POINTWISE PERIODIC SELF－MAPS OF SUBSPACES OF 2－DIMENSIONAL MANIFOLDS

MAI Jib－huA（麦结华）
（Department of Mathematics，Guangxi University，Nanning 530004，PRC）
Received April 8， 1989.

Abstract

Let M be a 2 －dimensional closed manifold，orientable or non－orientable．The construc－ tion of every compact locally connected subspace X of M without cut－points is analyzed． It is proved that every orientation－preserving（or reversing，or relatively preserving）point－ wise periodic continuous self－map of X can be extended to a periodic self－homeomorphism of M（or of a 2 －dimensional compact submanifold of M ）．In addition，every orientation－ preserving（or reversing，or relatively preserving）pointwise periodic continuous self－map f of any path－connected subspace of M is proved to be a periodic self－homeomorphism， the number of the shorter－periodic points of f is shown to be finite，and generalization of Weaver＇s conclusion is given．

Key words：pointwise periodic self－map，pseudo－open dise，left（right）side of a directed arc，orientation－preserving（reversing）map，lift of a homeomorphism．

Periodic motions in spaces are objects of study that are universally existing and draw a widespread attention．The periodic self－homeomorphism is one of the significant forms in periodic motion．It is well known that every pointwise periodic self－homeomorphism on a connected topological manifold must be periodic ${ }^{[1,2]}$ ． Kerékjártó pointed out that every periodic self－homeomorphism on the disc is topo－ logically conjugate to a rotation or a reflection ${ }^{[3,4]}$ ．Weaver ${ }^{[5]}$ solved a problem posed by Epstein ${ }^{[6]}$ ．He proved that a pointwise periodic self－homeomorphism of a compact connected subset of a 2 －dimensional orientable manifold is periodic under some stronger conditions，and that the number of its shorter－periodic points is finite． Recently，periodic differentiable homeomorphisms on surfaces and pointwise periodic self－maps of some spaces have been carrying on uninterruptedly ${ }^{[7-9]}$ ．

In this paper we analyze the orientation－preserving（or reversing，or relatively preserving）pointwise periodic continuous self－maps of any compact，locally connected subspace of a 2－dimensional manifold M without cut points，and find an internal relation between the above self－maps and the periodic self－homeomorphisms of M （or of some 2 －dimensional submanifold of M ）．In addition，we discuss self－maps of path－connected subspaces of M and give generalization of Weaver＇s conclusion．

I. Characteristics of Compact, Locally Connected Subspaces of 2 Manifolds
 Without Cut Points

It is well known that every 2-dimensional manifold can be endowed with the differentiable structure and can be imbedded in the Euclidean space R^{3} or R^{4}. Hence we might as well assume that in this paper M is a given 2-dimensional orientable or non-orientable smooth closed manifold in R^{3} or R^{4}. For any $x, y \in M$, let $d(x, y)$ (or $d_{M}(x, y)$) denote the length of the shortest arc on M joining x to y, and let

$$
B_{x r}=\{z \in M: d(z, x) \leqslant r\},(\forall r>0) .
$$

For any $Y \subset M$, we write $Y=Y-\partial Y$, where ∂Y denotes the boundary of Y in M if Y is not an arc, and the two end points of Y if Y is an arc (or an open arc). A point $y \in Y$ is called a cut point ${ }^{[10]}$ of Y if the number of connected components of $Y-\{y\}$ is greater than that of Y. For any path-connected set W in Y, we write

$$
G_{y}(W)=W \cup(\cup\{D: D \text { is a disc in } Y \text { and } \partial D \subset W\}) .
$$

For any arc L and $\{x, y\} \subset L$, we denote by $[x, y]_{L}$ (or $(x, y)_{L}$) the subarc (or the open subarc) of L with end points x and y.

Definition 1.1. Let U be an open set in M. If \bar{U} is a disc and $\partial U=\partial \bar{U}$, then we call U an open disc. If there exists a non-injective continuous map h from the unit disc B^{2} in the complex plane onto U and an $\varepsilon>0$ such that
(i) $h \mid \mathscr{B}^{2}$ is a homeomorphism from \AA^{2} onto U,
(ii) $h \mid A$ is also a homeomorphism from A onto $h(A)$ for each arc A on ∂B^{2} with length not greater than ε, then we call U a pseudo-open disc, and h a pseudodisc projection.

Lemma 1.1. Let X be a subspace of the sphere S^{2} containing more than one point. If X is compact, connected, locally connected and has no cut points, then every connected component of $S^{2}-X$ is an open disc, and for any $\varepsilon>0$, the number of the connected components of $S^{2}-X$ with diameters greater than ε is finite.

Proof. We notice that X has no cut points. By the proposition (2.3) in Chap. 6 of Ref. [10], it is easy to see that the boundary of any connected component U of $S^{2}-X$ is a circle, and hence U is an open disc. Furthermore, by Theorem (4.4) in the same chapter mentioned above it follows that X has some properties analogous to the E-continuum. Therefore, the number of the connected components of $S^{2}-X$ with diameters greater than ε is finite. The proof is finished.

Now we still consider the given smooth closed manifold M in R^{3} or R^{4}. Take a positive constant $\delta_{0}=\delta_{0}(M)$ such that for any $\varepsilon \in\left(0,9 \delta_{0}\right]$ and $x \in M$ it holds that: (i) $B_{x \varepsilon}$ is a disc in M; (ii) if y and $z \in B_{x \varepsilon}$, then the shortest arc $A_{y z}$ in M joining y to z is unique, and $\AA_{y z} \subset \stackrel{\circ}{B}_{x \varepsilon}$. For any compact set $X \subset M$, if every connected component of $M-X$ is simply connected, then we say that X is genusfull in M. For any connected component U of $M-X$ and any $x \in \partial U$, if x is a
boundary point of only one (or more than one) connected component of $U \cap B_{x \delta_{0}}$, then we call x a unilateral (or multilateral) boundary point.

