Separate weak*-continuity of the triple product in dual real JB*-triples

Juan Martínez ${ }^{\star}$, Antonio M. Peralta* ${ }^{\star \star}$
Dept. Análisis Matemático, Ftad. de Ciencias, Universidad de Granada, 18071 Granada, Spain (e-mail: \{jmmoreno,aperalta\} @goliat.ugr.es)

Received February 1, 1999; in final form March 29, 1999 /
Published online May 8, 2000 - © Springer-Verlag 2000

Abstract

We prove that, if E is a real JB^{*}-triple having a predual E_{*}, then E_{*} is the unique predual of E and the triple product on E is separately $\sigma\left(E, E_{*}\right)$-continuous. Mathematics Subject Classification (1991):17C65, 46K70, 46L05, 46L10, 46L70

1 Introduction

In last years, a special category of complex Banach spaces, called JB*triples, has focused the attention of many researchers. Historically, JB*triples arose in the study of bounded symmetric domains in complex Banach spaces (see [L] and [K1]) and it has been shown by Kaup [K2], that every such domain is biholomorphic to the open unit ball of a JB*-triple. Every C*algebra is a JB*-triple in the triple product $\{a, b, c\}=\frac{1}{2}\left(a b^{*} c+c b^{*} a\right)$ and every JB^{*}-algebra is a JB*-triple in the triple product $\{a, b, c\}=\left(a \circ b^{*}\right) \circ$ $c+\left(c \circ b^{*}\right) \circ a-(a \circ c) \circ b^{*}$. In the context of Functional Analysis, JB*-triples arise in a natural way in the solution of the contractive projection problem for C^{*}-algebras, concretely, the range of such a projection is a JB*-triple for a suitable triple product (see [S], [K3] and [FR1]).

We refer to ($[R],[R u]$ and $[C M]$) for recent surveys and to $[U]$ for the general theory of JB*-triples.

Recently, a theory of real JB*-triples has been developed (see [D] , [CDRV], [DR], [BC], [IKR], [K4] and [CGR]) extending to the real context

[^0]many results in (complex) JB*-triples. However, the extension to the real case, of the important result proved by Barton-Timoney [BT] assuring that if E is a JB*-triple which is a dual Banach space, then E has a unique predual and the triple product on E is separately weak*-continuous, was an open problem which explicitly appears in the papers [IKR] and [CGR]. In this paper we solve this problem, so extending the above mentioned result of Barton-Timoney.

Isidro-Kaup-Rodríguez [IKR] introduce the concept of real JBW*-triple (as a real form of a complex JBW*-triple) and they have shown [IKR, Theorem 4.4] that every real JB*-triple E is a real JBW*-triple if and only if E has a predual in such a way that the triple product is separately weak*continuous. From this, using our main result, we conclude that every dual real JB^{*}-triple is a real JBW*-triple.

JB*-algebras and JB-algebras are real JB*-triples. If they have a unit, then the Jordan product is uniquely determined by the triple product (see [U, Proposition 19.13]) and the unit. Therefore our main result also gives the known separately weak*-continuity of the product in dual JB*-algebras and JB-algebras.

The proof of our main result (Theorem 2.11) follows several steps.
In a first step we prove that the dual of a real JB*-triple is well-framed, (Lemma 2.2). As a consequence the predual of every dual real JB*-triple, say E, is unique and every isometric bijection of E is weak*-continuous.

Once it is proved that the Peirce projections on E and the operators $L(e, e)$ and $Q(e)$ are weak*-continuous for all tripotents e in E (Proposition 2.4), it can be concluded that if E has a distinguished unitary element, then the triple product is separately weak*-continuous (Proposition 2.7).

Finally, starting from the existence of complete tripotents in dual real JB*-triples and using Peirce decomposition, we conclude the proof.

