be given by certain norm–closed unital Jordan subalgebras of a JB∗–algebra.
The symmetric part of such a subalgebra coincides with its self–adjoint part [3]. Consequently, any nest
algebra of bounded linear operators defined on a complex Hilbert space is a non–symmetric complex
Banach space with non–zero symmetric part [3, 5, 11, 24, 25]. In the subsequent section, we shall show
how a nest algebra A with symmetric part As, along with its intrinsic partial triple product, provides
an example of a purely algebraic structure, that of a partial Jordan ∗–triple (A, As) [26, 27, 28, 29]. It is
the ideal structure of nest algebras when perceived as partial Jordan ∗–triples that will be investigated
in this paper. The ideals of nest algebras related to its associative multiplication have been extensively
investigated (see, for example, [1, 7, 8, 9, 10, 20, 21, 22]). Whilst it is clear that ideals in the associative
sense provide examples of ideals in the partial triple sense, the converse assertion remains in general an
open problem. It is the aim of this paper to show that, in a large class of nest algebras, the weak∗–closed
ideals in the partial triple sense are also weak∗–closed ideals in the associative algebra sense.
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The paper is organised as follows. In Section 2, a brief account of those aspects of the theory of nest
algebras needed in the sequel is presented, and we show how a nest algebra A with symmetric part As

naturally arises as a partial Jordan ∗–triple.
The key tools to find the shape of the weak∗–closed ideals in the partial Jordan ∗–triple (A, As),

formed by a nest algebra A and its symmetric part As, are the rank one operators in the algebra.
Therefore, a part of Section 3 is concerned with the characterization of the rank one operators that lie
in a given ideal. At the beginning of this section, it is shown that two projections may be associated
with each rank one operator in A (Lemma 3.2). This fact has proved to be crucial in the subsequent
investigations. The main results of the section are Theorems 3.7 and 3.8, which describe the weak∗–
closed ideals in (A, As), and Theorem 3.12, which completely characterizes them for a wide class of nest
algebras.

2 Preliminaries

In this section, it is our aim to show that nest algebras can naturally be seen as partial Jordan ∗–triples.
First, we establish the notation. Let H be a complex Hilbert space, let B(H) be the W∗–algebra of
bounded linear operators on H , let 0 denote the zero operator and let 1 denote the identity operator.

Recall that a totally ordered family N of projections in B(H) containing 0 and 1 is said to be a nest.
If, furthermore, N is a complete sublattice of the lattice of projections in B(H), then N is called a
complete nest. The nest algebra A associated with N is the subalgebra of all operators a in B(H) such
that, for all projections p in N ,

(1 − p)ap = 0 .

It is well–known that A is a unital weak operator closed subalgebra of B(H) (cf. [5]). It is also a known
fact that the symmetric part of any unital norm closed subalgebra of B(H) is its self–adjoint part A∩A∗,
where A∗ is the set of the adjoints of the operators lying in A, and that every such subalgebra possesses
an intrinsic algebraic structure said to be a partial triple product ([3], Corollary 2.9). In consequence,
the nest algebra A is naturally endowed with this partial triple product, which is defined as follows.
The partial triple product associated to A is a mapping from A × As × A to A, defined, for all a, c in
A and all b in As, by

{a b c} =
1
2

(ab∗c + cb∗a) ,

where As = A ∩ A∗ is the symmetric part of A.
It is this partial triple product that relates the nest algebra A with the concept of partial Jordan

∗–triple. A partial Jordan ∗–triple is an algebraic structure (B, Bs) formed by a complex vector space
B, a complex vector subspace Bs of B and a mapping (a, b, c) �→ {a b c} from B × Bs × B to B that is
symmetric bilinear in a and c, and conjugate linear in b, and which, furthermore, satisfies the conditions:

(i) {Bs Bs Bs} ⊆ Bs;
(ii) for all elements a of B, and all elements b, c and d of Bs,

[D(a, b), D(c, d)] = D(a, {b c d}) − D({a d c} , b) ,

where, for all e ∈ B and f ∈ Bs, the symbol D(e, f) denotes the linear mapping, defined on B by

D(e, f)g = {e f g}

(cf. [29]). It is a straightforward computation to show that the nest algebra A, together with the partial
triple product defined above, is a partial Jordan ∗–triple.

We say that a complex subspace J of A is an ideal of (A, As) if

{J As A} + {A J ∩ As A} ⊆ J .



Math. Nachr. 248-249 (2003) 131

In the sequel, these ideals will sometimes be referred to as Jordan ideals, as opposed to the ideals of
the associative product. In the next section we investigate the nature of the Jordan ideals of the nest
algebra.