Theorem 1.1. Let X be a compact, connected, locally connected and genusfull subspace of M without cut points. Suppose that X contains more than one points. Then
(1) every connected component of $M-X$ is an open disc or a psuedo-open disc;
(2) there is at most a finite number of connected components of $M-X$ which are pseudo-open discs;
(3) for any $\varepsilon>0$, the number of the connected components of $M-X$ with diameters greater than ε is finite.

Proof. (1) Let U be a connected component of $M-X$. Choose a finite number of points x_{1}, \cdots, x_{n} from ∂U such that $\bigcup_{i=1}^{n}{\stackrel{\circ}{B_{x_{i}} \delta_{0}}}$ covers ∂U. For $i \in Z_{n} \equiv$ $\{1, \cdots, n\}$, since X is locally path-connected, the connected components of $U \cap{\stackrel{\circ}{x_{i} ; 3 \delta_{0}}}$ intersecting $B_{x_{i} \delta_{0}}$ are of a finite number. Suppose they are $U_{i 1}, U_{i 2}, \cdots, U_{i m_{i}}\left(m_{i} \geqslant\right.$ 1). Since X has no cut point, by Lemma 1.1 we know that $\partial U_{i j}$ is a circle ($\forall j \in$ $\mathrm{Z}_{m_{i}}$), and the connected components (where every component is an open arc) of $\partial U_{i j}-\partial B_{x_{i}, 3 \delta_{0}}$ intersecting $B_{x_{i} ; 2 \delta_{0}}$ are of a finite number, as well. Suppose they are $L_{i j_{1}}, L_{i j 2}, \cdots, L_{i j \tau_{i j}}\left(\tau_{i j} \geqslant 1\right)$. Obviously, $\partial U=\bigcup_{i=1}^{n} \bigcup_{j=1}^{m_{i}} \bigcup_{k=1}^{\tau_{i j}} L_{i j k}$. Therefore, if U has no multilateral boundary point, then ∂U is a 1 -dimensional compact manifold. Since U is simply connected, ∂U is connected. Hence $\partial U=\partial \bar{U}$ is a circle, and U is an open disc.

Now we consider the case that U has multilateral boundary points. Let

$$
\begin{gathered}
\delta_{i j}=\min \left\{\delta_{0}, d\left(L_{i j} \cap B_{x_{i}, 2 \delta_{0}}, L_{i j i} \cap B_{x_{i}, 2 \delta_{0}}\right): 1 \leqslant k<l \leqslant \tau_{i j}\right\}, \\
\delta_{1}=\min \left\{\delta_{i j} / 9: j \in \mathrm{Z}_{m_{i}}, \quad i \in \mathrm{Z}_{n}\right\} .
\end{gathered}
$$

