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ABSTRACT

Let M be a 2-dimensional closed manifold, orientable or non-orientable. The construc-

tÍon of every compact locally connected subspace X of M without cut-points is analyzed.

It is proved that every orientation-preserving (or reversing, or relatively preserving) point-

wi se periodic continuous self-map of X can be extended to a periodic self-homeomorphism

of M (or of a 2-dimensional com pact submanifold of M). In addition, every orientation-

pre serv ing (or reversing, or relatively preserving) .pointwise periodic continuous self-map

f of any path-connected subspace of M is proved to be a periodic self-homeomorphism,

the number of the shorter-periodic points of f is shown to be finite, and generalization of
Weaver's conclusion is given.

Key words: pointwise periodic self-map, pseudo-open disc, left (right) side of
directed arc, orientation-preserving (reversing) map, lift of a homeomorphism.

a

Periodic motions in spaces are objects of study that are universally existing and
draw a widespread attention. The periodic self-homeomorphism is one of the

significant forms in periodic motion. It is well known that every pointwise periodic

self-homeomorphism on a connected topological manifold must be periodic[1,2J.

Kerékjártó pointed out that every periodic self-homeomorphism on the disc is topo-

logically conjugate to a rotation or a reflection[3,4J. WeaverE3J solved a problem posed

by Epstein[6J. He proved that a pointwise periodic self-homeomorphism of acompact

connected subset of a 2-dimensional orientable manifold is periodic under some

stronger conditions, and that the number of its shorter-periodic po ints is finite.

Recently, periodic differentiable homeomorphisms on surfaces and pointwise periodic

serf~maps of some spaces have been carrying on uninterruptedly[7-9J.

In this paper we analyze the orientation-preserving (or reversing, or relatively
preserving) pointwise 1?eriodic continuous self-maps of an-y compact, 10call-y connected

\>uD\>paceOl a l-o.1menslona\ manlíolo. M wltn.out cut points, ano. Íiml an internal

rehtion between the above self-maps and the periodic self-homeomorphisms of M

(or of some 2-dimensional submanifold of M). In addition, we discuss self-maps of
path-connected subspaces of M and give generalization of Weaver's conclusion.

...
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L CHARACTERISTICS OF CoMPACT, LoCALLY CoNNECTED SUBSPACES OF 2 j\1~NIFOLDSWITHOUT CUT POINTS .

It is weIl known that every 2-dimensional manifold can be endowed with the

differentiable structure and can be imbedded in the Euclidean space R> or R4.

Hence we might as weIl assume that in this paper M is agiven 2-dimensional

orientable or non-orientable smooth closed manifold in R3 or R4. For any x, y EM,

let d(x, y) (or dM(x, y)) denote the length of the shortest arc on M joining x to y,.
and let

Bxr = {zE M:d(z,x) ~ r}, (\fr> O).

For any YCM, we write Y = Y - ay, where aY denotes the boundary of Y in M
if Y is not an arc, and the two end points of Y if Y is an arc (or an open arc). A
point y E Y is called acut point[1OJof Y if the number of connected components of
Y - {y} is greater than that of Y. For any path-connected set W in Y, we write

Gy(W) = W U (U {D: D is a disc in Y and aDCW}).

For any arc Land {x,y}CL, we denote by [x,Yh (or (x, y)L) the subarc (or the
open subarc) of L with end po ints x and y.

Definition 1.1. Let U be an open set in M. If U is a disc and au = au,
then we call U an open disc. If there exists a non-injective continuous map h from
the unit disc B2 in the complex plane onta U and an 8 > O such that

(i) hl 132is a homeomorphism from 132onta U,

(ii) hlA is also a homeomorphism from A ont o h(A) for each arc A on aB 2

with length not greater than 8, then we call U a pseudo-open disc, and h a pseudo-
dis c projection.

Lemma 1.1. Let X be a subspace of the sphere S2 cont ain ing more than one

point. If X is compact, connected, locally connected and has no cut po ints, then

every connected component of S2 - X is an open disc, and for any 8> O, the
number of the connected components of S2 - X wi th diameters great er than 8 is
finite. .

Proof. We notice that X has no cut points. By the proposition (2.3) in Chap.

6 of Ref. [10], it is easy to see that the boundary of any connected component U of

S2 - X is a circle, and hence U is an open disc. Furthermore, by Theorem (4.4)

in the same chapter mentioned above it follows that X has some properties analogous
to the E-continuum. Therefore, the number of the connected components of S2 - X
with diameters greater than 8 is finite. The proof is finished.

