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1. Introduction

Well-known genetical models [3],[5],[2] of the time evolution of a closed population con-

sisting of N different species describe the rates r1(t), . . . , rN (t) of the respective species

within the whole population at time t ≥ 0 as the solution of the ordinary system of dif-

ferential equations drk(t)/dt = Fk(r1(t), . . . , rN (t)) (k = 1, . . . , N) where the functions

Fk are some polynomials of degree at most 3. During a seminar on such models one has

launched the question what are the strange consequences of the assumption that the evo-

lution has no starting point in time, in particular what can be stated on the non-changing

distributions in that case.

In this paper we provide the complete algebraic description of all polynomial vec-

tor fields (with arbitrary degrees) V (x) = (F1(x), . . . , FN(x)) on IRN which give rise

to solutions for the evolution equation defined for all time parameters t ∈ IR and

satisfying the natural rate conditions r1(t), . . . , rN (t) ≥ 0 ,
∑N

k=1 rk(t) = 1 whenever

r1(0), . . . , rN (0) ≥ 0 and
∑N

k=1 rk(0) = 1 . On the basis of the explicit formulas obtained,

we describe the structure or the set of zeros for such vector fields (which correspond to the

non-changing distributions).

2. Results

Throughout this work IRN := {(ξ1, . . . , ξN ) : ξ1, . . . , ξN ∈ IR} . denotes the N -

dimensional vector space of all real N -tuples. We reserve the notations x1, . . . , xN for

the standard coordinate functions xk : (ξ1, . . . , ξN) 7→ ξk on IRN . Our purpose will be to

describe the complete polynomial vector fields on the unit simplex

S :=
(
x1 + · · ·+ xN = 1, x1, . . . , xN ≥ 0

)
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along with their fixed points for the cases of degree ≤ 3 .

Recall [1] that by a vector field on S we simply mean a function S → IRN . A function

ϕ : S → IR is said to be polynomial if it is the restriction of some polynomial of the linear

coordinate functions x1, . . . , , xN : for some finite system coefficients αk1...kN
∈ IR with

k1, . . . , kN ∈ {0, 1, . . .}) we can write ϕ(p) =
∑

k1,...,kN
αk1...kN

xk1

1 · · ·xkN

N (p ∈ S) . In

accordance with this terminology, a vector field V on S is a polynomial vector field if its

components Vk := xk ◦ V (that is V (p) = (V1(p), . . . , VN (p)) for p ∈ S ) are polynomial

functions. It is elementary that given two polynomials Pm = Pm(x1, . . . , xN ) : IRN → IR

(m = 1, 2) , their restrictions to S coincide if and only if the difference P1 − P2 vanishes

on the affine subspace AS :=
(
x1 + · · · + xN = 1

)
generated by S . We shall see later

(Lemma 3.1) that a polynomial P = P (x1, . . . , xN) vanishes on the affine subspace M :=(
γ1x1+· · ·+γNxN = δ

)
iff P = (γ1x1+· · ·+γNxN−δ)Q(x1, . . . , xN ) for some polynomial

Q . Thus polynomial vector fields on S admit several polynomial extensions to IRN but

any two such extensions differ only by a vector field of the form (x1 + · · · + xN − 1)W .

A polynomial vector field V : S → IRN is said to be complete in S if for any point

p ∈ S there is a (necessarily unique) curve Cp : IR → S such that Cp(0) = p and
d
dt

Cp(t) = V (Cp(t)) (t ∈ IR) .

Our main results are as follows.

2.1. Theorem. A polynomial vector field V : S → IRN is complete in S if and only if

with the vector fields

Zk := xk

N∑

j=1

xj(ej − ek) (k = 1, . . . , N)

where ej is the standard unit vector ej := (0, . . . , 0,

j︷︸︸︷
1 , 0, . . . , 0) , we have

V =
N∑

k=1

Pk(x1, . . . , xN )Zk

for some polynomial functions P1, . . . , PN : IRN → IR .