2 Main result

We recall that a complex JB*-triple is a complex Banach space B with a continuous triple product $\{., .,\}:. B \times B \times B \rightarrow B$ which is bilinear and symmetric in the outer variables and conjugate linear in the middle variable, satisfying:

1. (Jordan Identity) $L(a, b)\{x, y, z\}=\{L(a, b) x, y, z\}-\{x, L(b, a) y, z\}$ $+\{x, y, L(a, b) z\}$ for all a, b, c, x, y, z in B, where $L(a, b) x:=\{a, b, x\} ;$
2. The map $L(a, a)$ from B to B is an hermitian operator with spectrum ≥ 0 for all a in B;
3. $\|\{a, a, a\}\|=\|a\|^{3}$ for all a in B.

A real Banach space A together with a trilinear map $\{., .,\}:. A \times A \times$ $A \rightarrow A$ is called (see [IKR]) a real JB*-triple if there is a complex JB^{*} triple B and an \mathbb{R}-linear isometry λ from A to B such that $\lambda\{x, y, z\}=$ $\{\lambda x, \lambda y, \lambda z\}$ for all x, y, z in A.

Real JB*-triples are essentially the closed real subtriples of complex JB*-triples and, by [IKR, Proposition 2.2], given a real JB*-triple A there exists a unique complex JB^{*}-triple B and a unique conjugation (conjugate linear and isometric mapping of period 2) τ on B such that $A=B^{\tau}:=$ $\{x \in B: \tau(x)=x\}$. In fact, B is the complexification of the vector space A, with triple product extending in a natural way the triple product of A and a suitable norm.

The class of real JB*-triples includes all JB-algebras [H], all real C*algebras [Go], and all $\mathrm{J} * \mathrm{~B}$-algebras [A].

Real JB*-triples are Jordan triples. So, given a tripotent $e(\{e, e, e\}=e)$ in a real JB^{*}-triple A, there exists a decomposition of A into the eigenspaces of $L(e, e)$, known as the Peirce decomposition;

$$
A=A_{0}(e) \oplus A_{1}(e) \oplus A_{2}(e)
$$

where $A_{k}(e)=\left\{x \in A: L(e, e) x=\frac{k}{2} x\right\}$ for $k=0,1,2$.
$A_{k}(e)$ is called the Peirce k-space of e. Peirce k-spaces satisfy the following multiplication rules:

1. $\left\{A_{i}(e), A_{j}(e), A_{k}(e)\right\} \subseteq A_{i-j+k}(e)$, where $i, j, k=0,1,2$ and $A_{l}(e)=0$ for $l \neq 0,1,2$.
2. $\left\{A_{0}(e), A_{2}(e), A\right\}=\left\{A_{2}(e), A_{0}(e), A\right\}=0$.

These rules are known as Peirce arithmetic. In particular, Peirce k-spaces are subtriples.

The projection $P_{k}(e)$ of A onto $A_{k}(e)$ is called the Peirce k-projection of e. These projections are given by

$$
\begin{aligned}
P_{2}(e) & =Q(e)^{2} \\
P_{1}(e) & =2\left(L(e, e)-Q(e)^{2}\right) \\
P_{0}(e) & =I d_{A}-2 L(e, e)+Q(e)^{2} \\
\text { where } Q(e) x & =\{e, x, e\}
\end{aligned}
$$

If X is a dual Banach space with predual X_{*}, we will denote by w^{*} the $\sigma\left(X, X_{*}\right)$ topology in X. The next Lemma summarizes some important results on well-framed Banach spaces, relevant to our purpose. We refer to [G] for a detailed presentation of the well-framed property and the proof of the next Lemma.

Lemma 2.1 [G, Th. 15 and Th. 16]
Let X be a real or complex Banach space, then

1. If X is well-framed, then X is the unique predual of X^{*}. Furthermore, every isometric bijection on X^{*} is w^{*}-continuous.
2. If X is well-framed, then so is any closed linear subspace of X.

In the proof of [BT, Theorem 2.1] it is shown that the dual B^{*} of a complex JB^{*}-triple B is well-framed. The next lemma shows that this is still true for real JB*-triples.