Because U is simply connected, we can choose a disc $D^{\prime} \subset U$ such that the distance $\varepsilon_{w} \equiv d\left(w, D^{\prime}\right)$ from any point w of U to D^{\prime} is less than δ_{1}. Write $B_{w}=B_{w, \varepsilon_{w / 2}}$. Choose a finite number of points $w_{1}, \cdots, w_{\lambda}$ in ∂U such that $\left\{\dot{B}_{w_{1}}, \cdots,{\stackrel{\circ}{B_{2}}}\right\}$ covers ∂U. Let V be the connected component of $U-\bigcup_{\alpha=1}^{2} B_{w_{\alpha}}$ containing D^{\prime}, and $D=\bar{V}$. Then D is a disc with piecewise smooth boundary, and $\partial D=\partial V \subset \bigcup_{\alpha=1}^{\lambda} \partial B_{w_{\alpha}}$. Take a subset Y_{0} of ∂D with a finite number of points such that every connected component of $\partial D \cap \partial B_{v_{\omega}}$ contains at least one point of Y_{0} if $\partial D \cap \partial B_{w_{\alpha}} \neq \varnothing$. Suppose that the points of Y_{0} are $y_{0}, y_{1}, \cdots, y_{\mu-1}, y_{\mu}=y_{0}$ in the order of some assigned orientation $\boldsymbol{\partial} \boldsymbol{D}$ of the circle ∂D. For each $\beta \in Z_{\mu}$, choose $\alpha(\beta) \in Z_{\lambda}$. such that $y_{\beta} \in \partial B_{w_{\alpha(\beta)}}$. Let $A^{(\beta)}$ be the shortest arc on M joining y_{β} to $W_{\alpha(\beta)}, z_{\beta}$ be the nearest point in $A^{(\beta)} \cap \partial U$ to y, and $A_{\beta}=\left[y_{\beta}, z_{\beta}\right]_{A}^{(\beta)}$. Write $\alpha(0)=o(\mu), z_{0}=z_{\mu}$, and $A_{0}=A_{\mu}$. Obviously, \mathscr{A}_{1},
$\cdots, \mathscr{A}_{\mu}$ are all contained in U, and they are pairwise disjoint. If $z_{\gamma}=z_{\beta}$ for some $\gamma \in \mathrm{Z}_{\mu}-\{\beta\}$, then we can make a small movement of z_{γ} or z_{β} such that $z_{\gamma} \neq z_{\beta}$ (while z_{r} and z_{β} still are points in $\partial U, A_{\gamma}$ and A_{β} still are the shortest arcs joining y_{γ} with z_{γ} and y_{β} with z_{β}, respectively, and $\AA_{\gamma} \cup \dot{A}_{\beta} \subset U$). Hence we can assume that A_{1}, \cdots, A_{μ} are also pairwise disjoint. For $\beta \in \mathrm{Z}_{\mu}$, let L_{β} be the arc on ∂D from $y_{\beta-1}$ to y_{β} along the orientation $\boldsymbol{\partial} \boldsymbol{D}$. Write $\Gamma_{\beta}=A_{\beta-1} \cup L_{\beta} \cup A_{\beta}$. Since L_{β} consists of arcs of at most two circles in $\left\{\partial B_{w_{\alpha}}: \alpha \in Z_{\alpha}\right\}$, the diameter of $\Gamma_{\beta}<$ the sum of the diameters of four discs in $\left\{B_{w_{\alpha}}: a \in Z_{\lambda}\right\}<4 \delta_{1}<\delta_{0} / 2$. Choose $i(\beta) \in \mathrm{Z}_{n}$ such that $z_{\beta} \in{\stackrel{\circ}{x_{i}(\beta)}}^{\delta_{0}}$. By the definition of δ_{1} it follows that there exist $j(\beta) \in \mathrm{Z}_{m_{i(\beta)}}$ and $k(\beta) \in Z_{\left.\tau_{i(\beta)}\right)_{i(\beta)}}$ such that the two end points $z_{\beta-1}$ and z_{β} of the arc Γ_{β} are in the same connected component $L_{i(\beta), j(\beta), k(\beta)}$ of $\partial U_{i(\beta), j(\beta)} \cap \overbrace{B_{x i(\beta)}, 3 \delta_{0}}$. Denote by Ω_{β} the subarc of the open arc $L_{i(\beta), i(\beta), k(\beta)}$ from $z_{\beta-1}$ to z_{β}. Then $T_{\beta} \cup \Omega_{\beta}$ is a circle in $\grave{B}_{x_{i}(\beta), 3 \delta_{0}}$. Let $D_{\beta 1}$ be the closed domain in $B_{x_{i}(\beta), 3 \delta_{0}}$ surrounded by this circle. Then $D_{\beta 1}$ is a disc. Choose a point $\nu_{0} \in D$. . Make arcs $P_{0}, P_{1}, \cdots, P_{\mu-1}, P_{\mu}=P_{0}$ on D such that $\partial P_{\beta}=\left\{v_{0}, y_{\beta}\right\}, \stackrel{\circ}{P}_{\beta} \subset D \circ\left(\forall \beta \in Z_{\mu}\right)$, and $\stackrel{\circ}{P}_{1}, \cdots, \stackrel{\circ}{P}_{\mu}$ are pairwise disjoint. Evidently, $P_{\beta-1} \cup L_{\beta} \cup P_{\beta}$ is a circle on D. Suppose the closed domain in D surrounded by this circle is $D_{\beta 2}$. Then $D_{\beta 2} \cap D_{\beta 1}=L_{\beta}$. Let $D_{\beta}=D_{\beta 1} \cup D_{\beta 2}$. Then D_{β} is also a disc. For any $b \in Z$, let

$$
\begin{gathered}
\Delta_{b}=\left\{r e^{t \cdot \sqrt{-1}} \in B^{2}: r \in[0,1], t \in[2(b-1) \pi / \mu, 2 b \pi / \mu]\right\}, \\
Q_{b}=\Delta_{b} \cap \Delta_{b+1}, \quad \Omega_{b}^{\prime}=\overline{\partial \Delta_{b}-Q_{b-1}-Q_{b}} .
\end{gathered}
$$

Clearly, we can define a continuous map $h: B^{2} \rightarrow \bar{U}$ such that $h \mid \Delta_{\beta}$ is a homeomorphism from Δ_{β} to D_{β}, and

$$
h\left(Q_{\beta}\right)=P_{\beta} \cup A_{\beta}, h\left(Q_{\beta}^{\prime}\right)=\Omega_{\beta}, \forall \beta \in Z_{\mu} .
$$

It is easy to check that h satisfies all conditions in Definition 1.1. Hence in this case U is a pseudo-open disc.
(2) and (3). From Lemma 1.1 we can deduce easily that the number of the connected components of $M-X$ with diameters greater than any given positive ε is finite. In addition, since X has no cut-points, by Lemma 1.1 we know that every connected component of $M-X$ with diameter less than $9 \delta_{0}$ is an open disc. Hence $M-X$ at most contains a finite number of connected components which are pseudoopen discs. The proof of Theorem 1.1 is complete.

Remark 1.1. Let X be a compact, locally connected subspace of M without cut point. Even if X is not connected, we can apply Theorem 1.1 to describe the structural characteristics of every connected component of X, and thereby know those of X itself. Moreover, suppose X is connected but not genus-full. Then we can take a non-nulhomotopic circle C in a non-simply-connected connected component U of $M-X$ and do surgery ${ }^{[11]}$ along C. Thus we can obtain a manifold with smaller genus but still containing X. Therefore, the two conditions " X is connected and is genus-full in M^{ν} in Theorem 1.1 can be removed in fact (of course, while these two conditions are removed, the conclusions of the theorem need to be revised accordingly).

II. Pointwise Periodic Self-Maps of Compact, Locally Connected Subspaces of 2 Manifolds $W_{\text {ithout }}$ Cut Points

Let the 2-dimensional manifold $M, d=d M$ and the positive constant δ_{0} be the same as in the previous section. When M is orientable, we assume that an orientation of M has been assigned, and that the positive direction of the boundary ∂D of any disc D in M is derived from the orientation of D by the boundary operation. For the sake of imagery, we say the positive direction of ∂D defined above to be in a counter clockwise sense.