A result due to Ringrose states that each nest is contained in a complete nest which generates the
same nest algebra (cf. [24]). Since we shall be concerned mainly with the nest algebras and not with
the nests themselves, henceforth only complete nests will be considered.

3 Weak∗–closed Jordan ideals of nest algebras

In this section, it is shown that the associative ideals and the partial Jordan ∗–triple ideals coincide
for nest algebras satisfying a condition on the finite rank operators. In the following, (A, As) denotes
the partial Jordan ∗–triple associated to a nest algebra A in the manner described above. The main
results of the section are Theorems 3.7 and 3.8, which describe the weak∗–closed ideals in (A, As), and
Theorem 3.12, which completely characterizes these ideals for a wide class of nest algebras.

For every projection p in N , define a projection p−, which also lies in N , by

p− =
∨

{q ∈ N : q < p} ,

if p is non–zero, and p− is zero, otherwise. The symbol ∨ designates the supremum taken in the lattice
of projections of B(H). For elements ξ and η of the Hilbert space H , we denote by eξ,η the rank one
operator ν �→ 〈ν, ξ〉η defined on H .

The following lemma is essentially due to Ringrose [24], and, for that reason, its proof is omited.

Lemma 3.1 Let a be a rank one operator in B(H). Then, a lies in A if and only if there exist a
projection p in N and elements ξ and η of H, with p−ξ equal to zero and p η equal to η, such that

a = eξ,η .

Moreover, the projection p can be chosen to be equal to∧
{q ∈ N : qη = η} .

The symbol ∧ designates the infimum taken in the lattice of projections of B(H).
In the lemma that follows, for each element of H , we define two projections, which will prove to be

very useful throughout this section.

Lemma 3.2 Let ν be an element of H. Define the projections p̂ν and pν by

p̂ν =
∨

{p ∈ N : pν = 0} ,

pν =
∧

{p ∈ N : pν = ν} .

Then, the projections p̂ν and pν lie in the nest N , the element pνν is equal to ν and the element p̂νν
is equal to zero.

P r o o f. It is clear that, because N is complete, the projections p̂ν and pν lie in N . The element ν
of H lies in the range of all projections used to define pν and, therefore, lies in the intersection of these
ranges. Hence pνν and ν coincide. Similarly, it can be proved that p̂νν is equal to zero.

The two following results have proved to be crucial in the characterization of the weak∗–closed partial
Jordan ∗–triple ideals of nest algebras.

Lemma 3.3 Let J be a weak∗–closed ideal in (A, As) and let ξ and η be non–zero elements of H
such that the rank one operator eξ,η lies in J . Then, for all elements σ and µ of H with p̂ξ ≤ p̂σ and
pµ ≤ pη, the operators eξ,µ and eσ,η lie in J .
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P r o o f. This proof is divided into two parts. First we prove that the operators eξ,µ lie in J , and,
secondly, we show that the operators eσ,η also lie in J .

1. Let eρ,µ be an operator in the nest algebra A. Then, the triple product

{eξ,η 1 eρ,µ} =
1
2
(〈µ, ξ〉eρ,η + 〈η, ρ〉eξ,µ

)
(3.1)

lies in J . We shall analyze below the two possibilities pµ < pη and pµ = pη.
Suppose that pµ < pη, and let ρ be an element in the range of

(
1 − pµ

)
such that the inner product

〈η, ρ〉 is non–zero. The equation (3.1) shows that eξ,µ lies in J .
Let the projection pµ be equal to the projection pη. The closed subspace pη(H) can be decomposed

into the direct sum

pη(H) = span〈{η}〉 ⊕ (span〈{η}〉)⊥ ,

where the orthogonal complement is taken in the Hilbert space pη(H). The element µ has the unique
decomposition

µ = µp + µo ,

where µp lies in span〈{η}〉 and µo lies in the
(
span〈{η}〉)⊥. Then,

2 {eξ,η 1 eρ,µ} = 〈µ, ξ〉eρ,η + 〈η, ρ〉eξ,µo + 〈η, ρ〉eξ,µp .

Since eξ,µp lies in J , the operator

a = 〈µ, ξ〉eρ,η + 〈η, ρ〉eξ,µo (3.2)

must also lie in J . Let ω be such that the operator eξ,ω lies in A. Then, the triple product

2 {a 1 eξ,ω} = 〈η, ξ〉〈µ, ξ〉eρ,ω + 〈µo, ξ〉〈η, ρ〉eξ,ω + 〈ω, ρ〉〈µ, ξ〉eξ,η + 〈ω, ξ〉〈η, ρ〉eξ,µo

lies in J . Therefore, the operator

〈η, ξ〉〈µ, ξ〉eρ,ω + 〈µo, ξ〉〈η, ρ〉eξ,ω + 〈ω, ξ〉〈η, ρ〉eξ,µo

also lies in J . If η is not orthogonal to ξ, let ρ be equal to ξ and let ω be equal to η. Using this in the
above expression, we conclude that eξ,µ lies in the ideal J . When 〈η, ξ〉 is zero, we consider separately
the cases (pη)− < pη and (pη)− = pη.

