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AsstracT

Let M be a 2-dimensional closed manifold, orientable or non-orientable. The construc-
tion of every compact locally connected subspace X of M without cut-points is analyzed.
Itis proved that every orientation-preserving (or reversing, or relatively preserving) point-
wise periodic continuous self-map of X can be extended to a periodic self-homeomorphism
of M (or of a 2-dimensional compact submanifold of M). In addition, every orientation-
preserving (or reversing, or relatively preserving) pointwise periodic continuous self-map
f of any path-connected subspace of M is proved to be a periodic self-homeomorphism,

the number of the shorter-periodic points of f is shown to be finite, and generalization of
Weaver’s conclusion is given,

Key words: pointwise periodic self-map, pseudo-open dise, left (right) side of a
directed arc, orientation-preserving (reversing) map, lift of a homeomorphism.

Periodic motions in spaces are objects of study that are universally existing and
draw a widespread attention. The periodic self-homeomorphism is one of the
significant forms in periodic motion. It is well known that every pointwise periodic
self-homeomorphism on a connected topological manifold must be periodic™?,
Kerékjirté pointed out that every periodic self-homeomorphism on the disc is topo-
logically conjugate to a rotation or a reflection®™*. Weaver™ solved a problem posed
by Epstein™. He proved that a pointwise periodic self-homeomorphism of a compact
connected subset of a 2-dimensional orientable manifold is periodic under some
stronger conditions, and that the number of its shorter-periodic points is finite.
Recently, periodic differentiable homeomorphisms on surfaces and pointwise periodic
self-maps of some spaces have been carrying on uninterruptedly” .

In this paper we analyze the orientation-preserving (or reversing, or relatively
preserving) pointwise periodic continuous self-maps of any compact, locally connected
subspace of a 2-dimensional manifold M without cut points, and find an internal
- relation between the above self-maps and the periodic seli-homeomorphisms of M
(or of some 2-dimensional submanifold of M). In addition, we discuss self-maps of
path-connected subspaces of M and give generalization of Weaver’s conclusion.
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I. Cuaracreristics or Compact, Locainy Connectep Subspaces oF 2 Manirorps

Wrirnour Cur Points

It is well known that every 2-dimensional manifold can be endowed with the
differentiable structure and can be imbedded in the Euclidean space R® or R*.
Hence we might as well assume that in this paper M is a given 2-dimensional
orientable or non-orientable smooth closed manifold in R® or R*. For any x, Y€ M,
let d(x,9) (or dy(x,y)) denote the length of the shortest arc on M joining x to ¥,
and let

B, ={z€M:d(z,x)<r}, (Vr =>0).

For any YCM, we write Y =Y — 8Y, where 8Y denotes the boundary of Y in M
if Y is not an arc, and the two end points of Y if Y is an arc (or an open arc). A
point y€Y is called a cut point™ of Y if the number of connected components of
Y — {y} is greater than that of Y. For any path-connected set W in Y, we write

G,(Ww)=wU(U{D:D is a disc in Y and 6DCW}),

For any arc L and {x,y}CL, we denote by [x,y]. (or (x, ¥).) the subarc (or the
open subarc) of L with end points x and ¥.

Definition 1.1. Let U be an open set in M. If U is a disc and OU = 80U,
then we call U an open disc. If there exists a non-injective continuous map %4 from
the unit disc B? in the complex plane onto U and an & = 0 such that

(i) #|B* is a homeomorphism from B onto U,

(ii) 2l 4 is also a homeomorphism from A onto A(A4) for each arc A4 on OB?
with length not greater than &, then we call U a pseudo-open disc, and % a pseudo-
disc projection.

Lemma 1.1. Let X be a subspace of the sphere S containing more than one
point. If X is compact, connected, locally connected and has no cut poinis, then
every connected component of S — X is an open disc, and for any >0, the
number of the connected components of S* — X with diameters greater than & is
finite, :

Proof. We notice that X has no cut points. By the proposition (2.3) in Chap.
6 of Ref. [10], it is easy to see that the boundary of any connected component U of
§ — X is a circle, and hence U is an open disc. Furthermore, by Theorem (4.4)
in the same chapter mentioned above it follows that X has some properties analogous
to the E-continuum. Therefore, the number of the connected components of §* — X
with diameters greater than & is finite. The proof is finished.