Now we still consider the given smooth closed manifold M in R3 or R4. Take

a positive constant 00 = oo(M) such that for any 8E (0,900] and xE Mit holds that:

Ci) B x6 is a disc in M; (ii) if y and z E B xO> then the shortest arc Ar" in M
joining y to z is unique, and Ay"CEx6' For any compact set XCM, if every
connected component of M - X is simply connected, then we say. that X is genus-

full in M. For any connected component U of M - X and any x E au, if x is a
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boundary point of only one (or more than i one) connected component of V nB"8",
then we call x a unilateral (or multilateral) boundary point.

Theorem 1.1. Let X be acompact, connected, local! y connected and genus~

full sub space of M without cut points. Suppose that X contains more than one

points. Then
.

(1) every connected component of M - X is an open disc or a psuedo-open
disc;

(2) there is at most a finite number of connected components of M - X
which are pseudo-open discs;

(3) for any B> O, the number of the connected components of M - X with

diameters greater than B is finite.

Proof. (1) Let V be a connected component of M-X. Choose a finite
n

number of points XI"'" Xn from av such that U EXi8o covers av.
1=1

For iE Zn =

{1, . v, n}, since X is locally path-connected, the connected components of V nEXi.38.

intersecting BXi8oare of a finite number. Suppose they are Vil,Vi2,"', Vimi(mi:?o
1). Since X has no cut point, by Lemma 1.1 we know that aVii is a circ1e (Vi E
Zm), and the connected components (where every component is an open arc) of
aVii - aBXi.38o intersecting BXi.28o are of a finite number, as weIl. Suppose they are

LiiJ, Liiz, . . . ,Lih ..('iii :?o1).'1

mi 'ii

Obviously, av = U U ULiik'
1=1 F=1 k=l

Therefore, if V has

no multilateral boundary point, then av is a l-dimensional compact manifold.
Since V is simply connected, av is connected. Hence av = au is a circ1e, and V
is an open disc.

Now we consider the case that V has multilateral boundary points. Let

8ii = min{80,d(Liikn BXi.28o,Liiln BXi.28o): 1 < k < 1< 'iii},

81 = min{8ii/9:iE Zmi' iE Zn}'

Because V is simply connected, we can choose a disc D' eV such that the distance

Bw = d(w,D') from any point w of V to D' is less than 81, Write Bw= Bw,ówI2'
Choose a f'inite 'number of po ints WI"'" wI. in av such that {Ew,,"" EwJ eoven

).

av. Let V be the connected eomponent of V - U Bw" containing D', and D = V.
a=1

).

Then D is a dise with pieeewise smooth boundary, and aD = aVe UaBw,,'
a=1

Take a

subset YO of aD with a finite number of points sueh that every eonneeted component

of aDnaBw" eontains at least one point of YO if aDnaBw" =1=95. Suppose that the
points of YOare Yo,YH.. . ,Y1'~H Yl' = Yoin the order of some assigned orientation eD

of the circ1e aD. For eaeh fJ E Z1" choose o,(fJ) E ZI. sueh that Y{1E aBw,,({1)' Let A({1)
be the shortest arc on M joining Y{1to W,,({1), Z{1be the nearest point in A({1)nav to

Y, and A{1= [Y{1,Z{1]A({1). Write a(O) = o,(p.), Zo= ;&1"and Ao= Al" Obviously, Ah
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.. . ,Af' are all contained in U, and they are pairwise disjoint. If Zr = Zp for some
rE Zf' - {p}, then we can make a small movement of Zr or Zp such that Zr 0;6Zp
(while Zr and Zp still are points in au, Ar and Ap still are the shortest arcs joining
Yr with Zr and YP with Zp, respectively, and Ar UApC u). Hence we can assume
that A"..., Af' are also pairwise disjoint. For PE Zf" let Lp be the arc on aD
from YP-I to YP along the orientation aD. Write fp = Ap-I ULp UAp. Since Lp
consists of arcs of at most two circles in {aBw,,:aE Zl}, the diameter of fp < the

sum of the diameters of four discs in {Bw,,:a.E Zd < 481< 80/2. Choose i({J) E Z"
such that ZpE BZi({i)8o.By the definition of 81 it follows that there exist ;(p) E Zmi({i)
and k({J) E Z~i(P)'i(P)such that the two end points ZP-I and Zp of the arc fp are in
the same connected component Li(P),i(P),k(P)of aUi(p),i(p)nBzi(p)'38o. Denote by Qp the
subarc of the open arc Li(p),i(p).k(p) from ZP-I to Zp. Then fp UQp is a circle in