Lemma 2.2 The dual of a real JB*-triple is well-framed.
Proof. Let A be a real JB^{*}-triple and suppose that B is a complex JB^{*}-triple such that $A=B^{\tau}$, where τ is a conjugation on B. Then $\tau^{*}: B^{*} \rightarrow B^{*}$ defined by $\left(\tau^{*} f\right) x:=\overline{f \tau(x)}$, for all f in B^{*} and x in B, is a conjugation on B^{*}. Furthermore, the map $\left.f \mapsto f\right|_{B^{\tau}}$ is an isometric bijection between $\left(B^{*}\right)^{\tau^{*}}$ and $\left(B^{\tau}\right)^{*}$, hence $A^{*}=\left(B^{*}\right)^{\tau^{*}}$ is a real subspace of B^{*}. It is known [IR, Lemma 1.4] that if X is a well-framed complex Banach space, then its underlying real Banach space $X_{\mathbb{R}}$ is well-framed, too. Hence $\left(B^{*}\right)_{\mathbb{R}}$ is well-framed, so A^{*} is well-framed too by Lemma 2.1, 2.

The following proposition is a first application of Godefroy's theory of well-framed Banach spaces to dual real JB*-triples (that is real JB*-triples which are dual Banach spaces).

Proposition 2.3 Let E be a real $J B^{*}$-triple with a predual E_{*}. Then

1. E_{*} is the unique predual of E and every isometric bijection on E is w^{*}-continuous.
2. The operator $L(a, b)-L(b, a)$ on E is w^{*}-continuous for all a, b in E.

Proof. 1. By the above Lemma, E^{*} is well-framed. Since E_{*} is a subspace of E^{*}, Lemma 2.1 gives the first assertion.
2. Let a, b in E. It is known [IKR, proposition 2.5] that
$\exp (t(L(a, b)-L(b, a)))$ is an isometric bijection on E, for all t in \mathbb{R}. Hence by the first assertion it is w^{*}-continuous. Now the operator

$$
L(a, b)-L(b, a)=\lim _{t \rightarrow 0} \frac{\exp (t(L(a, b)-L(b, a)))-I d_{E}}{t}
$$

is w^{*}-continuous, because the set of all w^{*}-continuous operators on E is norm-closed in the Banach space of all bounded linear operators on E.

We recall that if Y is a w^{*}-closed subspace of a Banach dual space X, then Y is a Banach dual space (with predual X_{*} / Y_{\circ}). Furthermore $\sigma\left(Y, Y_{*}\right)$ and $\left.\sigma\left(X, X_{*}\right)\right|_{Y}$ are the same topology on Y. On the other hand if e is a tripotent in a complex JB^{*}-triple B, then e is a tripotent in the subtriple
$B_{2}(e)$ such that $L(e, e)$ is the identity map on $B_{2}(e)$ (i.e. e is a unitary element in $B_{2}(e)$). Therefore $B_{2}(e)$ is a unital JB^{*}-algebra with product $x \circ y=\{x, e, y\}$ and involution $x^{*}=Q(e) x$ ([BKU, Theorem 2.2] and [KU, Theorem 3.7], see also [U, Proposition 19.13]).

The next proposition shows that the triple product in a dual real JB*-triple is separately w^{*}-continuous if we fix the same tripotent in two variables.

Proposition 2.4 Let E be a dual real $J B^{*}$-triple and e a tripotent in E. Then the Peirce projections, $L(e, e)$ and $Q(e)$ are w^{*}-continuous operators on E.

Proof. Let B a complex JB*-triple and τ a conjugation on B such that $E=B^{\tau}$. First we observe that every tripotent in E is a tripotent in B and the restrictions to E of Peirce projections on B are the Peirce projections on E.