Now we still consider the given smooth closed manifold M in R® or R*. Take
a positive constant & = 6,(M ) such that for any &€ (0,98,] and »€ M it holds that:
(i) B, is a disc in M; (ii) if y and z€ B,., then the shortest arc A4,, in M
joining ¥ to z is unique, and /fyzcﬁ,e. For any compact set XCM, if every
connected component of M — X is simply connected, then we say that X is genus-
full in M. For any connected component U of M — X and any x€ 90U, if x is a
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boundary point of only one (or more than one) connected component of U/ B.s,,
then we call # a unilateral (or multilateral) boundary point.

Theorem 1.1. Let X be a compact, connected, locally connected and genus-
full subspace of M without cut points. Suppose that X contains more than one
points. Then

(1) every connected component of M — X is an open disc or a psuedo-open
disc;

(2) there is at most a finite number of connected components of M — X
which are pseudo-open discs;

(3) for any € > 0, the number of the connected components of M — X with
diameters greater than g is finite.

Proof. (1) Let U be a connected component of M — X. Choose a finite

number of points x;,°++,x, from OU such that U ﬁ’,,‘,an covers OU. For 1€ Z,=
i=1

{1,-++,n}, since X is locally path-connected, the connected components of Uﬂﬁx,-,wo
intersecting B, s, are of a finite number. Suppose they are U;,Uss**+y Ui, (m; =
1). Since X has no cut point, by Lemma 1.1 we know that 8U;; is a circle (Vj€
Zn;), and the connected components (where every component is an open arc) of
0U;j — OB, s, intersecting B, 5, are of a finite number, as well. Suppose they are
: " omi T
Lijis Lijas * + + 5 Lije; (7:i = 1).  Obviously, 0U = U U \J Liix. Therefore, if U has
) i=1 j=1 k=1
no multilateral boundary point, then OU 1is a 1-dimensional compact manifold.
Since U is simply connected, QU is connected. Hence OU = QU 1is a circle, and U
is an open disc.

Now we consider the case that U has multilateral boundary points. Let
8ij == min{ 8, d(L;jx N B, 28,5 Liit N By5,): 1 < k <1< 1},
8, = min{8;i/9:7 € Zs4€ Zz3.
Because U is simply connected, we can choose a disc D'CU such that the distance
8o = d(w,D") from any point w of U to D’ is less than 8. Write B, = By, ..
Choose a finite ‘number of points w;,+++,w; in QU such that {l';’w'l,---, ﬁw;} covers

i
OU. Let V be the connected component of U — | B,, containing D', and D = V.

a=1
¥ 2
Then D is a disc with piecewise smooth boundary, and 8D = OV C U 0B,,. Take a

a=1

subset Y, of OD with a finite number of points such that every connected component
of D188, contains at least one point of Y, if ODNOB,, # P. Suppose that the
points of Yo are Yo, %155 ¥u_1>¥x = ¥o in the order of some assigned orientation &D
of the circle 0D. For each € Z,, choose a(f)€ Z; such that yz € 9B, ,. Let AP
be the shortest arc on M joining yg to Waesy, 2s be the nearest point in A”NAU to
¥, and Ag = [¥p,25]14®. Write a(0) = a(u), 20 = 2,5 and A, = A,. Obviously, A,,
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*--,/L are all contained in U, and they are pairwise disjoint. If 2z, = 2z for some
v€ Z,— {B}, then we can make a small movement of z, or z; such that =z, 2
(while z, and 2y still are points in U, A, and A, still are the shortest arcs joining
¥r with 2z, and y; with zp, respectively, and JTUAO,SCU). Hence we can assume
that A,,---, A4, are also pairwise disjoint. For §€ Z,, let Ly be the arc on 8D
from ys_; to y; along the orientation 8D. Write Is== Az ;ULgU 4p. Since L;g
consists of arcs of at most two circles in {GB%;(:Q Z;}, the diameter of Iy << the
sum of the diameters of four discs in {Bwa;aé Z,} < 48, < 8,/2. Choose i(B)€ Z,,
such that zgtﬁﬁ',“mgo. By the definition of &, it follows that there exist j(8) € Zn,
and K(B) € Z:,4,; 4, such that the two end points z_; and z of the arc I are in
the same connected component L, igyrs Of SU,-igJ,,-mﬂE},im,ﬁo. Denote by Qg the
subarc of the open arc Ljuyignip from zp_; to 2z Then TpJQp is a circle in
éxi(ﬂ),gao. Let Dy be the closed domain in B, , ss, surrounded by this circle. Then
Dg, is a disc. Choose a point g€ D. Make arcs Py, Piy+++yP, 1, P,=P, on D such
that 8Pz = {v,, yﬂ},f’gcﬁ(V§6 Z,), and 131,---,1%# are pairwise disjoint. Evidently,
Py yULgUPs is a circle on D. Suppose the closed domain in D surrounded by this
circle is Dg,. Then Dg N Dg = Ls. Let Dy = DgUDg,. Then Dy is also a disc.
For any b€ Z, let