BZi(P)'38o.Let DpI be the closed domain in BZi(P),380surrounded by this circle. Then
DpI is a disc. Choose a point VoED. Make ar cs Po, PI,'" ,Pf'-I' Pf' = Po on D such
that app = {vo,Yp},PpCD(VpE Zf')' and P"""Pf' are pairwise disjoint. Evidently,
Pp-I ULp UPp is a circle on D. Suppose the closed domain in D surrounded by this
circle is Dp2. Then Dp2 nDpI = Lp. Let Dp = DpI UDp2. Then Dp is also a disc.

For any bE Z, let

Ab = {rc'.Fi E B2:r E [O,l],tE [2(b -1}1r/p.,2bn:/p.]},

Qb = AbnAb+B Q~ = aAb - Qb-I - Qb'

Clearly, we can define a continuous map h: B2-+ fl such that hl Ap is a homeomor-
phism from Ap to Dp, and

h(Qp) = Pp UAp, h(Q~) = Qp,'IP E Zf"

It is easy to check that h satisfies all conditions in Definition 1.1.
case U is a pseudo- open disc.

Hence in this

(2) and (3). From Lemma 1.1 we can deduce easily that the number of the
connected components of M - X with diameters greater than any given positive 8 is

finite. In addition, since X has no cut-points, by Lemma 1.1 we know that every

connected component of M - X with diameter less than 980 is an open disc. Hence

M - X at most contains a finite number of connected components which are pseudo-
open discs. The proof of Theorem 1.1 is complete.

Rcmark 1.1. Let X be acompact, locally connected subspace of M without

cut point. Even if X is not connected, we can apply Theorem 1.1 to describe the

structural characteristics of every connected component of X, and thereby know those

of X itself. Moreover, suppose X is connected but not genus-full. Then we can take

a non-nulhomotopic circle C in a non-simply-connected connected component U of

M - X and do surgery[11Jalong c. Thus we can obtain a manifold with smaller
genus but still containing X. Therefore, the two conditions "X is connected and is

genus-full in MI.> in Theorem 1.1 can be removed in fact (of course, while these

two conditions are removed, the conclusions of the theorem need to be revised

accordingly).

-
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II. POINTWISE PERIODIC SELF-MAPS OF CoMPACT, LoCALLY CoNNECTED SUBSPACES OF

2 MANIFOLDS WITHOUT CUT POlNTS

Let the 2-dimensional manifold M, d = dM and the positive constant 00 be the

same as in the previous section. When M is orientable, we assume that an orienta~
tion of M has been assigned, and that the positive direction of the boundary aD of
any disc D in M is derived from the orientation of D by the boundary operation.
For the sake of imagery, we say the positive direction of aD defined above to be
in a counter c1ockwise sense.

Definition 2.1. Suppose that M is orientable, A is an arc on M with dia-
meter not greater than 800'aA = {Uo,vo}, and A is the directed arc formed by A

wi th a direction (take Uoas the initial point, and Vo the terminal point). Let
YEM-A,d(y,A)=ro~oo, and d(y,aA)=rl>ro. If the condition

(i), [x, Z]ACByr" for any {x, z}CA n aBy!

holds for t = ro, then there is rE (ro, ri) such that the condition (í)r also holds,
and we can choose a connected component L of A - aByr such that d(y, L) = ro.

Suppose aL = {u,v}, where uE (UO,V)A' Denote by W the connected component of
Byr - [U,V]A containing the point y. If the directed arc [U,V]A is in a counter c1ock-
wise (or c1ockwise) sense in the circ1e aw, then we say that the point y is on
the left (or right) side of the directed arc A.

We can easily show that, in Definition 2.1, it is independent of the selections
of rand L whether the point y is on the left (or right) side. If in the previous
definition, the condition

(ii) ri ~ d(uo,vo)/4, and ro~ o for some lJ> O

holds also, then we say that y is on the lJ-left (or lJ-right) side of the middie of
A. Obviously, if y is on the left (or right) side of A and d(y, A) < lJ, then y is
on the lJ-left (or lJ-right) side of the middie of some directed subarc of A.

