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Complete polynomial vector fields in simplexes
with application to evolutionary dynamics
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ABSTRACT. We describe the complete polynomial vector fields and their fixed points in
a finite-dimensional simplex and we apply the results to differential equations of genetical
evolution models.

AMS Classification. Primary: 34C07 , secondary: 34C23, 37Cxx.

Key words: polynomial vector field, fixed point, mutation, selection, evolution.

1. Introduction

Well-known genetical models [3],[5],[2] of the time evolution of a closed population con-
sisting of N different species describe the rates ri(t),...,rn(t) of the respective species
within the whole population at time ¢ > 0 as the solution of the ordinary system of dif-
ferential equations dry(t)/dt = Fy(ri(t),...,rn(t)) (k=1,...,N) where the functions
F}, are some polynomials of degree at most 3. During a seminar on such models one has
launched the question what are the strange consequences of the assumption that the evo-
lution has no starting point in time, in particular what can be stated on the non-changing
distributions in that case.

In this paper we provide the complete algebraic description of all polynomial vec-
tor fields (with arbitrary degrees) V(z) = (Fi(z),...,Fn(z)) on IRY which give rise
to solutions for the evolution equation defined for all time parameters ¢ € IR and
satisfying the natural rate conditions 71(t),...,rn(t) > 0, 25:1 rp(t) = 1 whenever
r1(0),...,7x(0) > 0 and Zgzl 7(0) = 1. On the basis of the explicit formulas obtained,
we describe the structure or the set of zeros for such vector fields (which correspond to the
non-changing distributions).

2. Results

Throughout this work R”Y := {(&,...,éx) : &1,...,én € IR}. denotes the N -
dimensional vector space of all real N -tuples. We reserve the notations xi,...,zy for
the standard coordinate functions xy : ({1,...,&n) — & on RY . Our purpose will be to
describe the complete polynomial vector fields on the unit simplex

S = (x1—|—~~—i—xN:1, :Ul,...,xNZO)
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along with their fixed points for the cases of degree < 3.

Recall [1] that by a vector field on S we simply mean a function S — IRY . A function
p: S — IR is said to be polynomial if it is the restriction of some polynomial of the linear
coordinate functions xi,...,,zn: for some finite system coefficients oy, 1, € IR with
ki,....kn € {0,1,...}) we can write ¢(p) = D> . gy k@i 2N (p € S). In
accordance with this terminology, a vector field V on S is a polynomial vector field if its
components Vi :=x oV (thatis V(p) = (Vi(p),...,Vn(p)) for p € S) are polynomial
functions. It is elementary that given two polynomials P, = P, (z1,...,ZN) : RY - R
(m =1,2), their restrictions to S coincide if and only if the difference P; — P, vanishes
on the affine subspace Ag := (xl 4+ 4y = 1) generated by S . We shall see later
(Lemma 3.1) that a polynomial P = P(z1,...,xy) vanishes on the affine subspace M :=
(izi+- - +ynvay =6) iff P= (yz1+--+ynven—0)Q(z1,. .., zy) for some polynomial
@ . Thus polynomial vector fields on S admit several polynomial extensions to IRY but
any two such extensions differ only by a vector field of the form (z; +---+xny — 1)W.
A polynomial vector field V : § — IRY is said to be complete in S if for any point
p € S there is a (necessarily unique) curve C, : IR — S such that C,(0) = p and
4C,(t) = V(C,() (teR).

Our main results are as follows.

2.1. Theorem. A polynomial vector field V : S — RY is complete in S if and only if
with the vector fields

N
Zy :xkzxj(ej ek) (kzlv aN)
j=1
J
A~
where e; is the standard unit vector e; :=(0,...,0, 1 ,0,...,0), we have

N
V:ZPk(xlaamN>Zk
k=1

for some polynomial functions Py,..., Py :RY - R.