Ay = {re*v=1 € B*r € [0,11,2€ [2(b — 1)/ s 2/ ]},

0y = Ay N Api1s Q5 =085 — Qp_y — Q.

Clearly, we can define a continuous map A:B*— U such that k| A; is a homeomor-
phism from Ay to Dy, and

h(Qs) = PsU 45, h(Qp) = Q4,VBE Z,,

It is easy to check that A satisfies all conditions in Definition 1.1. Hence in this
case U is a pseudo-open disc.

(2) and (3). From Lemma 1.1 we can deduce easily that the number of the
connected components of M — X with diameters greater than any given positive & is
finite. In addition, since X has no cut-points, by Lemma 1.1 we know that every
connected component of M — X with diameter less than 968, is an open disc. Hence
M — X at most contains a finite number of connected components which are pseudo-
open discs. The proof of Theorem 1.1 is complete.

Remark 1.1. Let X be a compact, locally connected subspace of M without
cut point. Even if X is not connected, we can apply Theorem 1.1 to describe the
structural characteristics of every connected component of X, and thereby know those
of X itself. Moreover, suppose X is connected but not genus-full. Then we can take
a non-nulhomotopic circle C in a non-simply-connected connected component U of
M — X and do surgery™ along C. Thus we can obtain a manifold with smaller
genus but still containing X. Therefore, the two conditions “X is connected and is
genus-full in M™ in Theorem 1.1 can be removed in fact (of course, while these
two conditions are removed, the conclusions of the theorem need to be revised
accordingly).
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II. Pomnrtwise Perioorc Serr-Marps oF Comeact, Locairy CoNNECTED SUBSPACES OF

2 Manrrorps Wrraour Cur Pomnts

Let the 2-dimensional manifold M, d = du and the positive constant &, be the
same as in the previous section. When M is orientable, we assume that an orienta-
tion of M has been assigned, and that the positive direction of the boundary D of
any disc D in M is derived from the orientation of D by the boundary operation.
For the sake of imagery, we say the positive direction of @D defined above to be

in a counter clockwise sense.

Definition 2.1. Suppose that M is orientable, 4 is an arc on M with dia-
meter not greater than 880,04 = {u, 20}, and A is the directed arc formed by A

with a direction (take #, as the initial point, and v, the terminal point). Let
ye M — A,d(y,A) = ro < 8, and d(y,04) =r, >r,. If the condition

G): L= z],,Cﬁ,,l, for any {x,z2}CANOB,,

holds for # = 7o, then there is 7 € (ro, 1) such that the condition (i), also holds,
and we can choose a connected component L of 4 — 8B,, such that d(y, L) == r,.
Suppose OL == {u,v}, where u€ (#p,v),. Denote by W the connected component of
B,, [#,v], containing the point y. If the directed arc [#,#]4 is in a counter clock-
wise (or clockwise) sense in the circle W, then we say that the point y is on
the left (or right) side of the directed arc A.

We can easily show that, in Definition 2.1, it is independent of the selections
of r and L whether the point y is on the left (or right) side. If in the previous
definition, the condition

(ii) r, = d(uo,v0)/4, and ro < & for some & >0

holds also, then we say that y is on the 8-left (or &-right) side of the middle of
A. Obviously, if y is on the left (or right) side of A and d(y, 4) < &, then y is
on the &-left (or &-right) side of the middle of some directed subarc of A.