Definition 2.1. Suppose that M is orientable, A is an arc on M with diameter not greater than $8 \delta_{0}, \partial A=\left\{u_{0}, v_{0}\right\}$, and \boldsymbol{A} is the directed arc formed by A with a direction (take u_{0} as the initial point, and v_{0} the terminal point). Let $y \in M-A, d(y, A)=r_{0} \leqslant \delta_{0}$, and $d(y, \partial A)=r_{1}>r_{0}$. If the condition
(i) $[x, z]_{A} \subset ®_{y r_{1}}$, for any $\{x, z\} \subset A \cap \partial B_{y t}$
holds for $t=r_{0}$, then there is $r \in\left(r_{0}, r_{1}\right)$ such that the condition (i), also holds, and we can choose a connected component L of $A-\partial B_{y r}$ such that $d(y, L)=r_{0}$. Suppose $\partial L=\{u, v\}$, where $u \in\left(u_{0}, v\right)_{A}$. Denote by W the connected component of $\stackrel{\circ}{B}_{y r}-[u, v]_{A}$ containing the point y. If the directed $\operatorname{arc}[u, v]_{A}$ is in a counter clockwise (or clockwise) sense in the circle ∂W, then we say that the point y is on the left (or right) side of the directed arc \boldsymbol{A}.

We can easily show that, in Definition 2.1, it is independent of the selections of r and L whether the point y is on the left (or right) side. If in the previous definition, the condition
(ii) $r_{1} \geqslant d\left(u_{0}, v_{0}\right) / 4$, and $r_{0} \leqslant \delta$ for some $\delta>0$
holds also, then we say that y is on the δ-left (or δ-right) side of the middle of \boldsymbol{A}. Obviously, if y is on the left (or right) side of \boldsymbol{A} and $d(y, A) \leqslant \delta$, then y is on the δ-left (or δ-right) side of the middle of some directed subarc of \boldsymbol{A}.

Definition 2.2. Suppose M is orientable, $X \subset M$, the number of the path connected components of X is finite, and $f: X \rightarrow M$ is a continuous injection. We say that f is orientation-preserving (or reversing) if for any directed arc \boldsymbol{A} in X with diameter not greater than $8 \delta_{0}$, there exists a positive number $\delta=\delta(A)$ such that when a point y of $X-A$ is on the δ-left side of the middle of $\boldsymbol{A}, f(y)$ is on the left (or right) side of the directed arc $f(\boldsymbol{A})$.

Obviously, Definition 2.2 is a generalization of the usual definition of orienta-tion-preserving (and reversing) self-homeomorphisms of a 2-dimensional orientable manifold.

Theorem 2.1. Suppose that M is orientable, and X is a compact, connected, locally connected and genus-full subspace of M without cut points. Then a map $f: X \rightarrow X$ can be extended to an orientation-preserving (or reversing) periodic selfhomeomorphism of M if and only if f is an orientation-preserving (or reversing) pointwise periodic continuous self-map of X.

Proof. The necessity of the condition is evident. In the following we consider only the sufficiency.

We see first that the pointwise periodic self-map f is surely injective and surjective. Moreover, X is a compact Hausdoff space. Hence f is a homeomorphism.

If X contains a circle only, then M is a sphere. In this case, the theorem holds obviously. Now we assume that X contains more than one circles. Let the connected components of $M-X$ with a finite or infinite number be $W_{1}, \cdots, W_{n}, U_{1}, U_{2}, \cdots$, where W_{1}, \cdots, W_{n} are pseudo open discs, and U_{1}, U_{2}, \cdots are open discs. We may consider only the case $n>0$. For any directed $\operatorname{arc} \boldsymbol{L}$ on ∂W_{i}, whose corresponding undirected arc is L, if there exists an open set V in M containing \AA such that every point in V on the left (or right) side of \boldsymbol{L} is in W_{i}, then we call \boldsymbol{L} a counter clockwise (or clockwise) regular (directed) arc on ∂W_{i}. Let $B_{i}=B^{2} \times\{i\}$. For each $i \in Z_{n}$, by Theorem 1.1 we can choose a pseudo disc projection $h_{i}: B_{i} \rightarrow \bar{W}_{i}$ as described in Definition 1.1 and take a positive ε_{0} independent of i such that
(i) If A is an arc on ∂B_{i} with length not greater than ε_{0}, then $h_{i} \mid A$ is a homeomorphism from A onto $h_{i}(A) \subset \partial W_{i}$. Furthermore, let \boldsymbol{A} be the directed arc formed by A together with the counter clockwise sence of ∂B_{i}. Then $h_{i}(\boldsymbol{A})$ is a counter clockwise regular arc on ∂W_{i}.
(ii) For any counter clockwise (or clockwise) regular $\operatorname{arc} \boldsymbol{L}$ on ∂W_{i}, there exists a unique counter clockwise (or clockwise) directed $\operatorname{arc} \boldsymbol{A}$ on ∂B_{i} satisfying $h_{i}(\boldsymbol{A})=$ L.