For every $\varepsilon \in \mathbb{C}$ let $S_{\varepsilon}:=S_{\varepsilon}(e)=\sum_{k=0}^{2} \varepsilon^{k} P_{k}(e)$. Then S_{ε} is an isometric automorphism of B if $|\varepsilon|=1$ by [FR2, Lemma 1.1]. Then $S_{ \pm 1}$ are isometries of E and hence w^{*}-continuous. Therefore $P_{1}(e)=\left(S_{1}-S_{-1}\right) / 2$ is w^{*}-continuous and the subtriple $E_{2}(e)+E_{0}(e)$ is w^{*}-closed in E. But S_{i} and $P_{0}(e)-P_{2}(e)$ have the same restriction to $E_{2}(e)+E_{0}(e)$. This implies that $P_{0}(e), P_{2}(e)$ and $L(e, e)=P_{2}(e)+\frac{1}{2} P_{1}(e)$ are w^{*}-continuous. The restriction of $Q(e)$ to the w^{*}-closed subtriple $E_{2}(e)$ is isometric and hence is w^{*}-continuous on E.

Following [IKR] a real JBW^{*}-triple is a real JB^{*}-triple E such that $E=B^{\tau}$ for a dual complex JB^{*}-triple (JBW^{*}-triple) B and a conjugation τ on B.

From [IKR, Theorem 4.4] E is a real JBW*-triple if an only if E has a predual E_{*} in such a way that the triple product is separately w^{*}-continuous. In this paper we prove that every dual real JB^{*}-triple is a real JBW^{*}-triple. Concretely we will prove that in every dual real JB^{*}-triple the triple product is separately w^{*}-continuous.

The following Proposition is a first approach to our purpose.
Proposition 2.5 Let E be a dual real JB*-triple. Suppose that for every a in E and for every $\varepsilon>0$, there exists a family $\left\{e_{1}, \ldots, e_{n}\right\}$ of pairwise orthogonal tripotents and $\lambda_{1}, \ldots, \lambda_{n}$ in \mathbb{R}, such that $\left\|a-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|<\varepsilon$. Then the triple product of E is separately w^{*}-continuous.

Proof. Let $a \in E$ and $1>\varepsilon>0$. Then by hypothesis, there exists a family $\left\{e_{1}, \ldots, e_{n}\right\}$ of pairwise orthogonal tripotents and $\lambda_{1}, \ldots, \lambda_{n}$ in \mathbb{R}, such that

$$
\left\|a-a_{n}\right\|<\frac{\varepsilon}{2(1+\|a\|)}
$$

for $a_{n}:=\sum_{i=1}^{n} \lambda_{i} e_{i}$. By orthogonality $L\left(a_{n}, a_{n}\right)=\sum_{i=1}^{n} \lambda_{i}^{2} L\left(e_{i}, e_{i}\right)$. Hence $L\left(a_{n}, a_{n}\right)$ is w^{*}-continuous by Proposition 2.4. Since

$$
\begin{aligned}
\left\|L(a, a)-L\left(a_{n}, a\right)\right\| & =\left\|L\left(a-a_{n}, a\right)\right\| \leq\left\|a-a_{n}\right\|\|a\| \\
& <\frac{\varepsilon}{2(1+\|a\|)}(1+\|a\|)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|L\left(a_{n}, a_{n}\right)-L\left(a_{n}, a\right)\right\| & =\left\|L\left(a_{n}, a_{n}-a\right)\right\| \leq\left\|a-a_{n}\right\|\left\|a_{n}\right\| \\
& <\frac{\varepsilon}{2(1+\|a\|)}(1+\|a\|)
\end{aligned}
$$

(where we have used that $\left\|a-a_{n}\right\|<\varepsilon \Rightarrow\left\|a_{n}\right\|<\varepsilon+\|a\|<1+\|a\|$). It follows that

$$
\begin{aligned}
\left\|L(a, a)-L\left(a_{n}, a_{n}\right)\right\| \leq & \left\|L(a, a)-L\left(a_{n}, a\right)\right\| \\
& +\left\|L\left(a_{n}, a_{n}\right)-L\left(a_{n}, a\right)\right\| \\
< & \varepsilon
\end{aligned}
$$

This implies that $L(a, a)$ is in the norm closure of the set of all w^{*}-continuous operators and hence is w^{*}-continuous for all a in E. In particular $L(a, b)+$ $L(b, a)=L(a+b, a+b)-L(a, a)-L(b, b)$ is w^{*}-continuous. Now by using Proposition 2.3, 2., we have $L(a, b)$ is w^{*}-continuous for all a, b in E.

