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0. Introduction.

Holomorphy or Complex Analysis in any (finite or infinite)
dimensions has undergone a progress in the past 20'years or so.
which led to the publication of some expository books in 1969
271, 1970 |35f, 1973 |34], 1974 8], 1980 [14], 1981 [11],
1982 |9|, 1984 |22, 1985 |5|,|7!,]118],]36] and 1986 |26{. In
these lectures we propose only to describe some problems in Ho-
lomorphy in an as clear as possible way dealing with the follo-
wing aspects: a holomorphic classification of 1locally convex
spaces; topology on spaces of holomorphic mappings; holomorphic
factorization; and holomorphic continuation. o

1. Terminology and notation.

Topological vector spaces,

All topological vector spaces considered here will be
complex and locally convex. If « is a seminorm on a vector spa-
ce E, we denote by E, the vector space E seminormed by « , and
by Eﬁq:E&/«_1(O) the associated normed space. We 1let CS(E) be
the set of all continuous seminorms on a topological vector spa
ce E. We represent by wE the weak space associated with a topo-
logical vector space E, that is E endowed with its weak topolo-
gy O(E,E'). We refer to Kothe |20|, Horvath |17| and Jarchow
[19] for the terminology and notation, particularly for the
concepts of a Fréchet space, semi-Montel space, Montel space,
Schwartz space, Kothe space, DFM space (Dual of a Fréchet-Mon
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tel space), and Silva space or equivalently DFS space (Dual of
a Fréchet-Schwartz space).

Holomorphy,

Let E and F be locally convex spaces. We denote by
P(mE;F) the vector space of all m-homogeneous polynomials of
E to F for meN. If U is an open nonvoid subset of E, we let
“#(U;F) be the vector space of all holomorphic mappings f of
U to F. A mapping f of U to F is said to be finitely holomor-
phic when its restriction f|(U N S) is holomorphic for every
finite dimensional vector subspace S of E intersecting U,
where S has its natural topology. We shall use on‘$(U;F) the
compact-open topology <. besides other topologies 3B« and
¢ . When F=C, we shall use the simpler notations P(mE) and
““(U) to denote P(mE;C) and 4(U;C). We refer to Dineen |11],
Colombeau |9|, Barroso |5|, Chae |7| and Mujica |26| for the
terminology and notation, particularly holomorphic mappings,
and the topologies €, , Cn and Gy .

2. A holomorphic classification of locally convex spaces.

Let E and f be complex locally convex spaces, U be an
open nonvoid subset of E, and #(U;F) be the vector space of
all holomorphic mappings of U to F.

Definition 1. A given E is a holomorphically bornologi-

cal space if, for every U and every F, we have that each map-
ping £ : U — F belongs to “WU;F) if (and always only if)
f is finitelly holomorphic, and f is bounded on every compact
subset of U.

Remark 2. Every holomorphically bornological space is
a bornological space (see |20|, 17|, 119] for the concept
of a bornological space).
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Definition 3. A given E 1is a holomorphically barreled

space if, for every U and every F, we have that each collec-
tion ¥ c“Y(U;F) 1is amply bounded if (and always only if)
X is bounded on every finite dimensional compact subset of
U.

Remark 4. Every holomorphically barreled space 1is a
barreled space (see [20], [17], |19 for the concept of a ba-
rreled space).

Definition 5. A given E is a holomorphically infraba-

rreled space if, for every U and every F, we have that each
collection X <c*h(U;E) is amply bounded if (and always only
if) * is bounded on every compact subset of U.

Remark 6. Every holomorphically infrabarreled is an in-
frabarreled space (see |20|, (171, [19] for the concept of

an infrabarreled space, also called quasibarreled space).

Definition 7. A given E 1is a holomorphically Mackey

space if, for every U and every F, we have that each mapping
f : U —>F belongs to “&%(U;F) if (and always only if) f be-
longs to “h(U;wF). ;

Remark 8. Every holomorphically Mackey spacéJis a Mackey
space (see |20|, {171, 119]| for the concept of a Mackey spa-
ce.

Definitions 1,3,5, and 7 were introduced in |30|, |31]
and developed in |3|. A variation of Definition 1 was given
in |21].

We recall that a subset K of E 1is said to be fast
compact if there is a complex Banach space S which is a vector
subspace of E and contains K, such that the inclusion map-
ping S —> E is continuous and K is compact in S , hence
compact in E.
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Definition 9. A given E is a holomorphically ultrabornolo-

gical space if, for every U and every F, we have that each map-
ping £ : U —> F belongs to “h(U;F) if (and always only if) f is
finitely holomorphic, and f is bounded on every fast compact
subset of U.