Definition 2.2. Suppose M 1is orientable, XCM, the number of the path
connected components of X is finite, and f: X—> M 1is a continuous injection. We
say that f is orientation-preserving (or reversing) if for any directed arc A in X
with diameter not greater than 88,, there exists a positive number & = 8(A4) such
that when a point y of X — A is on the 8-left side of the middle of A, f(y) is on
the left (or right) side of the directed arc f(A).

Obviously, Definition 2.2 is a generalization of the usual definition of orienta-
tion-preserving (and reversing) self-homeomorphisms of a 2-dimensional orientable

manifold.

Theorem 2.1. Suppose that M is orientable, and X is a compact, connected,
locally connected and genus-full subspace of M without cut points. Then a map
f:X — X can be extended to an orientation-preserving (or reversing) periodic self-
homeomorphism of M if and only if f is an orientation-preserving (or reversing)

pointwise periodic continuous self-map of X.
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Proof. The necessity of the condition is evident. In the following we consider
only the sufficiency.

We see first that the pointwise periodic self-map f is surely injective and sur-
jective, Moreover, X is a compact Hausdoff space. Hence f is a homeomorphism.

If X contains a circle only, then M 1is a sphere. In this case, the theorem holds
obviously. Now we assume that X contains more than one circles. Let the connected
components of M — X with a finite or infinite number be Wy,++ 3 W,, U, Uz =+,
where Wy, -+, W, are pseudo-open discs, and U,,U,,-+- are open discs. We may
consider only the case » > 0. For any directed arc L on OW;, whose corresponding
undirected arc is L, if there exists an open set ¥ in M containing L such that every
point in ¥ on the left (or right) side of L is in W;, then we call L a counter
clockwise (or clockwise) regular (directed) arc on OW; Let B; = B*X {i}. For
each 1€ Z,, by Theorem 1.1 we can choose a pseudo disc projection hi:B;—>W,; as
described in Definition 1.1 and take a positive & independent of i such that

(i) If A4 is an arc on OB; with length not greater than g, then k|4 is a
homeomorphism from A onto h;(A)TOW,;. Furthermore, let A be the directed arc
formed by A together with the counter clockwise sence of B;. Then A;(A) is a
counter clockwise regular arc on OW;.

(ii) For any counter clockwise (or clockwise) regular arc L on 0W;, there exists
a unique counter clockwise (or clockwise) directed arc A on OB; satisfying 4;(A) =

L.

We write the directed arc A mentioned in the property (ii) by A = &7'(L). It
should be noticed that the inverse image A7'(L) of the arc L corresponding to L
may contain not only the arc A4 corresponding to A = A;'(L) since 4;|9B; is not
injective. Because f is orientation-preserving (or reversing), for any counter clock-
wise regular are L on 8W;, f(L) is a counter clockwise (or clockwise) regular arc on
the boundary 8Wjg;, of some pseudo-open disc Wjy. Thus the homeomorphism f|OW;:
OW ; — OW j;y can be lifted to ?;;63;—*6‘85(,—), where the definition of ?,- 18 given as
follows: For any z € 0B;, take arbitrarily a counter clockwise directed arc A on
OB; with the initial point z, and with length not greater than gy, and let ?g(zn) be
the initial point of the directed arc hjhfhi(A). Obviously, if A; is a directed subarc
of A and the initial point of A, is also 2z, then Ajhfki(A,) and Ajhfhi(A) have the
same initial point. Hence the definition of ?,-(x) is independent of the length of the
taken directed arc A. Since ?.-(A) (E{?;(x):zé A}, with the initial point ?,—(zo))=
b fhi(A), .f,- is continuous, By the 1-1 correspondence between the set {L} of
counter clockwies regular arcs on OW; and the set {f(L)} of counter clockwise (or
clockwise) regular arcs on OWj;, and by the above properties (i) and (ii), we see
that f,- is both injective and surjective. Hence }; is a homeomorphism, satisfying
kil = fh:| OB;,

Let the extension F;:B;—> Bjy, of 7.- be defined by

o TR TR (¢ ek W (R

where for simplicity, we denote points of B; and Bj;, by complex numbers in B2
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Clearly, F; is a homeomorphism. Define an extension F;: W;— Wiuy of flOW; =
biu;?;k.—_‘JaW; by F; = hjF;h*. From the properties of pseudo disc projection de-
scribed in Definition 1.1, we know that F; is a homeomorphism.