It is known [IKR, Lemma 3.6] that e_{i}, e_{j} are orthogonal tripotents if and only if $e_{i} \pm e_{j}$ are tripotents. Therefore, if e_{i}, e_{j} are orthogonal tripotents, then $Q\left(e_{i}+e_{j}\right)$ is w^{*}-continuous by Proposition 2.4. Thus

$$
\begin{aligned}
Q\left(a_{n}, a_{n}\right) & =\sum_{i, j=1}^{n} \lambda_{i} \lambda_{j} Q\left(e_{i}, e_{j}\right) \\
& =\frac{1}{2} \sum_{i, j=1}^{n} \lambda_{i} \lambda_{j}\left(Q\left(e_{i}+e_{j}\right)-Q\left(e_{i}\right)-Q\left(e_{j}\right)\right)
\end{aligned}
$$

is w^{*}-continuous.
Again

$$
\begin{aligned}
\left\|Q(a)-Q\left(a_{n}, a\right)\right\| & =\left\|Q\left(a-a_{n}, a\right)\right\| \leq\left\|a-a_{n}\right\|\|a\| \\
& <\frac{\varepsilon}{2(1+\|a\|)}(1+\|a\|)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|Q\left(a_{n}\right)-Q\left(a_{n}, a\right)\right\| & =\left\|Q\left(a_{n}, a_{n}-a\right)\right\| \leq\left\|a-a_{n}\right\|\left\|a_{n}\right\| \\
& <\frac{\varepsilon}{2(1+\|a\|)}(1+\|a\|)
\end{aligned}
$$

So

$$
\left\|Q(a)-Q\left(a_{n}\right)\right\|<\varepsilon
$$

Hence $Q(a)$ is w^{*}-continuous for all a in E. Finally

$$
Q(a, b)=\frac{1}{2}(Q(a+b)-Q(a)-Q(b))
$$

is w^{*}-continuous for all a, b in E.
If E is a real JB^{*}-triple there exists a complex JB^{*}-triple B and a conjugation τ on B such that $E=B^{\tau}$. Let e be a tripotent in E, as we have commented before, $B_{2}(e)$ is a JB^{*}-algebra. Therefore $A(e):=\left\{x \in E_{2}(e)\right.$: $Q(e) x=x\}$ is a JB-algebra as a closed subalgebra of the JB-algebra $\left\{x \in B_{2}(e): Q(e) x=x^{*}=x\right\}$.

We are going to show that if E is a dual real JB^{*}-triple and e is a tripotent in E, then every element in $A(e)$ can be approximated by finite linear combinations of pairwise orthogonal tripotents. An argument similar to that in the proof of Proposition 2.5 then shows that $L(a, b)$ and $Q(a, b)$ are w^{*}-continuous for all a, b in $A(e)$.

Proposition 2.6 Let E be a dual real $J B^{*}$-triple and e a tripotent in E. Then $L(a, b)$ and $Q(a, b)$ are w^{*}-continuous for all a, b in $A(e)$.

Proof. $A(e)$ is a JB-algebra and since $Q(e)$ is w^{*}-continuous, then $A(e)$ is w^{*}-closed in E. Therefore $A(e)$ is a JBW-algebra [H, Theorem 4.4.16]. Again by [H, Lemma 4.1.11] if $a \in A(e)$, then the w^{*}-closure of the subalgebra generated by $a, W(a)$, is isometrically isomorphic to a monotone complete $C(X)$ where X is a compact Hausdorff space and for all $\varepsilon>0$, there exist pairwise orthogonal idempotents e_{1}, \ldots, e_{n} in $W(a)$ and $\lambda_{1}, \ldots, \lambda_{n}$ in \mathbb{R} such that $\left\|a-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|<\varepsilon[H$, Proposition 4.2.3]. In fact e_{1}, \ldots, e_{n} are pairwise orthogonal tripotents in E because $e_{i} \pm e_{j}$ are tripotents in E for all $i \neq j$. Finally we proceed as in the proof of Proposition 2.5.