2.2. Theorem. Given a complete polynomial vector field V of S, there are polynomials
61,...,0n : IRV S IR of degree less than as that of V' such that the vector field

N-1 N-1
V.= Z Tk [(5k(:1;1, ceyEN-1) — Z xpde(T1, ..., xN_1)|€K+
k=1 (=1
N-1
—|—($1—|—"-—|—CIZ‘N_1—1) .’Dg5g(x1,...,xN_1)€N
(=1
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coincides with 'V on S . The points of the zeros of V inside the facial subsimplices
Sk:=SN(z1,...,2x >0=xr11=---=2xy) (K=1,...,N) can be described as

N-1

) SxN (V=0 =50 ] @Gk(z1,...,2n-1) =0),
k=1

SKH(VZO) :SKﬂ (51(x1,...,xN_1) = ---:5K(x1,...,er_1>) (K<N)

Finally we turn back to our motivativation the genetical time evolution equation for
the distribution of species within a closed population. Namely in [2] we have the system

—xk (Zg )Ik-l-

N N
-I—Z Zjl'l’j[ZM’Lj, Ve(i, 7,6, k) — g

ij=1 =1

V)

for describing the behaviour of the rates z1(t),...,zn(t) at time ¢ of the N species of
the population. here the terms g¢(k), M (i,j,¢) and &(i,j,¢, k) are non-negative constats
with Eé\jzl M(i, j,0) = E,ivzl £(i,j,¢, k) = 1. Observe that this can be written as

d N
Pk Zg(k)Zk +W
k=1
with the vector fields
N N N
AR ij(ej—ek), W.= Z w(i, J) iz, [ZM(i,j, Oe(i, 7,2, k:)—xk] €k,
j=1 i,j,k=1 (=1

respectively. As a consequence of Theorems 2.1 and 2.2 we obtain the following.

2.3. Theorem. Let N > 3. Then the time evolution of the population can be retrospected
up to any time t < 0 starting with any distribution (z(0),...,xn(0)) € S if and only if
the term W wvanishes on S, that is if simply d/dt © = 25:1 9(k)Zk(x1,...,zN) . In this
case the set of the stable distributions has the form

U SN (xm=0for m¢gJ,) where J, :={m: g(m) =~} .
ve{g(1)s-9(N)}

2.4. Corollary. If g(1),...,9(N) > 0 and the vector field (V) is complete in S then

&> 4R 2 0

k=1
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for any solution t — x(t) € S of the evolution equation dz/dt =V (x).

3. Proof of Theorem 2.1

As in the previous section, we keep fixed the notations eq,...,en,z1,...,2xN, S for the
standard unit vectors, coordinate functionals and unit simplex in IRY ,and V : RY — RY
is an arbitrarily fixed polynomial vector field. We write (u,v) := chvzl xk(u)xg(v) for the
usual scalar product in RY .

According to [4, (2,2)], V is complete in S if and only if

d
V(p) €Tp(s):={veRY: 3¢:IR— S, ¢0)=p, a‘tzoc(t):v} for all p € S.

By ertlng
e . E e Uk - e e : xr
pr .lm k k bl k k Y )

for the center, the vectors connecting the vertices with the center and the maximal faces
of 9, it is elementary that

T,(S)={v: (v,e) =0} ifpeS\Up, S,
To(S)={v: (v,&) = (v,ur) =0 (k€ Kp)} ifpe ngl Sk and K, :={k: p € Sk}

for any non-empty subset K of {1,...,N}. Since the vector field V is polynomial by

assumption, it follows that

V is complete in § <—
<~ (V(p),e)=0 (peS) and (V(p),um)=0 (p&€ Sm, m=1,...,N).