2.2. Theorem. Given a complete polynomial vector field V of S , there are polynomials

δ1, . . . , δN : IRN−1 → IR of degree less than as that of V such that the vector field

Ṽ :=
N−1∑

k=1

xk

[
δk(x1, . . . , xN−1) −

N−1∑

`=1

x`δ`(x1, . . . , xN−1)
]
ek+

+ (x1 + · · ·+ xN−1 − 1)
N−1∑

`=1

x`δ`(x1, . . . , xN−1)eN
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coincides with V on S . The points of the zeros of V inside the facial subsimplices

SK :=S ∩ (x1, . . . , xK > 0=xK+1 = · · ·=xN ) (K =1, . . . , N) can be described as

(∗)
SN ∩ (V = 0) = S ∩

N−1⋃

k=1

(
δk(x1, . . . , xN−1) = 0

)
,

SK ∩ (V = 0) = SK ∩
(
δ1(x1, . . . , xN−1) = · · · = δK(x1, . . . , xN−1)

)
(K < N).

Finally we turn back to our motivativation the genetical time evolution equation for

the distribution of species within a closed population. Namely in [2] we have the system

(V )

d

dt
xk =

( N∑

i=1

g(i)xi − g(k)
)
xk+

+

N∑

i,j=1

w(i, j)xixj

[ N∑

`=1

M(i, j, `)ε(i, j, `, k)− xk

]

for describing the behaviour of the rates x1(t), . . . , xN (t) at time t of the N species of

the population. here the terms g(k), M(i, j, `) and ε(i, j, `, k) are non-negative constats

with
∑N

`=1 M(i, j, `) =
∑N

k=1 ε(i, j, `, k) = 1 . Observe that this can be written as

d

dt
x =

N∑

k=1

g(k)Zk + W

with the vector fields

Zk:=xk

N∑

j=1

xj(ej−ek), W :=
N∑

i,j,k=1

w(i, j)xixj

[ N∑

`=1

M(i, j, `)ε(i, j, `, k)−xk

]
ek,

respectively. As a consequence of Theorems 2.1 and 2.2 we obtain the following.

2.3. Theorem. Let N ≥ 3 . Then the time evolution of the population can be retrospected

up to any time t ≤ 0 starting with any distribution (x(0), . . . , xN (0)) ∈ S if and only if

the term W vanishes on S , that is if simply d/dt x =
∑N

k=1 g(k)Zk(x1, . . . , xN ) . In this

case the set of the stable distributions has the form

⋃

γ∈{g(1),...,g(N)}

S ∩ (xm = 0 for m 6∈ Jγ ) where Jγ := {m : g(m) = γ} .

2.4. Corollary. If g(1), . . . , g(N) ≥ 0 and the vector field (V) is complete in S then

d

dt

N∑

k=1

g(k)xk(t) ≥ 0
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for any solution t 7→ x(t) ∈ S of the evolution equation dx/dt = V (x) .

3. Proof of Theorem 2.1

As in the previous section, we keep fixed the notations e1, . . . , eN , x1, . . . , xN , S for the

standard unit vectors, coordinate functionals and unit simplex in IRN , and V : IRN → IRN

is an arbitrarily fixed polynomial vector field. We write 〈u, v〉 :=
∑N

k=1 xk(u)xk(v) for the

usual scalar product in IRN .

According to [4, (2,2)], V is complete in S if and only if

V (p) ∈ Tp(s) := {v ∈ IRN : ∃ c : IR → S , c(0) = p ,
d

dt

∣∣
t=0

c(t) = v} for all p ∈ S.

By writing

e :=
1

N

N∑

k=1

ek, uk := ek − e, Sk := S ∩ (xk = 0) (k = 1, . . . , N)

for the center, the vectors connecting the vertices with the center and the maximal faces

of S , it is elementary that

Tp(S) =
{
v : 〈v, e〉 = 0

}
if p ∈ S \

⋃N
k=1 Sk),

Tp(S) =
{
v : 〈v, e〉 = 〈v, uk〉 = 0 (k ∈ Kp)

}
if p ∈

⋃N
k=1 Sk and Kp := {k : p ∈ Sk}

for any non-empty subset K of {1, . . . , N} . Since the vector field V is polynomial by

assumption, it follows that

V is complete in S ⇐⇒

⇐⇒ 〈V (p), e〉 = 0 (p ∈ S) and 〈V (p), um〉 = 0 (p ∈ Sm, m = 1, . . . , N).