The following result is one of the keys in the proof of our main result and gives the separate w^{*}-continuity of the triple product in the case that the dual real JB*-triple E has a unitary element u, i.e. $L(u, u)=I d_{E}$ ($\left.E=E_{2}(u)\right)$.

Proposition 2.7 Let E be a dual real $J B^{*}$-triple with a unitary element. Then the triple product is separately w^{*}-continuous.

Proof. Since E is a real JB*-triple, there exists a complex JB*-triple B and a conjugation τ on B such that $E=B^{\tau}$. Let u be a unitary element in
E. Then u is a unitary element in B. So B is a complex JB^{*}-triple with a unitary element u. By [BKU, Theorem 2.2] and [KU, Theorem 3.7], (see also [U, Proposition 19.13]) it follows that B is a unital JB*-algebra with product $x \circ y:=\{x, u, y\}$, involution $x^{*}:=\{u, x, u\}=Q(u) x$ and unit u.

Put $A:=\{x \in E: Q(u) x=x\}$ and $D:=\{x \in E: Q(u) x=-x\}$. Then $E=A \oplus D$, because $Q(u)$ is an involution on E.

For $M_{a}:=L(a, u)$ the identities

$$
\begin{gathered}
L(a, b)=M_{a} M_{b^{*}}-M_{b^{*}} M_{a}+M_{a \circ b^{*}}, \\
Q(a, b)=\left(M_{a} M_{b}+M_{b} M_{a}-M_{a \circ b}\right) Q(u)
\end{gathered}
$$

for all $a, b \in E$ imply that only the w^{*}-continuity of every $M_{a}, a \in E$, has to be shown. For $a=a^{*}$ this follows from Proposition 2.6 and for $a^{*}=-a$ from the identity

$$
2 M_{a}=L(a, u)-L(u, a)
$$

and Proposition 2.3, 2.
Proposition 2.8 Let E be a dual real $J B^{*}$-triple and e a tripotent in E. Then $L(a, b)$ and $Q(a, b)$ are w^{*}-continuous operators on E for all a, b in $E_{2}(e)$.

Proof. $E_{2}(e)$ is a dual real JB^{*}-triple with a unitary element e. Then by Proposition 2.7 the triple product is separately w^{*}-continuous on $E_{2}(e)$. Therefore $E_{2}(e)$ is a real JBW^{*}-triple [IKR, Theorem 4.4].

From [IKR, Proof of Theorem 4.8] it can be concluded that for all $a \in$ $E_{2}(e)$ and $\varepsilon>0$, there exist a family of pairwise orthogonal tripotents $\left\{e_{1}, \ldots, e_{n}\right\}$ in $E_{2}(e)$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ such that $\left\|a-\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|<\varepsilon$. As in the proof of Proposition 2.5, we conclude that $L(a, b)$ and $Q(a, b)$ are w^{*}-continuous operators on E for all a, b in $E_{2}(e)$.

The next two lemmas are needed in the proof of the Main Theorem below. We are inspired in some results of Friedman and Russo [FR2, Propositions 1 and 2] for their proofs.

Lemma 2.9 Let E be a real $J B^{*}$-triple, $f \in E^{*}$ and e a tripotent in E such that $\left\|f P_{2}(e)\right\|=\|f\|$. Then $f=f P_{2}(e)$.

Proof. The same proof as in [FR2, Proposition 1] runs here.
Lemma 2.10 Let E be a dual real JB*-triple. Then

1. If $f \in E_{*}$, there exists a tripotent e in E such that $f=f P_{2}(e)$.
2. A net $\left\{x_{\alpha}\right\}$ converges to zero in the w^{*}-topology if and only if $\left\{P_{2}(u) x_{\alpha}\right\}$ converges to zero in the w^{*}-topology for every tripotent u in E.