Remark 10. Every holomorphically ultrabornological space
is an ultrabornological space (see |20|, [|17|, |19] for the con-
cept of an ultrabornological space).

Definition 9 was introduced in |15|. It should be compared
with the definition of a holomorphically bornological space gi-

ven in |21].

Proposition 11. Let wus introduce the following abrevia-

tions for properties of a complex locally convex space: hub=holo
morphically wultrabornological, hba=holomorphically barreled,
hbo=holomorphically bornological, hib=holomorphically infraba-
rreled, hM=holomorphically Mackey. We have the following impli-
cations for the named properties:

Proposition 12. A Fréchet space and a Silva space (that
is, a DFS space) are holomorphically ultrabornological.

Question 13. It is known that a DFM space is a holomorphi-
cally bornological space |10|. This contains the fact that a
Silva space is a holomorphically bornological space (see the
preceding Propositions 11 and 12) once a Silva space is a DFM
space. It .is not known if a DFM space is a holomorphically ul-
trabornological space. However, it is known that a DFM space is
a holomorphically ultrabornological space if (and only if) it
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is a holomorphically barreled space |6].

Question 14. If E, and E2 are holomorphically Mackey spa-
ces, 1s their cartesian product E=E,XE, a holomorphically Mac-
key space?. In the affirmative case, it follows that any carte-
sian product of holomorphically Mackey spaces is also a holomor
phically Mackey space, as noted in |6]|. Remark that E:fwxmmﬂ
is a cartesian product of two holomorphically ultrabornological
spaces; but E is not a holomorphically infrabarreled space |31],
|3]. However, it is known that E is a holomorphically Mackey
space (this was stated without proof in [31}], and it is proved
in |12]). More generally, it is known that, if E is a holomor-
phically infrabarreled space, then EIXE is a holomorphically

Mackey space for every set I (see |[6]).

Question 15. If a holomorphically bornological space is
complete in a suitable sense, must it be holomorphically ultra-
bornological?. This question is motivated by the remark that,
if a bornological space is sequentially complete, then it must
be an ultrabornological space. See |21| for a proof that cer-
tain quasicomplete holomorphically bornological spaces must be
holomorphically barreled.

Question 16. For E to be a holomorphically barreled space
it is necessary and sufficient that E be a holomorphically in-
frabarreled space, and moreover that E has the folloﬁing Montel
property: for every U and every F, we have that each collection
X c¥(U;F) is relatively compact for <& if (and always only if)
X is bounded on every finite dimensional compact subset of U,
and X (x) is relatively compact in F for every xeU (see |3]).
On the other hand, for E to be a holomorphically infrabarreled
space it is necessary that E be a holomorphically Mackey space,
and moreover that E has the following infra-Montel property:
For every U and every F, we have that each collection Xcﬂﬁ(U;F)
is relatively compact for & if (and always only if) ¥ is boun
ded on every compact subset of U, and X (x) is relatively
compact in F for every xeU (see |3|). Is this necessary condi-
tion also sufficient?.
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3. Topology on spaces of holomorphic mappings.

Let E and F be complex locally convex spaces, U be an open
nonvoid subset of E, and “A(U;F) be the vector space of all holo
morphic mappings of U te F. We may consider three natural topolo
gies 7., T, and & on (U;F). We have e, € { . If E is finite
dimensional, then 'E:=Z;:Z}. The question arises as to when
Zc = Zw or ?.~='Z‘r.

Definition 1. The compact-open topology <, on Y(U;F) is de
fined by the family of all seminorms'pkﬂ as K varies over all
compact subsets of U and B varies over all continuous seminorms
of F, where

pkp(f)=sup{9[f(x)] ; xeK}
for all fe'(U;F).