Definition 2.2. Suppose M is orientable, XCM, the number of the path
connected components of X is finite, and f: X -+ M is a continuous injection. We,
say that f is orientation-preserving (or reversing) if for any directed arc A in X
with .diameter not greater than 8lJo, there exists a positive number 0= lJ(A) such
that when a point y of X - A is on the lJ-left side of the middie of A, fey) is on
the left (or right) side of the directed arc f(A).

Obviously, Definition 2.2 is a generalization of the usual definition of orienta-

tion-preserving (and reversing) self-homeomorphisms of a 2-dimensional orientable'
manifold.

Theorem 2.1. Suppose that M is orientable,and X is acompact, connected"

locally connected and genus-full subspace of M without cut points. Then a map
f: X -+ X can be extended to an orientation-preserving (or reversing) periodic self-
homeomorphism of M if and only if f is an orientation-preserving (or reversing)
pointwise periodic continuous self-map of X.
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Proof. The necessity of the condition is evident. In the following we consider

only the sufficiency.

We see first that the pointwise periodic self-map f is sure1y injective and sur-

jective. Moreover, X is a com pact Hausdoff space. Hence f is a homeomorphism.

If X contains a circle only, then M is a sphere. In this case, the theorem holds
obviously. Now we assume that X contains more than one circles. Let the connected
components of M -X with a finite or infinite number be Wu...,W.", UUU2, ...,
where Wu"',W." are pseudo-open discs, and UI,U2,'" are open discs. We may
consider only the case n > O. For any directed arc L on aw;, who se corresponding
undirected arc is L, if there exists an open set V in M containing L such that every

poin t in V on the left (or right) side of L is in W;, then we call L a counter
c1ockwise (or c1ockwise) regular (directed) arc on aW;. Let B; = B2 X {i}. For
each iE Zn, by Theorem 1.1 we can choose a pseudo disc project ion hi: B;- W; as

described in Definition 1.1 and take a positive 80 independent of i such that

(i) If A is an arc on aB; with length not great er than 80' then h; IA is a
homeomorphism from A onto h;(A)CaW;. Furthermore, let A be the directed arc

forrned by A together with the counter clockwise sence of aB;. Then h;(A) is a

counter clockwise regular arc on aW;.

(ii) For any counter clockwise (or clockwise) regular arc L on aW;, there exists
a unique counter c1ockwise (or clockwise) directed arc A on aB; satisfying h;(A) =
L.

We write the directed arc A mentioned in the property (ii) by A = hil(L). It
should be noticed that the inverse image hil(L) of the arc L corresponding to L
may contain not only the arc A corresponding to A = hil(L) since h;1aB; is not
injecti ve. Because f is orientation-preserving (or reversing), for any counter clock-
~ise regular are L on aw;, fCL) is a counter clockwise Cor clockwise) regular arc on
the boundary aWim of some pseudo-open disc Wi(i). Thus the homeomorphism flaw;:
aw;- awÍ(i) can be lifted to t;: aB; - aBiU), where the definition of t; is gi ven as
follows: For any Zo E aB;, take arbitrarily a counter clockwise directed arc A on

aB; with the initial point Zo and with length not greater th an 80' and let t;Czo) be

the initial point of the directed arc hj(hfh;CA). Obviously, if Al is a directed subarc

of A and the initial point of A is also Zo, then hi(Mh;CAI) and hj(Mh;CA) have the
same initial point. Hence the definition of ti(x) is independent of the length of the
taken directed arc A. Since tiCA) (={t;(z): z E A}, with the initial point t;Czo)=
hi(})fh;CA), t; is continuous. By the 1-1 correspondence between the set {L} of
counter clockwies regular ares on aw; and the set {feL)} of counter clockwise (or
clockwise) regular ares on aWiU)) and by the above properties (i) and (ii), we see
that t; is both injecti ve and surjective. Hence t; is a homeomorphism, satisfying
hi(i)t; = fh; IaB;.

Let the extension F;:B;- Bim of 1; be defined by

- "F 1 ,..(4.
F;(re )=r'J(e ),VrE[O,l],tER,

where for simplicity, we denote points of Bi and~ BiOJby complex numbers III B2.
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Clearly, Fj is a homeomorphism. Define an extension F j: Wj - Wi(i) of flawj =
hi(iJjhi1/ aw j by F j = hi(i)Fjhil. From the properties of pseudo disc projection de-

scribed in Definition 1.1, we know that F j is a homeomorphism.