Suppose that (pη)− < pη, and let ρ be an element in the range of the projection (1 − (pη)−) such
that the inner product 〈η, ρ〉 is non–zero. If 〈µo, ξ〉 is non–zero, let ω be equal to µo. Then it is clear
that eξ,µ lies in the Jordan ideal J . If µo is orthogonal to ξ, then 〈µ, ξ〉 is equal to zero and the equality
(3.2) shows that eξ,µ lies in J .

Suppose now that the projection (pη)− is equal to pη. Then, the subspace pη(H) is the norm–closure
of the subspace

M = span

〈 ⋃
q∈N , q<pη

q(H)

〉
.

Therefore, there exists a sequence (µn) in the space M which converges to µ in the norm topology. We
shall show that the sequence

(
eξ,µn

)
converges to eξ,µ in the weak∗–topology. Observe that, because

pµn < pη, for all n, the operator eξ,µn lies in J . Let (ηk) and (ωk) be sequences in H such that the
series

∑∞
k=1 ‖ηk‖2 and

∑∞
k=1 ‖ωk‖2 converge. Then, using the Schwarz inequality,∣∣∣∣∣

m∑
k=1

〈ηk, ξ〉〈µn − µ, ωk〉
∣∣∣∣∣ ≤

m∑
k=1

‖ηk‖ ‖ξ‖ ‖µn − µ‖ ‖ωk‖ = ‖ξ‖ ‖µn − µ‖
m∑

k=1

‖ηk‖ ‖ωk‖ .
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Since the series
∑∞

k ‖ηk‖ ‖ωk‖ converges, it follows that the sequence eξ,µn−µ converges to zero in
the weak∗–topology and, hence, that eξ,µ lies in J .

2. Let ω be such that eσ,ω lies in A. Then, the triple product

{eξ,η 1 eσ,ω} =
1
2

(〈ω, ξ〉(eσ,η ) + 〈η, σ〉(eξ,ω))

lies in J . If p̂ξ < p̂σ, then pη ≤ p̂σ, and the inner product 〈η, σ〉 is zero. If we put ω equal to p̂σξ, then
〈ω, ξ〉 is non–zero and eσ,η lies in J . Now, suppose that the projections p̂σ and p̂ξ coincide. We study
separately the cases where p̂ξ < pη and pη ≤ p̂ξ . In the first case, let ω be equal to pηξ. Then, the inner
product 〈ω, ξ〉 is non–zero and, because eξ,ω lies in J , the operator eσ,η also lies in this ideal.

In the second case,

pη ≤ p̂ξ = p̂σ ,

and, therefore, η and σ are orthogonal. Define the projection p in the nest N by

p =
∧

q∈N , p̂ξ<q

q .

If p̂ξ < p, then let ω be equal to pξ. Then, 〈ω, ξ〉 is non–zero and eσ,η lies in the ideal J . If p is equal
to p̂ξ, then

1 − p̂ξ =
∨

q∈N , p̂ξ<q

(1 − q) .

Therefore, since σ lies in the range of the projection 1− p̂ξ , there exists a sequence (σn) in the subspace

N = span

〈 ⋃
q∈N , p̂ξ<q

(1 − q)(H)

〉

of H such that the sequence (σn) converges to σ in the norm topology. It is clear that, for each n,
there exists a projection qn in the nest N with p̂ξ < qn, such that σn lies in the range of the projection
1− qn. Hence, because p̂ξ < p̂σn , the operator eσn,η lies in J . It is easy to see that the sequence (eσn ,η)
converges to eσ,η in the weak∗–topology. In consequence, eσ,η lies in J .

Lemma 3.3 is generalized by the following theorem.

Theorem 3.4 Let J be a weak∗–closed ideal in (A, As) and let ξ and η be elements of H such that
eξ,η is a rank one operator in J . Then, for all elements σ and µ of H with

p̂ξ ≤ p̂σ , pµ ≤ pη ,

the operator eσ,µ lies in J .