Let us write

LS := (x1 + · · ·+ xN = 1), LSm
:= LS ∩ (xm = 0) (m = 1, . . . , N)

for the hyperplane supporting S , and for the affine submanifolds generated by the faces

Sm , respectively. Since ek = uk +e and since polynomials vanishig on a convex set vanish

also on its supporting affine submanifold, equivalently we can say

V is complete in S ⇐⇒

⇐⇒ 〈V (p), e〉=0 for p∈LS and 〈V (p), em〉=0 for p∈LSm
(m=1, . . . , N).
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If P1, . . . , PN : IRN → IR are polynomial functions then, with the vector fields Zk :=

xk

∑N
j=1 xj(ej − ek) (k = 1, . . . , N) , we have

〈
N∑

k=1

Pk(p)Zk(p), e

〉
=

N∑

k=1

Pk(p)〈Zk(p), e〉 =

=
N∑

k=1

Pk(p)

〈
Zk(p),

1

N

N∑

`=1

e`

〉
=

=
1

N

N∑

k=1

Pk(p)

N∑

j,`=1

〈xk(p)xj(p)(ej − ek), e`〉 =

=
1

N

N∑

k=1

Pk(p)xk(p)
∑

j: j 6=k

∑

`=j,k

xj(p)〈ej − ek, e`〉 =

=
1

N

N∑

k=1

Pk(p)xk(p)
∑

j: j 6=k

xj(p)
∑

`=j,k

〈ej − ek, e`〉 =

=
1

N

N∑

k=1

Pk(p)xk(p)
∑

j: j 6=k

xj(p)[1 − 1] = 0

for any point p ∈ IRN (not only for p ∈ S ). On the other hand, if p ∈ Sm then xm(p) = 0

and
〈

N∑

k=1

Pk(p)Zk(p), em

〉
=

N∑

k=1

Pk(p) 〈Zk(p), em〉 =

=
N∑

k=1

Pk(p)xk(p)
∑

j: j 6=k

xj(p)〈ej − ek, em〉 =

=
∑

k: k 6=m

Pk(p)xk(p)
∑

j: j 6=k,m

xj(p)〈ej − ek, em〉 = 0.

This means that the vector fields of the form V :=
∑N

k=1 PkZk with arbitrary polynomials

P1, . . . , PN are complete in S , morover 〈V (p), e〉 = 0 for all p ∈ IRN .

To prove the remaining part of the theorem, we need the following lemma.

3.1. Lemma. If P : IRN → IR is a polynomial function and 0 6= φ : IRK → IR is an affine

function ∗ such that P (q) = 0 for the points q of the hyperplane {q ∈ IRN : φ(q) = 0}

then φ a divisor of P in the sense that P = φQ with some (unique) polynomial Q :

IRN → IR .

∗ That is φ is the sum of a linear functional with a constant.
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Proof. Trivially, any two hyperplanes are affine images of each other. In particular there

is a one to one affine (i.e linear + constant) mapping A : IRN ↔ IRN such that {q ∈

IRN : φ(p) = 0} = A
(
{q ∈ IRN : x1(q) = 0}

)
. Then R := P ◦ A is a polynomial

function such that R(q) = 0 for the points of the hyperplane {q ∈ IRN : x1(q) =

0} . We can write R =
∑d

k1,...,kN=0 αk1,...,kN
xk1

1 · · ·xkN

N with a suitable finite family of

coefficients αk1,...,kN
. By the Taylor formula, αk1,...,kN

= ∂k1+···+kN

∂x
k1
1

···∂x
kN
N

∣∣∣∣
x1=···=xN=0

R . It

follows αk1,...,kN
= 0 for k1 > 0 , since R vanishes for x1 = 0 . This means that R = x1R0

with the polynomial R0 :=
∑d

k1=1

∑d
k2,...,kN=0 xk1−1

1 xk2

2 · · ·xkN

N . By the same argument

applied for the polynomial function φ of degree d = 1 in place of R , we see that φ◦A =

αx1 for some constant (polynomial of degree 0 ) α 6= 0 . That is φ = αx1◦A−1 . Therefore

P = R ◦ A−1 = [x1R0] ◦ A−1 = (x1 ◦ A−1)(R0 ◦ A−1) = φ · (
1

α
R0 ◦ A−1).