Let B'= U Bj,
; = 1

aB' = U aBj, and W' = U Wj.
;=1 ;=1

Define the self-homeo-

morphisms ép, ~ and ep of aB',B' and W' by éplaBj=tj, ~IBj=Fj and ep[Wj=

Fj (Vi E Zn)' respectively. Then epis an extension of ep= fi (VI aw;). By the point-

wise periodicity of ep, it is easy to check that the lift ép of ep is also pointwise
periodic, and hence we can further derive that ép is periodic. Thus ~ and ep are
periodic.

Similarly (in fact it is simplier), let U' = Ul UUzU' . '. We can extend eP=
flau' to /If: fl' - fl' and make /If be pointwise periodic. Let F: M - M be FiX = f,
FI w' = ep and FI fl' = /If. Then F is a pointwise periodic self-homeomorphism of
M. By the Montgomery theorem[2] it foIlows that F is periodic. This completes
the proof of Theorem 2.1.

Now we consider a 2-dimensional non-orientable closed manifold M q of genus q

(for any q E Z+). It is weIl known that M q has a 2-sheeted orientable covering space

Hq-l of genus q -1 (see [11, p. 234]). Concretely speaking, if in R3 we center-
symmetricaIly add an even number of handles (2 . [(q-1)/2] handles) to the sphere

or the torus with the origin O as the center, then the resulting 2-dimensional

orientable closed manifold can be tak en as Hq-l' Identify every pair of symmetric

points x and -x in Hq-l' Then the resulting identification space can be taken as

Mq, and the relevant identification map :n:: Hq-l- Mq is a 2-sheeted covering map.

Detinition 2.3. Let :n::Hq-I~Mq be as stated above, XCMq, X=:n:-l(X), and

let f be a continuous self-map of X. If f can be lifted to an injective continuous

self-map t of X such that :n:t= f:n: IX and t is orientation-preserving, then we say that

f is relati vely (to the covering map:n:) orientation-preserving (or orientation-relati vely-

preserving) .

In the definition, f has an orientation-preserving lift t if and only if f has an
orientation-reserving lift g (g and t can be determined each other by g(x) = -tex)

(Vx EX». Hence we need not define the conception "relatively orientation-revers-
ing" .

Theorem 2.2. Let X be acompact, connected, loeally connected -and gentts-
full sub space of Mq without eut points, and f a continuous self-map of X. Then f

can be extended to a periodie self-homeomorphism of Mq if and only if f is a rela-
tivel y orientation-preserving pointwise periodie self-map.

Proof. Since any self-homeomorphism of M q can be Iif ted to an orientation-

preserving self-homeomorphism of Hq-l, the necessity of the condition in the

theorem is clear. Now we prove the sufficiency of the condit'on. Let X = :n:-I(X).
From the properties of X it is easy to check that X is also acompact, connected,
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locally connected and genus-full subspace of Hq-l without cut points. By Definition

2.3, f can be Iif ted to an orientation-preserving continuous self-map 1 of X. Evideni:-

ly, 1 has symmetry, that is, 1( -x) = -lCx) for any xE X. From the pointwise
periodicity of f it can be deduced that 1is also pointwise periodic. Hence, using
Theorem 2.1, we can extend 1 to a periodic self-homeomorphism F of Hq-B and by
the symmetry of 1we can make F also symmetric. Let F = TtFTt-l. Then F is an
extension of f and a periodic self-homeomorphism of M q' The proof of Theorem
2.2 is complete.

Now we consider a pointwise periodic continuous self-map ep on a space Y with

neonnected components Y"'..,Y". For any iEZ", choose m(i)EZ" such that
epmU)(yj) = Yj and epkCYj) =1=Y; for 1 ~ k < mei). Clearly, in the sense of topo-

mU)

log caI equivalence, epl (Uepk(Yj» ) is determined by epmU)/y;. Thus, by Remark 1.1,
1(=1

from Theorems 2.1 and 2.2 we can immediately derive the following
Theorem 2.3. Let Y be acompact, locally connected subspace of a 2-dimen-

sional closed mani/old M without cut points, únd ep a continuous self-map of Y.
Then the following conditions (1) and (2) are equivalent (in which the word
"orientation-preserving (or reversing)'~ is used in the case that M is orientable,
and the word" orientation-rel ativel y-preserving'"' is used in the case that M is non-
orientable).