Let us write
Ls:=(x1+---+xny=1), Ls,:=LsN(x,=0) (m=1,...,N)

for the hyperplane supporting S, and for the affine submanifolds generated by the faces
S , respectively. Since e = uy +¢€ and since polynomials vanishig on a convex set vanish

also on its supporting affine submanifold, equivalently we can say

V is complete in S <~
<= (V(p),€)=0 for pe Lg and (V(p),e)=0 for pecLg (m=1,...,N).
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If Py,....Py: RY — R are polynomial functions then, with the vector fields Zj :=
xkzj'v:lxj(ej —er) (k=1,...,N), we have

N N
<Z By (p>Zk(p)»€> = (p){(Zk(p),€) =

= %Zpk(p)xk(p) Z ;(p) Z (ej —ex,er) =

1 J: 3Fk l=j,k

= = Pne) Y wm-1=0

k=1 ji j#k

for any point p € RY (not only for p € S). On the other hand, if p € S,,, then ,,(p) =0
and

N

<Z Pk<p)Zk(p)7em> = Zpk<p) (Zk(p)sem) =
k=1

k=1

=D Pe®ar(p) D w(p)(e; — exsem) =
k=1

ji j#k

= 3 Rk Y x(p)e; —enem) =0.

k: k#m J: j#Fkm
This means that the vector fields of the form V := 25:1 Py 7y with arbitrary polynomials
Pi,..., Py are complete in S, morover (V(p),e) =0 for all p € RY .

To prove the remaining part of the theorem, we need the following lemma.

3.1. Lemma. If P:IR"Y — IR is a polynomial function and 0 # ¢ : R™ — R is an affine
function* such that P(q) =0 for the points q of the hyperplane {q € RY : ¢(q) = 0}
then ¢ a divisor of P in the sense that P = ¢Q with some (unique) polynomial Q :
RY - R.

* That is ¢ is the sum of a linear functional with a constant.
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Proof. Trivially, any two hyperplanes are affine images of each other. In particular there
is a one to one affine (i.e linear + constant) mapping A : RY « IRY such that {q €
RY : ¢(p) = 0} = A({q € RY : z,(q) = 0}). Then R := Po A is a polynomial
function such that R(¢) = 0 for the points of the hyperplane {¢ € RY : z,(¢) =

0} . We can write R = Eil e Qhy . ke Tt -+ - 2N with a suitable finite family of

coefficients oy, .. ky - By the Taylor formula, ag, . kv = M R. It
) ) ) ) 8&011--'8:61\,” xl:sz:O

follows ay, .. ky =0 for ky > 0,since R vanishes for x; = 0. This means that R = z1 Ry

with the polynomial Ry := 221:1 ZZZ B0 x’fl_lx’;z . ~x§v” . By the same argument

applied for the polynomial function ¢ of degree d =1 in place of R, we see that ¢o A =
ax, for some constant (polynomial of degree 0) o # 0. Thatis ¢ = ax;0A~!. Therefore

1
P=RoA™'=[zRy]o A =(z10A ) (Ryo A ) =~ (ERO o A™Y).

Since the inverse of an affine mapping is affine as well, the function @ := éRO oAl isa

polynomial which suits the statement of the lemma. |

3.2. Corollary. A polynomial vector field V : RY — RN coincides with V on S
iff it has the form V =V + (x1 + --- + oy — L)W with some polynomial vector field
w:RY - RY.

Proof. Observe that D and V coincide on S iff they coincide on the hyperplane Lg
supporting S . We can write V= Zszl ﬁkek resp. V = Zszl Prej, with some scalar
valued polynomials ]Sk resp. P, and, by the lemma, we have ]Sk — P, =0 on Lg iff
P, — P, = (1 + -4y — 1)Qi with some polynomial Q:IRY - R (k=1,...,N),

that isif V —V = (z1 + -+ zy — 1)W with the vector field W := Zszl Qrer - O

Instead of the generic polynomial vector field V' complete in S, it is more convenient
to study another 1% coinciding with V' on S but having additional properties. As in
the proof of the previous corollary, we decompose V as V = ), Preir. Recall that
V(p) € T,(S) € {v: (v,€) = 0} for the points p € S. In terms of the component
functions Py, this means that % 25:1 P, =0 thatis Py = —)_,. Kt N P. on S.On
the other hand, =1 4+ ---+ 2y =0 thatis xy = — Ek: k£N OD S . Introduce the vector
field