Definition 2. A seminorm p on ¥(U;F) is said to be ported
by a compact subset K of U if there is a continuous seminorm
on F such that, to every neighborhood V of K in U there corres-
ponds a real number c(V)>0 for which

p(f)sc(V)sup{p[f(x)] : xev}

for all feW(U;F). The ported topology T, on “h(U;F) is defined
by the set of all seminorms on ’h(U;F) each of which is ported
by some compact subset of U. a

Definition 3. If I is a countable cover of U by open sub-
sets of U and B is a continuous seminorm of F, we denote by
1&Ib(U;F) the vector subspace of “(U;F) of all feh(U;F) such
that Bf is bounded on every VeI. We use on'%Ip(U;F) the semime-
trizable topology ZiB defined by the family of seminorms Pyp
as V varies in I, where

pvﬁ(f)=sup{p[f(x)] ; xev}
for all feMiB(U;F)' We note that we have the union

WU F)= Uk (05F)

for all g . We now define onJ\(U;F) the inductive limit topolo-
gy Z:@ corresponding to this union, namely the largest locally
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convex topology on “(U;F) such that each inclusion mapping
'Mip(U;F) ——yM«U;F) is continuous for every I, where [ is fixed.
Finally, we define on ‘W(U;F) the 1imit topology zb=(\sz5P as an

intersection.

Lemma 4. If F is a Hausdorff space, F#£0, and the topolo-
gies T, and C,, coincide on ‘h(U;F), then every bounded subset of
F is precompact.

Question 5. Let F be given.

(a) When is it true that the topologies ¢. and 7, coincide
on W(U;F) for every U and every F?.

(b) Is the answer to (a) positive if E is a Fréchet-Montel
space?.

(c) When is it true that the topologies ¢, and ¢; coincide
on “l(U;F) for every U and every F?.

We now indicate positive results in the direction of this
Question 5.

The following Propositions 6 and 7 are due to Mujica |23,
|24|. Another related result due to Mujica |25| states that,
for a nuclear Fréchet space E, the topologies 3, and ¢, coinci-
de on "#(U) for every polynomially convex open nonvoid subset U
of E. Note that none of these three results implies -any of the
other two.

Proposition 6. Let E be a Fréchet-Schwartz space. Then the

topologies % and 7, coincide on “Y(U) for every balanced open
nonvoid subset U of E.

Proposition 7. Let E be a Fréchet-Schwartz space with the

bounded approximation property. Then the topologies & and ©Gu
coincide on “%(U) for every open nonvoid subset U of E.

In Propositions 6 and 7, E is still restricted to being a
Fréchet-Schwartz space. The following Propositions 8 and 9 are
due to Ansemil and Ponte |1]. They also give another proof of
Proposition 6, and state further related results.

Proposition 8. Let E be a Fréchet-Montel space, and U be a
balanced open nonvoid subset of E. Then the following conditions
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are equivalent:

(a) The topologies &, and <T. coincide on“h(U).
(b) The topologies (. and Cw coincide on P(mE) for all meWN,

Proposition 9. Let E be a Fréchet-Kothe space which is a

Fréchet-Montel space. Then the topologies (. and (., coincide on
#(U) for every balanced open nonvoid subset U of E.

Remark 10. There are Fréchet-Kothe spaces that are Fré-
chet-Montel spaces, but that are not Fréchet-Schwartz spaces
(see Kothe |20|, Jarchow [19|). Thus Proposition 9 gives an ins
tance of a Fréchet-Montel space which is not a Fréchet-Schwartz
space, such that the topologies T, and ¢. coincide on Jh(U) for
every balanced open nonvoid subset U of E, a conclusion which
does not follow from Proposition 6. A further such instance is
given by Ansemil and Ponte [1]| by using a construction due to
Floret [13].

Remark 11. Ansemil and Ponte |1]| indicate a relationship
between Question 5 (b) and the following open question which da
tes back to Grothendieck |16|: Is the completion of the projec-
tive tensor product of two Fréchet-Montel spaces also a Fré
chet-Montel space?. It is known that the completion of the pro-
jective tensor product of two Fréchet-Schwartz spacés is also a
Fréchet-Schwartz space |16]. :

Remark 12. It is known that, if E=mI where I is a nonvoid

set, then the topologies & and ¢, coincide on “h(U;F) for every
open nonvoid subset U of E and every F, provided I is couhtable;
and conversely, %, and T. do not coincide on “h(U;F) if F is a
Hausdorff space not reduced to the origin, provided I is uncoun
table (see |4|). Thus it is not reasonable to ask Question 5
(b) for a Montel space E that is not a Fréchet space.

Proposition 13. Assume that evéry open nonvoid subset U of

E has a countable base of compact subsets (that is, a sequence
of compact subsets of U such that every compact subset of U is
contained in some member of that sequence), and that E is a
holomorphically infrabarreled space. Then the topologies &, , T
and ¢¢ coincide on ‘Y(U;F) for every U and every F.
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Remark 14. A DFM space E 1is an example of a case satis-
fying the conditions of Proposition 13. Thus it is a Montel spa
ce which is not necessarily metrizable giving an affirmative
answer to Question 5 (a). This result had been proved by Barro
so-Matos—Nachbin |2]| for a DFS space, and it was extended by
Dineen |10| to a DFM space.