(1) ep is an orientation-preserving (or reversing or rel ativel y-preserving)
pointwise periodic self-map.

(2) ep can be extended to an orientation-preserving (or reversing or rel ativel y-
preserving) periodic self-homeomorphism of some 2-dimensional compact submani/old
Mo of M containing Y (where Mo may contain some boundary circZes and may con-
tain more than one connected components).

Remark 2.1. For clarifying the construction of every orientation-preserving (or

reversing or relatively preserving) pointwise periodic continuous self-map of any

compact, locally connected subspace X without cut points of a 2-dimensional closed
manifold M, we only need to make a further research about the corresponding periodic

self-homeomorphism of M (or of acompact submanifold M o of M) by the above
three theorems.

m. POINTWISE PERIODIC SELF-MAPS OF PATH-Co~NECTED SUBSPACESOF 2 MANIFOLDS

In this section we still discuss the pointwise periodic self-map f on a subspace

X of a 2-dimensional manifold M. But here we only require X to be path-con-
nected, and do not require X to be compact, locally connected and without cut

points again. For any nE Z+, in the following we write P,,(f) = {x EX: the
"

(minimum) period of x under fis n}, and P=(f) = U P;(t). Let Po(f)=P'o(f) = 95.
i = 1

If P,,(f) =1=95, then we call any point in P=-l(t) a shorter-periodic point.

~
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Lemma 3.1. Suppose M ;s a 2-d;mens;onal, or;entable, smooth, closed
manifold, 80 ;s the same as ment;oned ;n Sec. 1, X ;s a subset of M w;th diameter
p, f ;s an or;entat;on-preserv;ng pointw;se per;od;c self-map of X, and A ;s an
orc ;n X w;th end po;nts u and v. If uEPlf), ACPm(f), and m >A. ~ 1, then

(1) there ex;sts some 8>0 such that BU8np':.-I(f) = {u};

(2) let pos;t;ve numbers 61 < 62 < 63 < 64 < min{80' p} 12 be taken such that

d(fi(x), fi(y)) < 6,;+1/2 for any ctE Z3, iE Zm and {x, Y}CBuean X. Then vE Pm(f)
if AcBu.',.

Proof. (1) If A.> 1, then we can consider another map f' = f". Thus we might
<lS weIl assume that A.= 1. It is easy to show that there ex is ts an arc Ao in

m

U fi(A - {v})
; = 1

such that uEaAo and AI-{U},...,Am-{u} are pairwise disjoint, where we write

Ai = fi(Ao) for any iE Z. Since f is orientation-preserving, there exist sufficiently

small positive numbers 6>8 such that for any i,iEZm, kEZm-1 and yEBu8nX,
~

when y is on the left side of the directed arc Aj UAj+k (the direction is from Aj to
~

Aj+k), fi(y) is a point in Bue on the left side of Ai+iUAi+k+i.

np':.-tCf) = {u}.

(2) Suppose vE Pif). Let r be the least common multiple of A. and p..

A., p. and r are alI factors of m. If p. < m, then there are two cases:

It foIlows that B u8

Then

a) r< m. In this case we put

L = A, m' = mir, g = r, v' = v.

b) r = m and p.< m.
fl'(A), and let

In this case, let L be an arc joining u to fl'(u) in AU

m' = miA., g = f", v' = fl'(u).

Then, in both cases a) and b), we have m' > 1, LcPm'(g), aL = {u, V'}CPI(g),
and L C Bue, (deri ved by A cB ue). Simi lady to the proof of the conclusion (1)

m'

mentioned above, we can choose an arc Ao in U gi(L) such that aAo={u,v'}, and
; = 1

A1". ., Am' are pairwise disjoint, where Ai = gi(Ao) for any iE Z. Since Al U' . .
U Am'CBue,CB u8o' we see that Dl == GB .(Al U" . U Am') is a disc, and aDI = Ap Uuuo

Ap+r for some fl and Y E Zm'-l. Since g is orientation-preserving, there exists ct E

Zm' - {fl} such that D2 = GB. (AaUAa+r)CDI and gP-a(XnD2) = X -Dl, Thus,uuo

from XnD2CBue , it foIlows that X - DICBue , and hence XCBue. But this con-4 4

tradicts the given condition 264< p. Therefore it cannot hold that p.< m. The
proof of Lemma 3.1 is complete.