Since the inverse of an affine mapping is affine as well, the function Q := 1
α
R0 ◦ A−1 is a

polynomial which suits the statement of the lemma.

3.2. Corollary. A polynomial vector field Ṽ : IRN → IRN coincides with V on S

iff it has the form Ṽ = V + (x1 + · · · + xN − 1)W with some polynomial vector field

W : IRN → IRN .

Proof. Observe that D̃ and V coincide on S iff they coincide on the hyperplane LS

supporting S . We can write Ṽ =
∑N

k=1 P̃kek resp. V =
∑N

k=1 Pkek with some scalar

valued polynomials P̃k resp. Pk and, by the lemma, we have P̃k − Pk = 0 on LS iff

P̃k − Pk = (x1 + · · ·+ xN − 1)Qk with some polynomial Qk : IRN → IR (k = 1, . . . , N) ,

that is if Ṽ − V = (x1 + · · ·+ xN − 1)W with the vector field W :=
∑N

k=1 Qkek .

Instead of the generic polynomial vector field V complete in S , it is more convenient

to study another Ṽ coinciding with V on S but having additional properties. As in

the proof of the previous corollary, we decompose V as V =
∑

k Pkek . Recall that

V (p) ∈ Tp(S) ⊂ {v : 〈v, e〉 = 0} for the points p ∈ S . In terms of the component

functions Pk , this means that 1
N

∑N
k=1 Pk = 0 that is PN = −

∑
k: k 6=N Pk on S . On

the other hand, x1 + · · · + xN = 0 that is xN = −
∑

k: k 6=N on S . Introduce the vector

field

Ṽ :=

N∑

k=1

P̃kek

where

P̃k := πk(x1, . . . , xN−1) := Pk(x1, x2, . . . , xN−1, 1 − x1 − · · · − xN−1) (k < N),

P̃N := πN (x1, . . . , xN−1) := −
N−1∑

k=1

P̃k = −
N−1∑

k=1

πk(x1, . . . , xN−1).
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By its construction, Ṽ coincides with V on S , it is a polynomial of the same degree as

V but only in the variables x1, . . . , xN−1 and it has the property
∑N

k=1 P̃k = 0 on the

whole space IRN . The relations Ṽ (p) = V (p) ∈ Tp(S) ⊂ {v : 〈v, ek〉 = 0} for p ∈ Sk

(k = 1, . . . , N) mean

P̃k(p) = 〈Ṽ (p), ek〉 = 0 for p ∈ Sk = (xk = 0, x1 + · · ·+ xN = 1, x1, . . . , xN ≥ 0).

In terms of the polynomials πk of N − 1 variables this can be stated as

(∗∗)

πk(ξ1, . . . , ξN−1) = 0 whenever ξk = 0 (k = 1, . . . , N − 1) and

−

N−1∑

k=1

πk(ξ1, . . . , ξN−1)
[
= πN (ξ1, . . . , ξN−1)

]
= 0 whenever ξ1 + · · · + ξN−1 = 1.

By the lemma (applied with N−1 instead of N ), the first N−1 equations are equivalent

to

πk(ξ1, . . . , ξN−1) = ξk%k(ξ1, . . . , ξN−1) (k = 1, . . . , N − 1)

with some polynomials %k : IRN−1 → IR with degree less than the degree of πk and V .

Also by the lemma (with N − 1 instead of N ), the last equation can be interpreted as

−

N−1∑

k=1

πk(ξ1, . . . , ξN−1) = πN (ξ1, . . . , ξN−1) = [1 − (ξ1 + · · · + ξN−1)]%N(ξ1, . . . , ξN−1)

with some polynomial %N : IRN−1 → IR of degree less than that of V . Thus

−

N−1∑

k=1

ξk%k(ξ1, . . . , ξN−1) = [1 − (ξ1 + · · · + ξN−1)]%N (ξ1, . . . , ξN−1),

N−1∑

k=1

ξk[%N − %k](ξ1, . . . , ξN−1) = %N (ξ1, . . . , ξN−1).