We write the directed arc \boldsymbol{A} mentioned in the property (ii) by $\boldsymbol{A}=h_{i}^{-1}(\boldsymbol{L})$. It should be noticed that the inverse image $h_{i}^{-1}(L)$ of the arc L corresponding to \boldsymbol{L} may contain not only the arc A corresponding to $\boldsymbol{A}=h_{i}^{-1}(\boldsymbol{L})$ since $h_{i} \mid \partial B_{i}$ is not injective. Because f is orientation-preserving (or reversing), for any counter clockwise regular are \boldsymbol{L} on $\partial W_{i}, f(\boldsymbol{L})$ is a counter clockwise (or clockwise) regular arc on the boundary $\partial W_{i_{(i)}}$ of some pseudo-open disc $W_{j_{(i)}}$. Thus the homeomorphism $f \mid \partial W_{i}$: $\partial W_{i} \rightarrow \partial W_{i(i)}$ can be lifted to $\mathcal{f}_{i}: \partial B_{i} \rightarrow \partial B_{i(i)}$, where the definition of \mathcal{f}_{i} is given as follows: For any $z_{0} \in \partial B_{i}$, take arbitrarily a counter clockwise directed arc \boldsymbol{A} on ∂B_{i} with the initial point z_{0} and with length not greater than ε_{0}, and let $\tilde{f}_{i}\left(z_{0}\right)$ be the initial point of the directed arc $h_{j(i)}^{-1} f h_{i}(\boldsymbol{A})$. Obviously, if \boldsymbol{A}_{1} is a directed subarc of \boldsymbol{A} and the initial point of \boldsymbol{A}_{1} is also z_{0}, then $h_{j(i)}^{-1} f h_{i}\left(\boldsymbol{A}_{1}\right)$ and $h_{j(i)}^{-1} f h_{i}(\boldsymbol{A})$ have the same initial point. Hence the definition of $\tilde{f}_{i}(x)$ is independent of the length of the taken directed arc \boldsymbol{A}. Since $\mathcal{f}_{i}(\boldsymbol{A})\left(\equiv\left\{\tilde{f}_{i}(z): z \in A\right\}\right.$, with the initial point $\left.\tilde{f}_{i}\left(z_{0}\right)\right)=$ $h_{i}^{-\frac{1}{i}()} h_{i}(\boldsymbol{A}), \mathcal{f}_{i}$ is continuous. By the $1-1$ correspondence between the set $\{\boldsymbol{L}\}$ of counter clockwies regular arcs on ∂W_{i} and the set $\{f(\boldsymbol{L})\}$ of counter clockwise (or clockwise) regular arcs on $\partial W_{j(i)}$, and by the above properties (i) and (ii), we see that \tilde{f}_{i} is both injective and surjective. Hence \mathcal{F}_{i} is a homeomorphism, satisfying $h_{i(i)} f_{i}=f h_{i} \mid \partial B_{i}$.

Let the extension $\widetilde{F}_{i}: B_{i} \rightarrow B_{j(i)}$ of $\tilde{\mathcal{F}}_{i}$ be defined by

$$
\tilde{F}_{i}\left(r e^{t \cdot \sqrt{-1}}\right)=r \cdot f\left(e^{t \cdot \sqrt{-1}}\right), \forall r \in[0,1], t \in R,
$$

where for simplicity, we denote points of B_{i} and $B_{i(i)}$ by complex numbers in B^{2}.

Clearly, \tilde{F}_{i} is a homeomorphism. Define an extension $F_{i}: \bar{W}_{i} \rightarrow \bar{W}_{i(i)}$ of $f \mid \partial W_{i}=$ $h_{i(i)} \mathcal{Y}_{i} h_{i}^{-1} \mid \partial W_{i}$ by $F_{i}=h_{j(i)} \tilde{F}_{i} h_{i}^{-1}$. From the properties of pseudo disc projection described in Definition 1.1, we know that F_{i} is a homeomorphism.

Let $B^{\prime}=\bigcup_{i=1}^{n} B_{i}, \quad \partial B^{\prime}=\bigcup_{i=1}^{n} \partial B_{i}$, and $W^{\prime}=\bigcup_{i=1}^{n} \bar{W}_{i}$. Define the self-homeomorphisms $\tilde{\varphi}, \tilde{\Phi}$ and Φ of $\partial B^{\prime}, B^{\prime}$ and W^{\prime} by $\tilde{\varphi}\left|\partial B_{i}=\mathcal{f}_{i}, \tilde{\Phi}\right| B_{i}=\tilde{F}_{i}$ and $\Phi \mid \bar{W}_{i}=$ $F_{i}\left(\forall i \in Z_{n}\right)$, respectively. Then Φ is an extension of $\varphi \equiv f \mid\left(\bigcup_{i=1}^{n} \partial W_{i}\right)$. By the pointwise periodicity of φ, it is easy to check that the lift $\tilde{\varphi}$ of φ is also pointwise periodic, and hence we can further derive that $\tilde{\varphi}$ is periodic. Thus $\tilde{\Phi}$ and Φ are periodic.

Similarly (in fact it is simplier), let $U^{\prime}=U_{1} \cup U_{2} \cup \cdots$. We can extend $\psi \equiv$ $f \mid \partial U^{\prime}$ to $\Psi: \bar{U}^{\prime} \rightarrow \bar{U}^{\prime}$ and make Ψ be pointwise periodic. Let $F: M \rightarrow M$ be $F \mid X=f$, $F \mid W^{\prime}=\Phi$ and $F \mid \bar{U}^{\prime}=\Psi$. Then F is a pointwise periodic self-homeomorphism of M. By the Montgomery theorem ${ }^{[2]}$ it follows that F is periodic. This completes the proof of Theorem 2.1.

Now we consider a 2 -dimensional non-orientable closed manifold M_{q} of genus q (for any $q \in Z_{+}$). It is well known that M_{q} has a 2-sheeted orientable covering space H_{q-1} of genus $q-1$ (see [11, p. 234]). Concretely speaking, if in R^{3} we centersymmetrically add an even number of handles ($2 \cdot[(q-1) / 2]$ handles) to the sphere or the torus with the origin O as the center, then the resulting 2 -dimensional orientable closed manifold can be taken as H_{q-1}. Identify every pair of symmetric points x and $-x$ in H_{q-1}. Then the resulting identification space can be taken as M_{q}, and the relevant identification map $\pi: H_{q-1} \rightarrow M_{q}$ is a 2 -sheeted covering map.