P r o o f. Let ω be an element of H such that eσ,ω lies in the nest algebra A. Then, by Lemma 3.3,
the triple product

{eξ,µ 1 eσ,ω} = 〈µ, σ〉eξ,ω + 〈ω, ξ〉eσ,µ

also lies in J . If ξ and η are such that p̂ξ < pη, then let ω be equal to pηξ. By Lemma 3.3, the operator
eξ,ω lies in J . Thus, since the inner product 〈ω, ξ〉 is non–zero, eσ,µ lies in J . If ξ and η are such that
pη ≤ p̂ξ, then

pη ≤ p̂ξ ≤ p̂σ ,
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and, thus, the inner product 〈µ, σ〉 is equal to zero. Suppose that p̂ξ < p̂σ, and let ω be equal to p̂σξ.
Then, 〈ω, ξ〉 is non–zero and eσ,µ lies in J . If the projection p̂σ is equal to the projection p̂ξ, then define
the projection

p =
∧

q∈N , p̂ξ<q

q .

Suppose that p̂ξ < p, and let ω be equal to p ξ. Hence, since the inner product 〈ω, ξ〉 is non–zero, the
operator eσ,µ lies in J . Now, suppose that the projections p and p̂ξ coincide. Then, the element σ of H
lies in the range of the projection

1 − p =
∨

q∈N , p̂ξ<q

(1 − q) .

Therefore, there exists a sequence (σn) and, for each n, a projection qn in the nest N satisfying p̂ξ < qn

such that σn lies in the subspace (1−qn)(H), and the sequence (σn) converges to σ in the norm topology.
Since, for all n, the operator eσn,µ lies in J , it is easy to see that eσ,µ must also lie in J .

Lemma 3.5 Let p and p̃ be projections in N , and let B be the set defined by

B = {a ∈ A : a = pa(1− p̃)} .

Then, the set B is a weak∗–closed ideal in (A, As) and the subspace spanned by the rank one operators
in B is weak∗–dense in B.

P r o o f. Clearly B is a weak∗–closed subspace of the nest algebra A. Let a be an operator in B.
Then, for all operators b in A ∩A∗ and all operators c in A, the triple product {a b c} satisfies

{a b c} =
1
2

(ab∗c + cb∗a)

=
1
2
(
pa(1 − p̃)b∗c + cb∗pa(1 − p̃)

)
=

1
2
(
pab∗(1 − p̃)c + cpb∗a(1 − p̃)

)
,

since the nest N is contained in the centre of A ∩ A∗ (cf. [5]). Then, the triple product

{a b c} =
1
2
(
pab∗(1 − p̃)c(1 − p̃) + pcpb∗a(1 − p̃)

)
=

1
2

p
(
ab∗(1 − p̃)c + cpb∗a

)
(1 − p̃)

lies in the subspace B. The remaining part of the definition is proved similarly and, hence, B is a Jordan
ideal.

We shall prove that the subspace spanned by the rank one operators in B is weak∗–dense in B. Let
a be an element of B. Then there exists a net

(
aj

)
in the subspace spanned by the rank one operators

in the nest algebra A converging to a in the weak∗–topology ([5], Corollary 3.13). Let (ηk) and (ωk) be
sequences in the complex Hilbert space H such that

∑∞
k=1 ‖ηk‖2 and

∑∞
k=1 ‖ωk‖2 converge. Then,

n∑
k=1

〈(
paj(1 − p̃) − a

)
ηk, ωk

〉
=

n∑
k=1

〈
p
(
aj − a

)
(1 − p̃)ηk, ωk

〉
,

which shows that the net
(
paj(1− p̃)

)
, defined in the span of the rank one operators in the Jordan ideal

B, converges to a in the weak∗–topology.
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Lemma 3.6 Let ξ and η be elements of H such that eξ,η is a non–zero operator in the nest algebra
A. Then, for all elements σ and µ of H such that eσ,µ is a non–zero operator in A, the following
conditions are equivalent:

(i) p̂ξ ≤ p̂σ and pµ ≤ pη ;
(ii) pηeσ,µ

(
1 − p̂ξ

)
= eσ,µ.

P r o o f. Let ξ and η satisfy the conditions of the lemma, and let σ and µ be such that eσ,µ lies in
the nest algebra A with

p̂ξ ≤ p̂σ , pµ ≤ pη .

Then,

pηeσ,µ

(
1− p̂ξ

)
= e(1−p̂ξ)σ,pηµ = eσ,µ .

Conversely, if σ and µ are such that

pηeσ,µ

(
1− p̂ξ

)
= eσ,µ ,

then

e(1−p̂ξ)σ,pηµ = eσ,pηµ + eσ,(1−pη)µ ,

e−p̂ξσ,pηµ = eσ,(1−pη)µ .

Hence, we can conclude that p̂ξ ≤ p̂σ , and that pµ ≤ pη.

Theorem 3.7 Let eξ,η be a rank one operator in the nest algebra A. Then, the subspace B of A
defined by

B =
{
a ∈ A : pηa

(
1 − p̂ξ

)
= a

}
is the weak∗–closed partial Jordan ∗–triple ideal generated by eξ,η .