By introducing the polynomials δk := %k − %N (k = 1, . . . , N − 1) of N − 1 variables, we

can reformulate the relationships (∗∗) as

πk = ξk%k = ξk(δk + %N ) (k = 1, . . . , N − 1),

πN = (1 − ξ1 − · · · − ξN )%N ,

%N = −ξ1δ1 − · · · − ξN−1δN−1

which is the same as

(∗ ∗ ∗)

πk(ξ1, . . . , ξN−1) = ξk

[
δk(ξ1, . . . , ξN−1) −

N−1∑

`=1

ξ`δ`(ξ1, . . . , ξN−1)
]

for k 6= N,

πN = (ξ1 + · · ·+ ξN − 1)
N−1∑

`=1

ξ`δ`(ξ1, . . . , ξN−1)
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where δ1, . . . , δN−1 are arbitrary polynomials of the variables ξ1, . . . , ξN−1 .

Summarizing the arguments, we have obtained the followig result.

3.3. Proposition. Let V =
∑N

k=1 Pkek be a vector field where P1, . . . , PN : IRN →

IR are polynomials of the coordinate functions x1, . . . , xN . Then V is complete in the

simplex S := (x1 + · · · + xN = 1, x1, . . . , xN ≥ 0) if and only if there exist polynomials

δ1, . . . , δN−1 of N − 1 variables and degree less than that of V such that the vector field

Ṽ :=
∑N

k=1 πk(x1, . . . , xN−1)ek , where the polynomials πk are given by (∗ ∗ ∗) in terms

of δ1, . . . , δN−1 , coincides with V on the hyperplane LS := (x1 + · · ·+ xN = 1) .

On the basis of the proposition we can finish the proof of Theorem 2.1 as follows. Let

V be a polynomial vector field complete in S . By the proposition, we can find a vector field

Ṽ of the form (*) coinciding with V on S such that where δ1, . . . , δN−1 : IRN−1 → IR

are polynomials. It suffices to show that the vector field

V̂ := −
N−1∑

k=1

δ(x1, . . . , xN−1)Zk(x1, . . . , xN) =
N−1∑

k=1

δ(x1, . . . , xN−1)
N∑

`=1

xkx`(ek − e`)

coincides with Ṽ on S . Consider any point p ∈ S and let ξk := xk(p) (k = 1, . . . , N) .

Since ξN = 1 − ξ1 − · · · − ξN−1 , it is straightforward to check that indeed

Ṽ (p) − V̂ (p) =

N−1∑

k=1

ξk

[
δk(ξ1, . . . , ξN−1) −

N−1∑

`=1

ξ`δ`(ξ1, . . . , ξN−1)
]
ek+

+ (ξ1 + · · · + ξN−1 − 1)
N−1∑

`=1

ξ`δ`(ξ1, . . . , ξN−1)eN+

+
N−1∑

k=1

δ(ξ1, . . . , ξN−1)
N∑

`=1

ξkξ`(ek − e`) = 0 .

4. Proof of Theorem 2.2

According to Proposition 3.3, we can take a vector field Ṽ of the form (∗) coinciding

with V on S where δ1, . . . , δN : IRN−1 → IR are polynomials of degree less than that of

V . Consider a point p := (ξ1, . . . , ξN) ∈ S . Necessarily ξN = 1− ξ1 − · · ·− ξN−1 ≥ 0 and

ξ1, . . . , ξN−1 ≥ 0 . We have V (p) = 0 iff

ξk

[
δk(ξ1, . . . , ξN−1) −

N−1∑

`=1

ξ`δ`(ξ1, . . . , ξN−1)
]

= 0 (k = 1, . . . , N − 1).
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Assume these equations hold with ξ1, . . . , ξN >0 , that is p∈SN . Then δ1(ξ1, . . . , ξN−1)=

· · · =δN−1(ξ1, . . . , ξN−1)=
∑N−1

`=1 ξ`δ`(ξ1, . . . , ξN−1) . However, by writing δ for the com-

mon value of the δk(ξ1, . . . , ξN−1) , we have δ=
∑N−1

`=1 ξ`δ , that is ξNδ=
(
1−

∑N−1
`=1 ξ`

)
δ=0

and δ = 0 .

Assume finally that K < N and ξ1, . . . , ξK > 0 = ξK+1 = · · · = ξN , that is p ∈ SK .