Definition 2.3. Let $\pi: H_{q-1} \rightarrow M_{q}$ be as stated above, $X \subset M_{q}, \widetilde{X}=\pi^{-1}(X)$, and let f be a continuous self-map of X. If f can be lifted to an injective continuous self-map \tilde{f} of \widetilde{X} such that $\pi \tilde{f}=f \pi \mid \widetilde{X}$ and \tilde{f} is orientation-preserving, then we say that f is relatively (to the covering map π) orientation-preserving (or orientation-relativelypreserving).

In the definition, f has an orientation-preserving lift \mathcal{f} if and only if f has an orientation-reserving lift \tilde{g} (\tilde{g} and \tilde{f} can be determined each other by $\tilde{g}(x)=-\tilde{f}(x)$ $(\forall x \in \widetilde{X}))$. Hence we need not define the conception "relatively orientation-reversing".

Theorem 2.2. Let X be a compact, connected, locally connected and genus$f_{u l l}$ subspace of M_{q} without cut points, and f a continuous self-map of X. Then f can be extended to a periodic self-homeomorphism of M_{q} if and only if f is a relatively orientation-preserving pointwise periodic self-map.

Proof. Since any self-homeomorphism of M_{q} can be lifted to an orientationpreserving self-homeomorphism of H_{q-1}, the necessity of the condition in the theorem is clear. Now we prove the sufficiency of the condit'on. Let $\widetilde{X}=\pi^{-1}(X)$. From the properties of X it is easy to check that \widetilde{X} is also a compact, connected,
locally connected and genus-full subspace of H_{q-1} without cut points. By Definition 2.3 , f can be lifted to an orientation-preserving continuous self-map \tilde{f} of \tilde{X}. Evidently, \tilde{f} has symmetry, that is, $\tilde{f}(-x)=-\tilde{f}(x)$ for any $x \in X$. From the pointwise periodicity of f it can be deduced that \mathcal{f} is also pointwise periodic. Hence, using Theorem 2.1, we can extend \tilde{f} to a periodic self-homeomorphism \tilde{F} of H_{q-1}, and by the symmetry of \tilde{f} we can make \tilde{F} also symmetric. Let $F=\pi \tilde{F} \pi^{-1}$. Then F is an extension of f and a periodic self-homeomorphism of M_{q}. The proof of Theorem 2.2 is complete.

Now we consider a pointwise periodic continuous self-map φ on a space Y with n connected components Y_{1}, \cdots, Y_{n}. For any $i \in Z_{n}$, choose $m(i) \in Z_{n}$ such that $\varphi^{m(i)}\left(Y_{i}\right)=Y_{i}$ and $\varphi^{k}\left(Y_{i}\right) \neq Y_{i}$ for $1 \leqslant k<m(i)$. Clearly, in the sense of topologcal equivalence, $\varphi \mid\left(\bigcup_{k=1}^{m(i)} \varphi^{k}\left(Y_{i}\right)\right)$ is determined by $\varphi^{m(i)} \mid Y_{i}$. Thus, by Remark 1.1, from Theorems 2.1 and 2.2 we can immediately derive the following

Theorem 2.3. Let Y be a compact, locally connected subspace of a 2-dimensional closed manifold M without cut points, and φ a continuous self-map of Y. Then the following conditions (1) and (2) are equivalent (in which the word "orientation-preserving (or reversing)" is used in the case that M is orientable, and the word "orientation-relatively-preserving" is used in the case that M is nonorientable).
(1) φ is an orientation-preserving (or reversing or relatively-preserving) pointwise periodic self-map.
(2) φ can be extended to an orientation-preserving (or reversing or relativelypreserving) periodic self-homeomorphism of some 2-dimensional compact submanifold M_{0} of M containing Y (where M_{0} may contain some boundary circles and maycontain more than one connected components).

Remark 2.1. For clarifying the construction of every orientation-preserving (or reversing or relatively preserving) pointwise periodic continuous self-map of any compact, locally connected subspace X without cut points of a 2-dimensional closed manifold M, we only need to make a further research about the corresponding periodic self-homeomorphism of M (or of a compact submanifold M_{0} of M) by the above three theorems.

III. Pointwise Periodic Self-Maps of Path-Connected Subspaces of 2 Manifolds

In this section we still discuss the pointwise periodic self-map f on a subspace X of a 2-dimensional manifold M. But here we only require X to be path-connected, and do not require X to be compact, locally connected and without cut points again. For any $n \in Z_{+}$, in the following we write $P_{n}(f)=\{x \in X$; the (minimum) period of x under f is $n\}$, and $P_{n}^{\sigma}(f)=\bigcup_{i=1}^{n} P_{i}(f)$. Let $P_{0}(f)=P_{0}^{\sigma}(f)=\phi$. If $P_{n}(f) \neq \varnothing$, then we call any point in $P_{n-1}^{\sigma}(f)$ a shorter-periodic point.

Lemma 3.1. Suppose M is a 2-dimensional, orientable, smooth, closed manifold, δ_{0} is the same as mentioned in Sec. I, X is a subset of M with diameter ρ, f is an orientation-preserving pointwise periodic self-map of X, and A is an arc in X with end points u and v. If $u \in P_{\lambda}(f), \AA \subset P_{m}(f)$, and $m>\lambda \geqslant 1$, then
(1) there exists some $\delta>0$ such that $B_{u \delta} \cap P_{m-1}^{\sigma}(f)=\{u\}$;
(2) let positive numbers $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}<\varepsilon_{4}<\min \left\{\delta_{0}, \rho\right\} / 2$ be taken such that $d\left(f^{i}(x), f^{i}(y)\right)<\varepsilon_{a+1} / 2$ for any $\alpha \in Z_{3}, i \in Z_{m}$ and $\{x, y\} \subset B_{u \varepsilon_{\alpha}} \cap X$. Then $v \in P_{m}(f)$ if $A \subset B_{u \varepsilon_{1}}$.