Remark 15. Question 5 (c) as to when the topologies &, and
Cs coincide was considered by Dineen [11].

4. Holomorphic factorization.

Definition 1. Let E, EO and F be complex locally convex
spaces, g, : E —e-EO be a continuous 1linear mapping, U be an
open nonvoid subset of E, and fef(U;F). We say that f factors
holomorphically through ng if there is a cover E of U by open

nonvoid subsets of U such that, to every Ve £ there corresponds
an open nonvoid subset W of E, with RO(V)CZW, and to every
Ve € there corresponds ge¥(W;F) satisfying f=g Ro on V.

Convention 2. Let ﬂi : E — Ei be a ‘continuous linear map-
ping between the complex locally convex spaces E and Ei (ie1),
where I is a nonvoid set, such that we have the projective (al-

so called inverse) limit representation E=1im, . E; meaning that

iel
the topology given on E is the smallest topology on-E for which

every fl; (ieI) is continuous.

Definition 3. Following Convention 2, we say that holomor-
phic factorizatidn holds for the given projective 1limit repre-
sentation- when every locally bounded fe€¥(U;F) factors holomor-
phically through Ri for some ieI, for every connected open non-

void subset U of E and every complex 1locally convex space F.

Definition 4. Following Convention 2, we say that VCE is
uhiformly' open in the given projective 1limit representation
when there are i€I and a open subset W,c E; such that v=n§1(wi).
The definition of a projective 1limit representation of E means
that the uniformly open subsets of E in that projective limit
representation form a subbase of all open subsets of E. We say
that the projective limit representation of E is basic when all
uniformly open subsets of E in that projective limit representa
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tion form a base of all open subsets of E.

Proposition 5. In order that holomorphic factorization

should hold for a projective limit representation it is necessa
ry that it be basic.

Definition 6. Following Convention 2, we say that the pro-
jective 1limit representation is open when all Ri : E —9-Ei
(i€I) are open surjective mappings.

Proposition 7. Holomorphic factorization holds for every

open basic projective limit representation.

Proposition 8. Let the complex 1locally convex space E be

given. The following conditions are equivalent:

(1) Holomorphic factorization holds for the projective 1li-
mit representation E=1lim eCS(E)E*'

(2) Holomorphic factorization holds for the projective 1i-

mit representation E=1im Efx .

%xeCS(E)
(3) Holomorphic factorization holds for some projective 1i
mit representation E=1im. -E. with complex seminormed
e—lel 1
spaces Ei (ieI).

(4) Holomorphic factorization holds for all basic projecti

«—ieIl"i

ve limit representations E=1jim. .E. with complex loca-
11y convex spaces E; and l'li(E)=Ei (ie1). =

Definition 9. We say that holomorphic factorization holds

for a given complex locally convex space E when it holds for

the standard projective 1limit representations E=¥;E“GCS(E)EQ
or equivalently E=1%Execs(E)Eﬁ*’ or equivalently for the remai-
ning two situations in Proposition 8.

Example 10. We shall give an example of a complex locally
convex space E for which holomorphic factorization does not hold.
Let E=¥(C;C) have the compact-open topology. Fix aeC. Then
feS(E;T) defined by f(u)=ulu(a)] for ueE does not factor holo-
morphically in the sense of Definition 3 if we consider the
standard projective 1limit representations as in Definition 9.

Definition 11. We say that the openness condition holds

for a complex locally convex space E when the set COS(E), of
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all 24 €CS(E) such that the quotient mapping E — E/x is open, de
fines the topology of E and is directed.

Remark 12. Valdivia {37| has -shown that COS(E) is not nece
ssarily directed when it defines the topology of E.

Proposition 13. Holomorphic factorization holds for every

complex locally convex space satisfying the openness condition.

Note that Proposition 13 follows from Proposition 7.

Proposition 14. Holomorphic factorization holds for every

complex locally convex space E satisfying the following condi-
tions:

(1) For every sequence Vn (nelN) of neighborhoods of 0 in
E, there are rn>o (nelN) such that
v=N  p V

n'n
nelN

still is a neighborhood of 0 in E.

(2) From every open cover of every open subset U of E we
can extract a countable subcover’ of U.