P r o o f. By Lemma 3.5, B is a weak∗–closed partial Jordan ∗–triple ideal which coincides with the
weak∗–closure of the subspace spanned by the rank one operators that belong to B. By Lemma 3.6, a
rank one operator eσ,µ lies in B if and only if

p̂ξ ≤ p̂σ , pµ ≤ pη .

Theorem 3.4 shows that all of these rank one operators must lie in every weak∗–closed Jordan ideal
containing eξ,η . Hence, B is the least weak∗–closed Jordan ideal containing eξ,η .

Let p �→ p′ be an order homomorphism on N . The homomorphism p �→ p′ is said to be left order
continuous if, for all subsets M of the nest N , the projection (

∨M)′ is equal to the supremum
∨M′.

Theorem 3.8 Let J be a weak∗–closed ideal in (A, As) and, for each p in N , let the projection p′

be defined by

p′ =
∨{

pη : eξ,η ∈ J, p̂ξ < p
}

.

Then, a rank one operator a lies in J if and only if, for all projections p in N ,

(1 − p′)ap = 0 ,

and the mapping p �→ p′ is a left order continuous homomorphism on the nest N .
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P r o o f. Let p and q be projections of the nest N such that p < q. We shall show that p′ ≤ q′.
Suppose that there exists an operator eσ,µ in J such that p̂σ < p and q′ < pµ. Then, by Theorem 3.4,
all operators eρ,ω, such that p̂σ ≤ p̂ρ and pω ≤ pµ, lie in J . Hence,

q′ <
∨

{pη : eξ,η ∈ J, p̂ξ < q} ,

yielding a contradiction.
Let p �→ p′ be the order homomorphism defined in the theorem. Suppose that there exists a rank

one operator eσ,µ in J such that, for some projection p in the nest N , the operator

(1 − p′)eσ,µp = epσ,(1−p′)µ

is non–zero. Then, pσ and (1 − p)µ also are non–zero. Therefore, p̂σ < p and p′ < pµ. Hence, there
exists an operator eξ,η in J with p′ < pη and p̂ξ < p, which contradicts the hypothesis.

Conversely, let eσ,µ be a rank one operator in the nest algebra A satisfying, for all projections p in
the nest N , the equality

(1 − p′)eσ,µp = 0 .

Since pσ is non–zero, for all projections p such that p̂σ < p, the element (1 − p′)µ is equal to zero and
µ lies in p′(H). Suppose that

p̂σ < q =
∧

p∈N , p̂σ<p

p .

Then, by Theorem 3.4 and the definition of the mapping p �→ p′, for all elements ρ of the space
(1− p̂σ)(H) and all elements ω of H such that pω < q′, the operators eρ,ω lie in J . If q′− < q′, then the
projection q′ lies in the set{

pη : eξ,η ∈ J, p̂ξ < q
}

.

Then, by Theorem 3.4 , the operator eσ,µ lies in J . If the projection q′− coincides with the projection
q′, then there exists a sequence (ωn) in the space

L = span

〈 ⋃
p∈N , p<q′

p(H)

〉

which converges to µ in the norm topology. Then, (eσ,ωn) is a sequence of rank one operators in J and
eσ,µ is the weak∗–limit of this sequence. Therefore, eσ,µ lies in J .

Now, suppose that

p̂σ =
∧

p∈N , p̂σ<p

p ,

and let p be a projection in the nest N such that p̂σ < p. By the definition of the order homomorphism
p �→ p′ and Theorem 3.4, it can be seen that, for all elements ρ with p ≤ p̂ρ and all elements ω such
that pω < p′, the operator eρ,ω lies in J . We shall show that, for all elements ω of H such that the
projections pω and p′ coincide, and all elements ρ satisfying the conditions above, eρ,ω also lies in J . If
p′− < p′, then the projection p′ belongs to the set{

pη : eξ,η ∈ J, p̂ξ < p
}

and, in consequence, since p̂σ < p ≤ p̂ρ, and pω = p′, the operator eρ,ω lies in J . Suppose that the
projection (p′)− coincides with the projection p′. Then, there exists a sequence (ωn) in the subspace

M = span

〈 ⋃
q∈N , q<p′

q(H)

〉
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of H such that (ωn) converges to ω in the norm topology. Then, for a fixed ρ such that p ≤ p̂ρ, the
sequence (eρ,ωn) converges to the rank one operator eρ,ω in the weak∗–topology. Since, for all n, the
operator eρ,ωn lies in J , the operator eρ,ω also lies in J . Because σ belongs to (1 − p̂σ)(H), it follows
that σ lies in1 −

∧
p∈N , p̂σ<p

p

 (H) =

 ∨
p∈N , p̂σ<p

(1 − p)

 (H) .