Proof. (1) If $\lambda>1$, then we can consider another map $f^{\prime}=f^{\lambda}$. Thus we might as well assume that $\lambda=1$. It is easy to show that there exists an arc A_{0} in

$$
\bigcup_{i=1}^{m} f^{i}(A-\{v\})
$$

such that $u \in \partial A_{0}$ and $A_{1}-\{u\}, \cdots, A_{m}-\{u\}$ are pairwise disjoint, where we write $A_{j}=f^{i}\left(A_{0}\right)$ for any $j \in Z$. Since f is orientation-preserving, there exist sufficiently small positive numbers $\varepsilon>\delta$ such that for any $i, j \in Z_{m}, k \in Z_{m-1}$ and $y \in B_{u \delta} \cap X$, when y is on the left side of the directed arc $\overrightarrow{A_{i} \cup A_{i+k}}$ (the direction is from A_{i} to $\left.A_{i+k}\right), f^{j}(y)$ is a point in $B_{u \varepsilon}$ on the left side of $\overrightarrow{A_{i+i} \cup A_{i+k+j}}$. It follows that $B_{u \delta}$ $\cap P_{m-1}^{o}(f)=\{u\}$.
(2) Suppose $v \in P_{\mu}(f)$. Let τ be the least common multiple of λ and μ. Then λ, μ and τ are all factors of m. If $\mu<m$, then there are two cases:
a) $\tau<m$. In this case we put

$$
L=A, m^{\prime}=m / \tau, g=f^{\tau}, v^{\prime}=v .
$$

b) $\tau=m$ and $\mu<m$. In this case, let L be an arc joining u to $f^{\mu}(u)$ in $A \cup$ $f^{\mu}(A)$, and let

$$
m^{\prime}=m / \lambda, g=f^{\lambda}, v^{\prime}=f^{\mu}(u) .
$$

Then, in both cases a) and b), we have $m^{\prime}>1, \stackrel{L}{C^{\prime}} P_{m^{\prime}}(g), \partial L=\left\{u, v^{\prime}\right\} \subset P_{1}(g)$, and $L \subset B_{u \varepsilon_{2}}$ (derived by $A \subset B_{u \varepsilon_{1}}$). Similarly to the proof of the conclusion (1) mentioned above, we can choose an arc A_{0} in $\bigcup_{i=1}^{m^{\prime}} g^{i}(L)$ such that $\partial A_{0}=\left\{u, v^{\prime}\right\}$, and $\grave{A}_{1} \cdots, \AA_{m^{\prime}}$ are pairwise disjoint, where $A_{j} \equiv g^{i}\left(A_{0}\right)$ for any $j \in Z$. Since $A_{1} \cup \cdots$ $\cup A_{m^{\prime}} \subset B_{u \varepsilon_{3}} \subset B_{u \delta_{0}}$, we see that $D_{1} \equiv G_{B_{u \delta_{0}}}\left(A_{1} \cup \cdots \cup A_{m^{\prime}}\right)$ is a disc, and $\partial D_{1}=A_{\beta} \cup$ $A_{\beta+\gamma}$ for some β and $\gamma \in Z_{m^{\prime}-1}$. Since g is orientation-preserving, there exists $\alpha \in$ $Z_{m^{\prime}}-\{\beta\}$ such that $D_{2} \equiv G_{B_{u \delta_{0}}}\left(A_{a} \cup A_{a+\gamma}\right) \subset D_{1}$ and $g^{\beta-\alpha}\left(X \cap D_{2}\right)=X-D_{1}$. Thus, from $X \cap D_{2} \subset B_{u \varepsilon_{3}}$ it follows that $X-D_{1} \subset B_{u \varepsilon_{4}}$, and hence $X \subset B_{u \varepsilon_{4} \text {. But this con- }}$ tradicts the given condition $2 \varepsilon_{4}<\rho$. Therefore it cannot hold that $\mu<m$. The proof of Lemma 3.1 is complete.

Lemma 3.2. Let $X \subset M \subset R^{3}$ and $f: X \rightarrow X$ be the same as in the above lemma. Suppose that A is an arc in X. Then there exists $m \in Z_{+}$such that $A \subset P_{m}^{\sigma}(f)$ and $A-P_{m}(f)$ at most contains a finite number of points.

Proof. Let $\left.V_{n}=\AA-\overline{\left(A-P_{n}(f)\right.}\right)$ for $n \geqslant 0$. By Lemma 3.1, we know that $\Gamma_{0}-V_{n}$ is a finite set of points for any connected component Γ_{0} of \bar{V}_{n}.

If $V_{n}=Q$ for any $n \in Z_{+}$, then each $P_{n}^{\sigma}(f)$ does not contains any subarc of A yet. Therefore, there exists a subarc L_{n} of A in $A-P_{n}^{\sigma}(f)$ such that $L_{1} \supset L_{2} \supset L_{3}$ $\supset \cdots$, and hence we obtain a nonempty set $\sum_{n=1}^{\infty} L_{n}$ of non-periodic points of f. But this contradicts the condition of the lemma. Thus there exists $m=m_{0} \in Z_{+}$such that $V_{m} \neq \varnothing$ and $V_{i}=\varnothing$ for $i<m$.