Let B'= U B;, OB = U 8B;, and W' = U W;. Define the self-homeo-
i=1

i=1 i=1

morphisms @, ® and @ of 8B’,B’ and W' by §|0B; = f,-, ®|B;=F; and @|W; =

F; (Vi€ Z,), respectively. Then @ is an extension of P = fl ( U ow ; ) By the point-

i=1 A
wise periodicity of @, it is easy to check that the lift ¢ of ¢ is also pointwise
periodic, and hence we can further derive that @ is periodic. Thus @ and @ are
periodic.

Similarly (in fact it is simplier), let U' = U,JU,U---. We can extend ¢ =
flOU’ to W:U'— U’ and make ¥ be pointwise periodic. Let F:M —> M be F|X =f,
F|W' =@ and F|U' =®. Then F is a pointwise periodic self-homeomorphism of
M. By the Montgomery theorem'” it follows that F is periodic. This completes
the proof of Theorem 2.1.

Now we consider a 2-dimensional non-orientable closed manifold M, of genus g
(for any g€ Zy). It is well known that M, has a 2-sheeted orientable covering space
H,_, of genus ¢ — 1 (see [11, p. 234]). Concretely speaking, if in R® we center-
symmetrically add an even number of handles (2 »+ [(§—1)/2] handles) to the sphere
or the torus with the origin O as the center, then the resulting 2-dimensional
orientable closed manifold can be taken as H,_,. Identify every pair of symmetric
points ¥ and —x in H, ;. Then the resulting identification space can be taken as
M,, and the relevant identification map w=; H,_,—> M, is a 2-sheeted covering map.

Definition 2.3. Let =:H,_,— M, be as stated above, XCM,, X = 27%(X), and
let f be a continuous self-map of X. If f can be lifted to an injective continuous
self-map f of X such that =f = fz|X and fis orientation-preserving, then we say that
f is relatively (to the covering map =) orientation-preserving (or orientation-relatively-

preserving).

In the definition, f has an orientation-preserving lift f if and only if §f has an
orientation-reserving lift § (g and F can be determined each other by g(x) = —7(x)
(Vx€X)). Hence we need not define the conception “relatively orientation-revers-

ing .

Theorem 2.2. Let X be a compact, connected, locally connected and genus-
full subspace of M, without cut points, and f a continuous self-map of X. Then f
can be extended to a periodic self-homeomorphism of M, if and only if fisa rela-
tively orientation-preserving pointwise periodic self-map.

Proof. Since ény self-homeomorphism of M, can be lifted to an orientation-
preserving self-homeomorphism of H,_,, the necessity of the condition in the
theorem is clear. Now we prove the sufficiency of the condit*on. Let X = x7*(X).
From the properties of X it is easy to check that X is also a compact, connected,
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locally connected and genus-full subspace of H,_ ; without cut points. By Definition
2.3, f can be lifted to an orientation-preserving continuous self-map f of X. Evident-
ly, # has symmetry, that is, f( —x) = —7F(x) for any x€ X. From the pointwise
periodicity of f it can be deduced that f is also pointwise periodic. Hence, using
Theorem 2.1, we can extend ftoa periodic self-homeomorphism F of H,_;, and by
the symmetry of f we can make F also symmetric. Let F = xFx™*. Then F is an
extension of f and a periodic self-homeomorphism of M,. The proof of Theorem
2.2 1is complete.

Now we consider a pointwise periodic continuous self-map ¢ on a space Y with
n connected components Y,,---,Y,. For any i€ Z,, choose m(i)€ Z, such that
e™(Y;) =Y; and ¢*(Y;) # Y; for | < k< m(i). Clearly, in the sense of topo-
m (i)
logcal equivalence, {pI(U(p*(Y,-)) is determined by ¢™?|Y;. Thus, by Remark 1.1,
k=1
from Theorems 2.1 and 2.2 we can immediately derive the following
Theorem 2.3. Ler Y be a compact, locally connected subspace of a 2-dimen-
sional closed manifold M without cut points, and @ a conmtinuous self-map of Y.
Then the following conditions (1) and (2) are equivalent (in which the word
“orientation-preserving (or reversing)” is used in the case that M is orientable,
and the word “orientazion-relativel y-preserving” is used in the case that M is non-
orientable).