Hence, there exists a sequence (σn) in the subspace

N = span

〈 ⋃
p̂σ<p

(1 − p)(H)

〉

of H such that (σn) converges to σ in the norm topology. Then, the sequence (eσn,µ) converges to eσ,µ

in the weak∗–topology, which shows that eσ,µ lies in J .
Finally, we prove that the order homomorphism is left order continuous. Let p �→ p′ be the order

homomorphism defined in the theorem, let M be a subset of the nest N and let the projection q be
the supremum of M. Suppose that the projection q lies in M. Since the mapping p �→ p′ is an order
homomorphism, the projection q′ coincides with

∨M′. Suppose now that the supremum q does not
belong to M. Since the projection q does not lie in M, the projection q− coincides with the projection
q. Therefore, we have the equality

q′ =
∨ ⋃

p∈N , p<q

{
pη : eξ,η ∈ J, p̂ξ < p

} .

By Theorem 3.4, and because p �→ p′ is an order homomorphism,

q′ =
∨ ⋃

p∈M

{
pη : eξ,η ∈ J, p̂ξ < p

} =
∨{

p′ : p ∈ M}
=
∨

M′ ,

which concludes the proof.

A nest algebra is said to have property S if every weak∗–closed partial Jordan ∗–triple ideal J of the
algebra satisfies the following condition on the finite rank operators: For all positive integers n, if a is
a rank n operator in J , then a may be written as the sum of n rank one operators in J .

The examples below present three types of nest algebras having property S. The first example is
a special case of the third example, but we chose to begin with Example 3.9 because the idea of its
construction is easily generalized to that of Example 3.10.

Example 3.9 Let Am be the algebra of m × m upper triangular complex matrices. This algebra
represents the operators defined on a finite dimensional complex Hilbert space whose matrices relative
to a fixed orthonormal basis {ξ1, ξ2, . . . , ξm} are upper triangular. The complete nest N corresponding
to Am is

0 < p1 < . . . < pm = 1 ,

where, for all integers l in the set {1, 2, . . . , m},

pl =
l∑

i=1

eξi,ξi .

Let J be a Jordan ideal in Am and let a be an operator in J of rank n greater than one. Define the
order homomorphism p �→ p̆, on the nest N , by

p̆ =
∧{

q ∈ N : (1 − q)ap = 0
}

.
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By [8], Lemma 1.2, there exist n rank one operators eρk ,ωk such that

a =
n∑

k=1

eρk,ωk

and

(1 − p̆)eρk ,ωkp = 0 ,

for all projections p in the nest N and for all integers k in the set {1, . . . , n}. We shall show that, if tij
is a non–zero entry in the matrix of a, then eξj,ξi lies in J . Let b be the operator defined by

b = 2
{
a 1 eξj ,ξj

}
.

Then, the operator

b =

(
n∑

k=1

eρk ,ωk

)
eξj ,ξj + eξj ,ξj

(
n∑

k=1

eρk,ωk

)
=

n∑
k=1

〈ξj, ρk〉eξj ,ωk +
n∑

k=1

〈ωk, ξj〉eρk ,ξj

lies in J . Let the operator c be defined by

c = 2 {b 1 eξi,ξi} .

Then,

c =

(
n∑

k=1

〈ξj , ρk〉eξj ,ωk +
n∑

k=1

〈ωk, ξj〉eρk ,ξj

)
eξi,ξi

+ eξi,ξi

(
n∑

k=1

〈ξj , ρk〉eξj ,ωk +
n∑

k=1

〈ωk, ξj〉eρk ,ξj

)

=
n∑

k=1

〈ξj , ρk〉〈ξi, ξj〉eξi,ωk +

(
n∑

k=1

〈ξi, ρk〉〈ωk, ξj〉
)

eξi,ξj

+

(
n∑

k=1

〈ξi, ρk〉〈ωk, ξi〉
)

eξj ,ξi +
n∑

k=1

〈ωk, ξj〉〈ξj , ξi〉eρk,ξi ,

and this operator lies in J . Suppose that i < j. Since ξi and ξj are orthogonal and eξi,ξj does not
belong to the nest algebra,

c =

(
n∑

k=1

〈ξj, ρk〉〈ωk, ξi〉
)

eξj ,ξi = tijeξj ,ξi ,

which is an operator in J . Hence, eξj,ξi lies in J and, for all integers k in the set {1, . . . , n}, the operator
〈ξj , ρk〉〈ωk, ξi〉eξj ,ξi also lies in J . If i is equal to j, then

c =
n∑

k=1

〈ξi, ρk〉eξi,ωk +

(
n∑

k=1

〈ξi, ρk〉〈ωk, ξi〉
)

eξi,ξi

+

(
n∑

k=1

〈ξi, ρk〉〈ωk, ξi〉
)

eξi,ξi +
n∑

k=1

〈ωk, ξi〉eρk ,ξi .