Let A_{0} be a non-trivial connected component of \bar{V}_{m}. If $A_{0} \neq A$, then by the same reason we know that there exists $m_{1}>m_{0}$ such that $V_{m_{1}} \neq \varnothing$. Let A_{1} be a non-trivial connected component of $\bar{V}_{m_{1}}$. By (1) of Lemma 3.1 we see that $A_{1} \cap A_{0}$ $=\varnothing$, and that there exists an open subarc K_{1} of A between A_{0} and A_{1} satisfying
(i) $K_{1} \cap P_{m_{0}}^{\sigma}(f)=\varnothing$;
(ii) $K_{1} \nsubseteq P_{m_{1}}^{\sigma}(f)$;
(iii) K_{1} and A_{1} have a common end point.

From the three properties we can deduce again and again that there exist a strictly increasing sequence $m_{1}, m_{2}, m_{3}, \cdots$ of integers, a non-trivial connected component A_{n} of each $\bar{V}_{m_{n}}$, and an open subarc K_{n} of A between A_{n-1} and A_{n} such that

$$
A_{n} \cap K_{n-1} \neq \varnothing, K_{n} \cap P_{m_{n-1}}^{\infty}(f)=\varnothing, K_{n} \not P_{m_{n}}^{s}(f)
$$

and K_{n} and A_{n} have exactly a common end point for $n \geqslant 2$. But in this case we also obtain a nonempty set $\bigcap_{n=1}^{\infty} K_{n}\left(=\bigcap_{n=1}^{\infty} \bar{K}_{n}!\right)$ of non-periodic points of f, and it leads to a contradiction. Hence we have $A_{0}=A$.

Finally, as indicated above, from $A_{0}=A$ it follows at once that $A-P_{m}(f) \subset$ $A_{0}-V_{m}$ is a finite set of points. Lemma 3.2 is proved.

Theorem 3.1. Suppose M is a 2-dimensional orientable manifold with genus $q \geqslant 0, X$ is a path-connected subspace of M, and f is an orientation-preserving pointwise periodic self-map of X. Then f is a periodic self-homeomorphism, and all shorter-periodic points are isolated.

Proof. Take an arc $A \subset X$ and let $m \in Z_{+}$be as mentioned in Lemma 3.2. For any $x \in X$, take another arc A^{\prime} in X containing both x and a subarc of A. Applying Lemma 3.2 to A^{\prime}, we know that $A^{\prime} \subset \overline{P_{m}(f)}$. Thus f is a periodic self-homeomorphism with periodic m. In addition, by Lemma 3.1 we see that all shorter-periodic points are isolated. Theorem 3.1 follows.

Theorem 3.2. Let X be a path-connected subspace of a 2-dimensional orientable manifold M. Then every orientation-reversing pointwise periodic self-map g of X is a periodic self-homeomorphism. Furthermore, suppose that the period of g is $2 m$. Then all shorter-periodic points of g are isolated for even m, and all shorter-periodic points of g except those with periods m are also isolated for odd m.

Proof．Applying Theorem 3.1 to $f=g^{2}$ ，we obtain Theorem 3.2 at once．
Theorem 3．3．Let X be a path－connected subspace of the 2－dimensional non－ orientable manifold M_{q} ．Then every relatively orientation－preserving pointwise periodic self－map f of X is periodic．Furthermore，suppose the period of f is m ． Then all shorter－periodic points of f are isolated if m is odd，and all shorter－ periodic ponits of f except those with periods $m / 2$ are also isolated if m is even．

Proof．Let $\pi: H_{q-1} \rightarrow M_{q}$ and $\widetilde{X}=\pi^{-1}(X)$ be as described in Sec．II．Lift f to an orientation－preserving continuous map $\tilde{f}: \widetilde{X} \rightarrow \widetilde{X}$ ．Then \tilde{f} is also pointwise periodic． By Theorem 3．1，\tilde{f} is periodic，and shorter－periodic points of \tilde{f} are isolated．Thus， from $f=\pi \tilde{f}_{\pi}^{-1} \mid X$ we see that Theorem 3.3 holds．

Remark 3．1．It will be proved ${ }^{1{ }^{1}}$ that，even if X is not compact，the numbers of the shorter－periodic points mentioned in the above three theorems are all still finite． For example，in Theorem 3．1，we can further obtain that the number of points of P_{m-1}^{σ} is not greater than $m+12 q$ ．

The author wishes to thank Prof．Liao Shan－tao and Associate Professor Liu Li－yu for supplying the information on the relevant references．

References

［1］Montgomery，D．，Amer．J．Math．，59（1937），118－120．
［2］Montgomery，D．\＆Zippin，L．，Topological Transformation Groups，Interscience Publishers， New York， 1955.
［3］Kerékjártó，B．V．，Vorlesungen über Topologie，Verlag von Julius Springer，Berlin， 1923.
［4］Brechner，B．L．，Pacific J．Math．，59（1975），367－374．
［5］Weaver，N．，Ann．Math．，95（1972），83－85．
［6］Epstein，D．B．A．，ibid．，95（1972），66－82．
［7］Ewing，J．\＆Edmonds，A．，Publ．Sec．Mat．Univ．Autónoma Barcelona，26（1982），3：37－42．
［8］Joó，I．\＆Stachó，L．L．，Acta Sci，Math．（Szeged），46（1983），377－379．
［9］周作领，科学通报，31（1986），22： 1756.
［10］Whyburn，G．T．，Analytic Topology，Waverly Press，New York， 1955.
［11］Armstrong，M．A．，Basic Topology，Springer－Verlag，New York， 1983.
［12］哆山涛，数学学报，8（1958），1：53－78．
［13］Liao，S．D．，Ann．of Math．，56（1952），68－83．

[^0] （to appear）．

[^0]: 1）Mai Jie－hua，Constructions of periodic self－homeomorphisms of 2－dimensional manifolds，