Then V (p) = 0 iff

δk(ξ1, . . . , ξK , 0, . . . , 0) =

K∑

`=1

ξ`δ`(ξ1, . . . , ξK , 0, . . . , 0) (k = 1, . . . , K).

Again the δk(ξ1, . . . , ξK , 0, . . . , 0) assume a common value δ . However, in this case∑K
`=1 ξ` = 1 and hence δ may be arbitrary for V (p) = 0 .

5. Proof of Theorem 2.3

First we check that
∑N

k=1

(∑N
i=1 g(i)xi − g(k)

)
xkek =

∑N
k=1 g(k)Zk on S . Indeed,

given any index m , from the fact that
∑N

i=1 xi = 1 on S , it follows

〈 N∑

k=1

g(k)Zk , em

〉
=

N∑

k=1

g(k)〈Zk, em〉 =

=

N∑

k=1

g(k)
〈
xk

N∑

i=1

xi(ei − ek), em

〉
=

N∑

i,k=1

g(k)xkxi〈ei, em〉 −

N∑

i,k=1

g(k)xkxi〈ek, em〉 =

=
N∑

k=1

g(k)xkxm − g(m)xm

N∑

i=1

xi =

=
( N∑

i=1

g(i)xi − g(m)
)
xm =

〈 N∑

k=1

( N∑

i=1

g(i)xi − g(k)
)
xkek , em

〉
.

Since, in general, (real-)linear combinations of complete vector fields are complete vector

fields (see e.g. [1]), and since the Zk are complete in S , the field V =
∑N

k=1 g(k)Zk −W

is complete in S iff W is complete in S . As we have seen, the polynomial vector

field W is complete in S iff
〈
W,

∑N
k=1 ek

〉
= 0 and 〈W (x1, . . . , xN ), ek〉 = 0 when-

ever xk = 0 for some index k and
∑N

i=1 xi = 1 . It is well known that, by its

construction,
〈
V (x1, . . . , xN ),

∑N
i=1 ei

〉
= 0 and hence

〈
W (x1, . . . , xN),

∑N
i=1 ei

〉
= 0

if
∑N

i=1 xi even in the case if V is not complete in S . Fix any index k . By the

definition W :=
∑N

m=1

∑N
i,j=1 w(i, j)xixj

[∑N
`=1 M(i, j, `)ε(i, j, `, m) − xm

]
em we have

〈W (p), ek〉 = 0 for all points p := (ξ1, . . . , ξN) with ξk = 0 and
∑N

i=1 ξi = 1 if and only

if
N∑

i,j=1

i,j 6=k

w(i, j)ξiξj

N∑

`=1

M(i, j, `)ε(i, j, `, k) = 0 if
∑N

i=1

i6=k

ξi = 1 .
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By elementary properties of bilinear forms, this latter relation holds iff

w(i, j)

N∑

`=1

M(i, j, `)ε(i, j, `, k) = 0 if i, j 6= k .

Since N ≥ 3 , the field W has this property for all indices k = 1, . . . , N iff all these terms

vanish and hence W = 0 . Thus V is complete in S iff W = 0 that is V =
∑N

k=1 g(k)Zk

on S . In this case, the equation V (ξ1, . . . , ξN) = 0 with (ξ1, . . . , ξN) ∈ S means

ξk

( N∑

i=1

g(i)ξi − g(k)
)

= 0 (k = 1, . . . , N)

along with the conditions ξ1 + · · · + ξN = 1 and ξ1, . . . , ξN ≥ 0 . Consider a point

(ξ1, . . . , ξN ) ∈ S and write J := {j : ξj > 0} . Then ξk = 0 for k 6∈ J and hence∑
j∈J ξj = 1 and V (ξ1, . . . , ξN) = 0 iff g(k) =

∑N
i=1 ξig(i) =

∑
j∈J ξjg(j) for the indices

k ∈ J . By writing γ :=
∑

j∈J ξjg(j) for the common value of the g(k) with (k ∈ J) , we

see that V (ξ1, . . . , ξN) = 0 for any ξ1, . . . , ξN ) ∈ S ∩
⋂

j∈J(xj > 0) ∩
⋂

i6∈J(xi = 0) . This

completes the proof.
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