Thus, the operator

c =
n∑

k=1

〈ξi, ρk〉eξi,ωk +
n∑

k=1

〈ωk, ξi〉eρk ,ξi + 2tiieξi,ξi
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lies in J . Hence, for i equal to j,

c = b + 2tiieξi,ξi .

Therefore, since b and c belong to the ideal, the rank one operator eξi,ξi must also lie in J . Suppose
that there exist i, j and k such that tij is equal to zero and 〈ξj , ρk〉〈ωk, ξi〉eξj ,ξi is non–zero. Since, for
all projections p in the nest N , the equality

(1 − p̆)eρk ,ωkp = 0

holds, there must be an integer l greater than or equal to i and less than or equal to j, and such that
the entry tlj is non–zero. Therefore, eξj ,ξl lies in the J and, hence, by Theorem 3.4, the operator eξj ,ξi

lies also in this ideal. We may conclude that, for all integers k with 1 ≤ k ≤ n, and all i and j such
that 1 ≤ i ≤ j ≤ n, the operator 〈ξj, ρk〉〈ωk, ξi〉eξj ,ξi is either zero or lies in J . In consequence, for all
k such that 1 ≤ k ≤ n,

eρk ,ωk =
∑

1≤i≤j≤n

〈ξj , ρk〉〈ωk, ξi〉eξj ,ξi

also lies in J . Hence, the nest algebra Am has property S.

Example 3.10 Let H be an infinite–dimensional separable complex Hilbert space and let (pl) be an
increasing sequence of projections such that p0 is equal to zero, the space pl(H) is finite–dimensional,
for all positive integers l, and

∞∨
l=1

pl = 1 .

Let A be the nest algebra associated with the complete nest N consisting of these projections and the
identity operator 1. The operators a in A can be viewed as block upper triangular infinite matrices(
tij
)

i,j≥1
, which represent the operators relative to a fixed orthonormal basis (ξm). Let J be a weak∗–

closed partial Jordan ∗–triple ideal in A and let a be an operator in J of rank n greater than one. Let
Ñ be the complete nest

0 < q1 < . . . < ql < . . . < 1 ,

where

ql =
l∑

i=1

eξi,ξi .

It is clear that the nest N is contained in the nest Ñ and, thus, the nest algebra A contains the nest
algebra associated with Ñ . Define the order homomorphism q �→ q̆, on Ñ , by

q̆ =
∧{

p ∈ Ñ : (1 − p)aq = 0
}

.

By [8], Lemma 1.2, there exist n rank one operators eρk ,ωk such that

a =
n∑

k=1

eρk,ωk ,

and, for all integers k with 1 ≤ k ≤ n, and all projections q in the nest Ñ ,

(1 − q̆)eρk ,ωkq = 0 .
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We shall show that, for all non–zero entries tij in the matrix of a, the operator eξj ,ξi lies in J . If i is
equal to j or i and j are such that eξj ,ξi lies in the nest algebra A but eξi,ξj does not lie in the algebra,
then eξj ,ξi lies in J , as can be proved in a similar manner to that used in Example 3.9. Let i and j be
such that i is not equal to j and the operators eξj ,ξi and eξi,ξj lie in the algebra A, and let c be the
operator in J defined by

c = 4
{{

a 1 eξj ,ξj

}
1 eξi,ξi

}
.

Then,

c =
n∑

k=1

〈ξj , ρk〉〈ξi, ξj〉eξi,ωk +
n∑

k=1

〈ξi, ρk〉〈ωk, ξj〉eξi,ξj

+
n∑

k=1

〈ξi, ρk〉〈ωk, ξi〉eξj ,ξi +
n∑

k=1

〈ωk, ξj〉〈ξj , ξi〉eρk ,ξi .

Hence,

c =

(
n∑

k=1

〈ξi, ρk〉〈ωk, ξj〉
)

eξi,ξj +

(
n∑

k=1

〈ξj , ρk〉〈ωk, ξi〉
)

eξj ,ξi .

If the entry tji is equal to zero, it is immediate that eξj,ξi lies in J . On the other hand, if the entry
tji is non–zero, let d be the operator defined by

d = 2
{
c 1 eξj ,ξi

}
.