For examples of complex locally convex spaces for which ho
lomorphic factorization holds in view of Propositions 13 or 14
we refer to [33].

Problem 15. Do we change definition 3 if we restrict F to
being an arbitrary complex normed space (instead of being any
complex locally convex space) in which case every féﬂkU;F) is
locally bounded?.

Problem 16. Find necessary and/or sufficient conditions
for holomorphic factorization to hold for a given projective 1i
mit representation, in particular for a given complex locally
convex space. If E is a metrizable complex locally convex space
for which holomorphic factorization holds, does the openness
condition hold for E (that is, the converse to Proposition 13
then true)?.

Problem 17. Consider projective limit representations

(1) B=1im; 1F;
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(2) E —11m (ie1)

e J

with respect to the families of continuous linear mappings
Ri : E — Ei (ieI) and

nij: E — ElJ (iéI,jeJi). Introduce the composition of the

se projective limit representations

(3) E= 11m(1 J)eIxJ

which is a projective limite representation with respect to the
family of continuous linear mappings Rlaﬂl : E — E ij (ieI,jeJi).
Do we have transitivity of holomorphic factorization, in the
sense that holomorphic factorization holds for that composition
(3) if it holds for all given projective limit representations
(1) and (2)?. Note that the answer is affirmative if every pro-

jective 1imit representation (2) is basic and open.

5. Holomorphic continuation.

Definition 1. Let F be a given Hausdorff complex locally
convex space. We say that F is confined if, for every complex
locally convex space E, we have that f—1(F)=U (or equivalently
f(U) ¢ F) whenever U is a connected open nonvoid subset of E and
feﬂ(U,F) is such that f~ (F) has a nonvoid interior, where F is
a completion of F. To check this requirement on F;~1t suffices
to take U as the open disc of center O and radius 1 in E=C, to
assume that feil(U;F) and that O is interior to £ ' (F), and to
conclude that always f'1(F)=U, that is, to conclude that alwa-
ys f(U)cF if there is a neighborhood V of 0 in U such that
f(V)ecF.

Lemma 2. If F is sequentially complete, then F is confined.
Moreover wF is confined if and only if F is confined.

We recall that, if E and F are complex locally convex spa-
ces and U is an open nonvoid subset of E, we introduce the vec-
tor space H(U;F) formed by every f : U —» F such that fefl(Uu;F)
when f is considered as having its values in a completion F of
F. It is clear that H(U;F) is independent of the choice of F,

that $h(U;F) c H(U;F), and that we have W™(U;F)=H(U;F) if F is
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complete.

Definition 3. Let U,V and W be connected open nonvoid sub-
sets of a complex locally convex spaces E with WeUQNV. If F is
a complex locally convex space, we say that V is a holomorphic

F-valued continuation of U via W when for every feH(U;F) there

exists geH(V;F) such that f=g on W.

Definition 4. Let E be a given complex locally convex spa-—
ce. We say that weak holomorphy plus slight holomorphy imply

holomorphy on E if, for every complex locally convex space F,

we have that fe¥(V;F) whenever V and W are connected open non-
void subsets of E with WcV so that fel(V;wF) and f|Wel(W;F).

Remark 5. Weak holomorphy plus slight holomorphy imply ho-
lomorphy on E in two noteworthy cases:

(1) E is a holomorphically Mackey space, because then weak
holomorphy alone implies holomorphy on E.

(2) E is a Zorn space in the sense that, for every complex
locally convex space F, we have that feﬂkV;F) whenever
V is a connected open nonvoid subset of E and f:V — F
is finitely holomorphic such that there is some open
nonvoid subset WcV for which fiWel(W;F).

Proposition 6. Let E and F be given complex locally convex

spaces. Assume that weak holomorphy plus slight holomorphy imply
holomorphy on E, that F is confined and F#0. Let U,V and W be

connected open nonvoid subsets of E with We UNV., Then V is

a holomorphic F-valued continuation of U via W if and only if V

is a holomorphic C-valued continuation of U via W.

For details, see |29].

Question " 7. Is it true that, for any complex locally con-
vex space E, weak holomorphy plus slight holomorphy always imply
holomorphy on E?.

Question 8. Does Proposition 6 hold in general for an arbi
trary E without assuming that weak holomorphy plus slight holo-
morphy imply holomorphy on E?.

In view of Proposition 6, an affirmative answer to Qu:
tion 7 implies an affirmative answer to Question 8.
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