N
‘7 = Zf’kek
k=1
where
Py =7mp(z1,.. ., eN-1) = Pp(z1,22,...,on—1, 1 —21 — - —2n—1) (B < N),
B N-1 N—
Py :=7mn(T1,...,2N_1) 1= — P = — (21, ..., TN_1)
k=1 k=1
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By its construction, V coincides with V on § , it is a polynomial of the same degree as
V' but only in the variables x1,...,zxy_1 and it has the property Zszl ]Bk = (0 on the
whole space IR . The relations V(p) = V(p) € T,(S) C {v: (v,ex) =0} for p e Sy
(k=1,...,N) mean

]gk(p):(f}(p),ek)zo for peSpy=(xx =0, 11+ ---+any=1, z1,...,z5 > 0).

In terms of the polynomials 7, of N —1 variables this can be stated as

Tk (€1, ..., &N—1) =0 whenever & =0 (k=1,...,N—1) and

N-1
— Z (&1, Ev-1) [= (&, Env—1)] =0 whenever & + -+ &n_1 = 1.
=1

By the lemma (applied with N —1 instead of N ), the first NV —1 equations are equivalent
to

(€1, 6n—1) = &por (&, -, EN—1) (k=1,...,N-1)

with some polynomials gy : RY ™! — IR with degree less than the degree of 7, and V.
Also by the lemma (with N — 1 instead of N ), the last equation can be interpreted as

N—-1

(€1 6N—1) =N (s Ev—1) = [T = (& + -+ Env-1)lon (&, Ev-1)

k=1

with some polynomial on : IRY ™! — IR of degree less than that of V. Thus

- Z §eor(€1, - 6n—1) = [1 = (&1 4+ +&nv—1)]on (&1, - En—1),

Elon — okl (&1s - év—1) = on (&1, -, En—1)-

By introducing the polynomials 6y := o —on (k=1,...,N—1) of N —1 variables, we

can reformulate the relationships (xx) as

7 = &kok = &0k + on) (k=1,...,N —1),
n=(1—-& —---—¢&n)on,
on = —&101 — - —EN—10N—1

which is the same as

N—-1
(€0 En1) = € [O(€r v ) = D EdelEr s Ev)| for k£ N,
{=1

(s * %)

N-1
v = (Gt En—1) ) &de(&rs. o Enn)
=1
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where d1,...,0n_1 are arbitrary polynomials of the variables &1,...,&6n_1 .
Summarizing the arguments, we have obtained the followig result.

3.3. Proposition. Let V = 25:1 Prey. be a vector field where Py,..., PN : RrRY —
IR are polynomials of the coordinate functions xz1,...,xn . Then V is complete in the
simpler S := (r1 4+ ---+xzy = 1,z1,...,2xy > 0) if and only if there exist polynomials
51, ...,0n—1 of N —1 wariables and degree less than that of V such that the vector field
Vo= Ek 1 Tk(Z1, ..., xN_1)ex , where the polynomials m, are given by (x **) in terms
of d1,...,0Nn—_1, coincides with 'V on the hyperplane Ls := (x1+---+zny =1). O

On the basis of the proposition we can finish the proof of Theorem 2.1 as follows. Let
V' be a polynomial vector field complete in .S . By the proposition, we can find a vector field

V of the form (*) coinciding with V on S such that where d1,...,0y_1 : RN"! = R
are polynomials. It suffices to show that the vector field

N-1 N-1 N
Vi=— 0(x1, ..y xN—1)Zk(x1,...,TN) = 5(x1,...,xN_1)Zxkxg(ek—eg)
k=1 k=1 (=1

coincides with V on S . Consider any point p € S and let & = xx(p) (k=1,...,N).
Since Ey =1—& — -+ —&n_1, it is straightforward to check that indeed

N-1 N-1
Vip) = V)= & [5k(£1, o Ene) = Y &bi(&, -~,£N—1)]ek+
= /=
k=1 o 1
+ (G + e —1) ) &bl b )ent
=1

N
+ > 0. En) Zﬁk&ek—ez =0.