Then,

d =

(
n∑

k=1

〈ξi, ρk〉〈ωk, ξj〉
)
〈ξi, ξi〉eξj ,ξj +

(
n∑

k=1

〈ξi, ρk〉〈ωk, ξj〉
)
〈ξj , ξj〉eξi,ξi

=

(
n∑

k=1

〈ξi, ρk〉〈ωk, ξj〉
)

eξj ,ξj +

(
n∑

k=1

〈ξi, ρk〉〈ωk, ξj〉
)

eξi,ξi ,

which lies in J . The triple products {d 1 eξi,ξi} and
{
d 1 eξj ,ξj

}
yield that the operators eξi,ξi and eξj ,ξj

are rank one operators in J . Hence, if i is less than j, then, by Theorem 3.4, the rank one operator
eξj ,ξi also belongs to this ideal. If i is greater than j, then

eξj ,ξi = 2
{
eξj ,ξi 1 eξj ,ξj

}
and it follows that eξj ,ξi lies in J . Suppose that there exist i, j and k such that the entry tij is equal to
zero and the operator 〈ξj , ρk〉〈ωk.ξi〉eξj ,ξi is non–zero. Reasoning similar to that used in Example 3.9,
but now applied to the nest Ñ , shows that eξj ,ξi belongs to J . This concludes the proof that, for all
integers k such that 1 ≤ k ≤ n, the rank one operator eρk ,ωk lies in J . Hence, the nest algebra A has
property S.

Example 3.11 Let H be an m–dimensional Hilbert space and let N be a nest consisting of the
projections 0, p1, . . . , pl, 1 on H such that

0 < p1 < . . . < pl < 1 .

The nest algebra associated with N is the algebra of m × m complex matrices a with block diagonals
such that the entries of a are zero below the diagonal. The blocks in the diagonal are defined according
to the projections in the nest. A process similar to that of Example 3.10 can be used to show that this
algebra also has property S.
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The following theorem asserts that, for nest algebras having property S, the ideals of the associative
product (cf. [8]) coincide with the Jordan ideals.

Theorem 3.12 Let N be a complete nest of projections on the complex Hilbert space H, let A be
the nest algebra associated with N , having property S, and let (A, As), where As = A ∩ A∗, be the
corresponding partial Jordan ∗–triple. Let J be a weak∗–closed subspace of A. Then, the following
conditions are equivalent:

(i) J is a weak∗–closed partial Jordan ∗–triple ideal of A;
(ii) there exists a left order continuous homomorphism p �→ p′ on N such that

J = {a ∈ A : (1 − p′)ap = 0, for all p ∈ N } .

P r o o f. Let J be a weak∗–closed partial Jordan ∗–triple ideal in the nest algebra A and let p �→ p′

be the order homomorphism of Theorem 3.8. Let B be the set defined by

B = {b ∈ A : (1 − p′)bp = 0, for all p ∈ N } .

By Lemma 3.5, the set B is a weak∗–closed Jordan ideal in (A, As). Furthermore, B is a bi–module over
A under operator multiplication. Let a be an operator in the nest algebra A and let b be an operator
in B, then

(1 − p′)abp = (1 − p′)a((1 − p′) + p′)bp = 0 ,

and

(1 − p′)bap = (1 − p′)b((1 − p) + p)ap = 0 .

Hence, for all positive integers n, a rank n operator in the weak∗–closed Jordan ideal B can be written
as a sum of n rank one operators in this set (cf. [8]). By Theorem 3.8, the rank one operators in the
ideals J and B are the same. Therefore, every rank n operator in B can be expressed as a sum of n
rank one operators in J . Let a be an operator in B. It is known that there exists a net

(
cj

)
of finite

rank operators in the nest algebra A such that the net
(
cj

)
converges to 1 in the weak∗–topology (cf.

[6]).

{a 1 cj} =
1
2
(
cja + acj

)
defines a net of finite rank operators in the weak∗–closed Jordan ideal J , converging to a in the weak∗–
topology. Thus a is the weak∗–limit of a net of finite rank operators in J , and, hence, a lies in J .

Conversely, let c be a rank n operator in the weak∗–closed Jordan ideal J . Since the nest algebra
A has property S, the operator c may be written as the sum of n rank one operators in J . Hence, by
Theorem 3.8, all finite rank operators in J belong to the weak∗–closed Jordan ideal B. Let a be an
operator in J and let

(
cj

)
be the net above. Then,

{a 1 cj} =
1
2
(
cja + acj

)
defines a net of finite rank operators in J converging to a in the weak∗–topology. Therefore a is the
weak∗–limit of a net in the weak∗–closed Jordan ideal B, and therefore a lies in B.

Reasoning similar to the proof of Lemma 3.5 can be used to show that condition (ii) implies condition
(i).

Corollary 3.13 Let A be a nest algebra having property S and let (A, As), where As = A ∩ A∗,
be the corresponding partial Jordan ∗–triple. Then, the weak∗–closed Jordan ideals of (A, As) are also
weakly closed.

P r o o f. This result is an immediate consequence of Theorem 3.12 and [8], Corollary 1.6.
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