(1) @ is an orientation-preserving (or reversing or relatively-preserving)
pointwise periodic self-map.

(2) @ can be extended to an orientation-preserving (or reversing or relatively-
preserving) periodic self-homeomorphism of some 2-dimensional compact submanifold
M, of M containing Y (where M, may contain some boundary circles and may con-
tain more than one connected componenis).

Remark 2.1. For clarifying the construction of every orientation-preserving (or
reversing or relatively preserving) pointwise periodic continuous self-map of any
compact, locally connected subspace X without cut points of a 2-dimensional closed
manifold M, we only need to make a further research about the corresponding periodic
self-homeomorphism of M (or of a compact submanifold M, of M) by the above
three theorems.

III. Pomntwise Periopic Serr-Maps oF PaTu-ConNneEcTED Supspaces oF 2 MANIFOLDS

In this section we still discuss the pointwise periodic self-map f on a subspace
X of a 2-dimensional manifold M. But here we only require X to be path-con-
nected, and do not require X to be compact, locally connected and without cut
points again. For any 7€ Z,, in the following we write P,(f) = {*¥*€ X: the

(minimum) period of » under f is n}, and Pi(f) = O Pi(f). Let A(H)=Pi({) =t}

i=1

If P,(f) & ®, then we call any point in Pj_,(f) a shorter-periodic point.
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Lemma 3.1. Suppose M is a 2-dimensional, orientable, smooth, closed
manifold, 8, is the same as mentioned in Sec. 1, X is a subset of M with diameter
o> [ is an orientation—preserving pointwise periodic self-map of X, and A is an
arc in X with end points u and v. If u€ P, (f), AP, (f), and m > 1 =1, then

(1) there exists some 8 =0 such that B, Pa_,(f) = {u};

(2) let positive numbers €, < €, < &3 << €, << min{y, p}/2 be taken such that
d(f (%), F(3)) < &,41/2 for any a€ Zs, i € Z,, and {x, Y} T Bue, N X. Then v € Pu(f)
if ACB.

Proof. (1) If 2 > 1, then we can consider another map f = f*. Thus we might
as well assume that A = 1. It is easy to show that there exists an arc A4, in

U (4 —{+})

i=1
such that # € 84, and 4, — {u},~++,A4, — {u} are pairwise disjoint, where we write
Aj = §(A,) for any 1€ Z. Since f is orientation-preserving, there exist sufficiently
small positive numbers & > & such that for any i,/€ Z,, R€ Z,_, and y€ B,NX,

e el

when y is on the left side of the directed arc A;U A4;+; (the direction is from A4; to
—_—

Aivr)s fi(y) is a point in B,. on the left side of AiriU Aigr+i. It follows that B,;
N Po_i(f) = {u}.

(2) Suppose v € P,(f). Let 7 be the least common multiple of 2 and z. Then
A, p and 7 are all factors of m. If g << m, then there are two cases:

a) << m. In this case we put
L=4, m'=m/r, g=f, v =,

b) T =m and g <<m. In this case, let L be an arc joining # to f*(u) in AJ

f(A), and let
m =ml[L, g =1f, v =f(u),
Then, in both cases a) and b), we have m' > 1, LCP.(g), 8L = {u, v'}CP(g),
and LCB,,, (derived by ACB,,,). Similarly to the proof of the conclusion (1)
mentioned above, we can choose an arc 4, in | J g(L) such that 84y={u,»’}, and
R =

Aovs vy Aoroare pairwise disjoint, where A;j= g/(4,) for any 1€ Z. Since A U---
UAw T Bys,CBus,» we see that D= GBm?‘,(AIU +++UAu) is a disc, and 8D, = Az U
Agir for some § and v € Z,r_,. Since g is orlentation-preserving, there exists «€
Z, — {8} such that D, = Gz, (4uU 4utr)CD; and g#%(XN\D,) = X — D,.  Thus,
from X\ D,CB,, it follows that X —f)ch,,.s‘, and hence XCB,,E‘. But this con-
tradicts the given condition 2g,<C p. Therefore it cannot hold that < m. The
proof of Lemma 3.1 is complete.