4. Proof of Theorem 2.2

According to Proposition 3.3, we can take a vector field V of the form (*) coinciding
with V on S where 81,...,0n : RV ™' — IR are polynomials of degree less than that of
V. Consider a point p := (&1,...,&n) € S . Necessarily {y =1—& —---—E&n_1 >0 and
&1,...,&n-1 > 0. We have V(p) =0 iff

N—-1
& [Oh(€n, s Ena1) = D &del&r, 1) =0 (=1, N = 1),
/=1
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Assume these equations hold with &;,...,&ny >0, that is p€ Sy . Then §1(&1,...,&n_1)=
c=0n-1(&1, .- EN—1) :Zévz_ll £e0e(&1, .-, &n—1) . However, by writing ¢ for the com-
mon value of the 6x(&1,...,&n—1), we have 5225:_11@5 , that is {End= (1—2?’:‘11&)5:0
and 6 =0.
Assume finally that K < N and &;,...,{g >0=E,xy11 =---=¢&n, thatis pe Sk .
Then V(p) =0 iff

K
Orl(€rs - €k, 0,000 =) &bu(&r,- ., €k,0,...,0)  (k=1,...,K).
/=1

Again the 6k(&1,...,8k,0,...,0) assume a common value §. However, in this case
25:1 & =1 and hence § may be arbitrary for V(p) =0. O

5. Proof of Theorem 2.3

First we check that Zij 1(21 190 )ml — g(k))zre, = ZkN 19(k)Zy, on S. Indeed,
given any index m , from the fact that Z _,zi=1 on S, it follows

<Zg(k‘)Zk, 8m> ig N Zr em) =
k=1

- <$k Zmz - €k>7 €m> - Z g(k)xkxz ezaem Z g kaz ekaem> -
k=1 i k=1 i k=1
= 9(k)zpxm — g(m)Tm, Z T; =
k=1 i=1
= (Y g()zi — g(m))am = <Z(Z g(i)z: — g(k))zer | em> .
1=1 k=1 i=1

Since, in general, (real-)linear combinations of complete vector fields are complete vector
fields (see e.g. [1]), and since the Zj are complete in S, the field V = Zszl g(k)Z,—W
is complete in S iff W 1is complete in S. As we have seen, the polynomial vector
field W is complete in S iff (W, 25:1 ex) = 0 and (W(z1,...,2n),ex) = 0 when-
ever zp = 0 for some index k and Ef\il x; = 1. It is well known that, by its
construction, <V(m1, Ce XN, Zf\i1 ei> = 0 and hence <W(x1, C XN, Zivzl ei> =0
if Zi\il x; even in the case if V is not complete in S. Fix any index k. By the
definition W := 22:1 Ef\fj:l w(i, j) Tz, [Eé\]:l M(i, j, 0)e(i, j, £, m) — Tp|em we have
(W(p),er) =0 for all points p:= (&1,...,&n) with § =0 and Zivzl & =1 if and only
if

N N

> w(iy§)&g; Y M(iyj, 0)e(i, j,0,k)=0 i z?’;; gi=1.
i,j=1 =1

i,j#k
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By elementary properties of bilinear forms, this latter relation holds iff

N
w(i,j) Y M(i,j,0)eli,j, 0, k) =0 if i,5#k.
/=1

Since N > 3, the field W has this property for all indices k£ =1,..., N iff all these terms
vanish and hence W = 0. Thus V is completein S iff W =0 thatis V = Zszl g(k)Zy,
on S. In this case, the equation V(&1,...,&6ny) =0 with (&1,...,&n) € S means

along with the conditions & + --- + &y = 1 and &,...,&ny > 0. Consider a point
(&1,...,én) € S and write J := {j : & > 0}. Then & = 0 for k ¢ J and hence

dies& =1 and V(&,...,En) =0 iff g(k) = 27{11 §ig(i) = >_;c789(j) for the indices
k € J. By writing ~ := Zjlejg(j) for the common value of the g(k) with (k€ J), we

see that V(&1,...,&n) =0 forany &1,...,&n) € SN[, (x> 0) Nz, (z; = 0). This
completes the proof. O
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