Lemma 3.2. Let XCMcR3 and f:X - X be the same as ;n the above lemma.

Suppose that A ;s an arc ;n x. Then there ex;sts mE Z+ such that ACp:'(f) and
A - Pm(f) at most conta;ns a f;n;te number of po;nts.
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Proot. Let V"=A-(A"':"'P,,Cf)) for n;?:: O. By Lemma 3.1, we know that

To- V" is a finite set of points for any connected component To of V".

If V" = '& for any nE Z+, then each P~Cf)does not contains any subarc of A
yet. Therefore, there exists a subarc L" of A in A - P~Cf) such that LI~Lz~L3

.

~"" and hence we obtain a nonempty set ~ L" of non-periódic points of f. But
n~l

this contradicts the condition of the lemma. Thus there exists m = mo E Z+ such that
Vm -:/=95 and Vi = 95 for i < m.

Let Ao be a non-trivial connected component of Vm. If Ao -:/=A, then by the-

same reason we know that there exists ml > mo such that Vm, -:/=95. Let Al be a

non-trivial connected component of Vm,. By CI) of Lemma 3.1 we see that Ain Ao

= 95, and that there exists an open subarc KI of A between Ao and Al satisfying

Ci) KI n P:'oCf)= 95 ;

Cii) KICs;.P:',Cf);

(iii) KI and Al have a common end point.

From the three properties we can deduce again and again that there exist a strictly

increasing sequence m!)mZ,mH'" of integers, a non-trivial connected component A"
of each Vm", and an open subarc K" of A between A"_land A" such that

A"nK"-1 -:/=95, K"np~n-,Cf) = 95, K,,0;~nCf),

and K" and A" have exactly a common end point for n ;?::2. But in this case we

also obtain a nonempty set ~~ Kn( = nOI Kn!) of non-periodic points of f, and it
leads to a contradiction. Hence we have Ao = A.

Finally, as indicated above, from Ao = A it fol1ows at once that A - PmCf)e
Ao - Vm is a finite set of points. Lemma 3.2 is proved.

Theorem 3.1. Suppose M is a 2-dimensional orientable manifold with genus'
q ;?::O, X is a path-connected subspace of M, and f is an orientation-preserving
pointwise periodic self-map ot X. Then f is a periodic self-homeomorphism, and
alt shorter-periodic points are isolated.

Proot. Take an arc AeX and let ih E Z+ be as mentioned in Lemma 3.2. For

any x EX, take another arc A' in X containing both x and a suharc of A. Applying

Lemma 3.2 to A', we know that A' eP mCf). Thus f is a periodic self-homeomor-

phism with pe rio dic m. In addition, by Lemma 3.1 we see that all shorter-periodic
points are isolated. Theorem 3.1 follows.

Theorem 3.2. Let X b~ a path-connected sub space of a 2-dimensional orien--

table manifold M. Then every orientation-reversing pointwise periodic self-map g

of X is a periodic self-homeomorphism. Furthermore, suppose that the period of g
is 2m. Then alt shorter-periodic points of g are isolated for even m, and alt

shorter-periodic points of g except those with periods m aN: also isolated for odd
m.
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Proof. Applying Theorem 3.1 to f = g2, we obtain Theorem 3.2 at once.

Theorem 3.3. Let X be a path-connected subspace of the 2-dimensional non-
orientable manifold Mq. Then every relatively orientation-presert/ing pointwise
periodic self-map f of X is periodic. Furthermore, suppose the period of f is m.
Then aZZ shorter-periodic points of f are isolated if m is odd, and aZZ shorter-
periodic ponits of f except those with periods ml2 are also isolated if m is even.

Proof. Let1t:Hq-l-Mq and X=1t-l(X) be as described in Sec. II. Lift f to
an orientation-preserving continuous map t:X - X. Then t is also pointwise periodic.
By Theorem 3.1, t is periodic, and shorter-periodic points of t are isolated. Thus,
from f = 1tt1t-lIX we see that Theorem 3.3 holds.

Remark 3.1. It will be provedl) that, even if X is not compact, the numbers of
the shorter-periodic points mentioned in the above three theorems are alI still finite.

For example, in Theorem 3.1, we can further obtain that the number of points of
P~-l is not greater than m + 12q.

The author wishes to thank Prof. Lia:o Shan-tao and Associate

Li-yu for supplying the information on the relevant references.

Professor Liu
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