Lemma 3.2. Let XCMCR? and f:X— X be the same as in the above lemma.
Suppose that A is an arc in X. Then there exists m€ Z, such that ACP,(f) and
A —P,(f) at most contains a finite number of points.
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Proof. Let V, =/f——(A —P,(f)) for n>=0. By Lemma 3.1, we know that
Iy —V, is a finite set of points for any connected component T, of V,, :

If V., =0 for any n€ Z,, then each P3(f) does not contains any subarc of A
yet. Therefore, there exists a subarc L, of A in A — P;(f) such that LD L, =vls

—D--+, and hence we obtain a nonempty set Z L, of non-periodic points of f. But
n=1

this contradicts the condition of the lemma. Thus there exists m = my € Z, such that
Va7 @ and V; = & for { < m,

Let 4y be a non-trivial connected component of ¥V,. If Ay # A, then by the
same reason we know that there exists m; = m, such that Vo, 7= @. Let A, be a
non-trivial connected component of Vam,. By (1) of Lemma 3.1 we see that AN A4,
= @, and that there exists an open subarc K; of 4 between A4, and A, satisfying

() KNP (f) = @
(it} K GPL (P
(iii) K, and 4, have a common end point.

From the three properties we can deduce again and again that there exist a strictly
increasing sequence iy ,m;ymszy- -+ of integers, a non-trivial connected component A,
of each I_f",,,ﬂ, and an open subarc K, of A between Au_y and A, such that

ANKaa# By KaNPo_ (D) = 3, K.&P(),

and K, and A, have exactly 2 common end point for # = 2. But in this case we

also obtain a nonempty set ﬂ K,,(= ﬂ 2,1) of non-periodic points of f, and it
n=1

n=1

leads to a contradiction. Hence we have Ay = A.

Finally, as indicated above, from A, = 4 it follows at once that A4 — P, (f)c
Ao — V., is a finite set of points. Lemma 3.2 is proved.

Theorem 3.1. Suppose M is a 2-dimensional orientable manifold with genus
9=0, X is a path-connected subspace of M, and f is an orientation-preserving
pointwise periodic self-map of X. Then fis a periodic self-homeomorphism, and
all shorter-periodic points are isolated.

Proof. Take an arc ACX and let me Z; be as mentioned in Lemma 3.2, For
any x € X, take another arc 4" in X containing both x and a subarc of A. Applying

Lemma 3.2 to A4, we know that 4'CP,(f). Thus f is a periodic self-homeomor-
phism with periodic m. In addition, by Lemma 3.1 we see that all shorter-periodic
points are isolated. Theorem 3.1 follows.

Theorem 3.2. Le: X be a path-connected subspace of a 2-dimensional orien-
table manifold M. Then every orientation-reversing poiniwise periodic self-map g
of X is a periodic self-homeomor phism. Furthermore, suppose that the period of g
is 2m. Then all shorter-periodic points of g are isolated for even m, and all
shorter-periodic points of g except those with periods m are also isolated for odd
m.
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Proof. Applying Theorem 3.1 to f = g%, we obtain Theorem 3.2 at once.

Theorem 3.3. Ler X be a path-connected subspace of the 2-dimensional non-
orientable manifold M,. Then every relatively orientation-preserving poiniwise
periodic self-map f of X is periodic. Furthermore, suppose the period of f is m.
Then all shorter-periodic points of f are isolated if m is odd, and all shorter-
periodic ponits of f excepr those with periods m|2 are also isolated if m is even.

Proof. Let w:H, — M, and X = 27(X) be as described in Sec. II. Lift f to
an orientation-preserving continuous map ‘)?f(—rﬁ Then 7 is also pointwise periodic.
By Theorem 3.1, f is periodic, and shorter-periodic points of f are isolated. Thus,
from f = =f="*|X we see that Theorem 3.3 holds.

Remark 3.1. It will be proved” that, even if X is not compact, the numbers of
the shorter-periodic points mentioned in the above three theorems are all still finite.
For example, in Theorem 3.1, we can further obtain that the number of points of
P7_y is not greater than m + 124.

The author wishes to thank Prof. Liao Shan-tao and Associate Professor Liu
Li-yu for supplying the information on the relevant references.
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