Proof. 1. Let us suppose $\|f\|=1$, then the set $S=\{x \in E: f(x)=\|x\|$ $=\|f\|=1\}$ is nonempty convex and w^{*}-compact. Therefore there exists an extreme point of the closed unit ball of E, e, such that e is in S, too. Hence e is a tripotent [IKR, Lemma 3.3], and $f(e)=\|f\|=1$. We have $f=f P_{2}(e)$ by Lemma 2.9.
2. (\Rightarrow) Straightforward because $P_{2}(u)$ is w^{*}-continuous (for every tripotent u in E) by Proposition 2.4.
(\Leftarrow) Suppose that $P_{2}(u) x_{\alpha} \xrightarrow{w^{*}} 0$, for every tripotent u in E. Let $f \in$ E_{*}. From the first assertion, there exists a tripotent e in E such that $f=f P_{2}(e)$. By hypothesis $P_{2}(e) x_{\alpha} \xrightarrow{w^{*}} 0$. Therefore $f P_{2}(e) x_{\alpha}=$ $f\left(x_{\alpha}\right) \rightarrow 0$.

A tripotent e in a Jordan triple A is called complete if $A_{0}(e)=0$. In a dual real JB^{*}-triple E we have many complete tripotents because by [IKR, Lemma 3.3], the complete tripotents in E are exactly the extreme points of the closed unit ball of E, B_{E}. Banach-Alaoglu's and Krein-Millman's theorems give that B_{E} is the w^{*}-closed convex hull of its extreme points.

Having disposed of these preliminary steps we can now prove the Main Theorem.

Theorem 2.11 Let E be a dual real $J B^{*}$-triple. Then the triple product is separately w^{*}-continuous, i.e., E is a real JBW*-triple.

Proof. We first prove that $L(a, b)$ is w^{*}-continuous for all $a, b \in E$.
Let e be a complete tripotent in E. If we fix $a \in E_{1}(e)$ and $b \in E_{2}(e)$, using Peirce arithmetic, it is easy to check that

$$
\begin{aligned}
& L(a, b)=L(a, b) P_{2}(e) \text { and } \\
& L(b, a)=L(b, a) P_{1}(e)
\end{aligned}
$$

From Proposition 2.3, 2., $L(a, b)-L(b, a)$ is w^{*}-continuous and by Proposition 2.4, $P_{2}(e)$ and $P_{1}(e)$ are w^{*}-continuous. Therefore

$$
\begin{align*}
L(a, b) & =L(a, b) P_{2}(e)-L(b, a) P_{1}(e) P_{2}(e) \\
& =(L(a, b)-L(b, a)) P_{2}(e) \tag{3.1}
\end{align*}
$$

is w^{*}-continuous.
In a similar way $L(b, a)=-(L(a, b)-L(b, a)) P_{1}(e)$ is w^{*}-continuous.

Now if $a \in E$ and $b \in E_{2}(e)$, then $a=a_{1}+a_{2}$ where $a_{i} \in E_{i}(e)$ for $i=1,2$. Since

$$
\begin{aligned}
& L(a, b)=L\left(a_{1}, b\right)+L\left(a_{2}, b\right) \\
& L(b, a)=L\left(b, a_{1}\right)+L\left(b, a_{2}\right)
\end{aligned}
$$

we can conclude by (3.1), (3.2) and Proposition 2.8 that $L(a, b)$ and $L(b, a)$ are w^{*}-continuous for all $a \in E$ and $b \in E_{2}(e)$.

Let $a \in E$, by applying Jordan identity, we have $L(a, L(e, e) a)=-L(e, a) L(a, e)+L(\{e, a, a\}, e)+L(a, e) L(e, a)$.
(3.4) Thus by (3.3), $L(a, L(e, e) a)$ is w^{*}-continuous because $e \in E_{2}(e)$.

From

$$
\begin{aligned}
L(a, L(e, e) a) & =L\left(a_{1}+a_{2}, L(e, e) a_{1}+a_{2}\right) \\
& =L\left(a_{1}+a_{2}, \frac{1}{2} a_{1}+a_{2}\right) \\
& =\frac{1}{2} L\left(a_{1}, a_{1}\right)+\frac{1}{2} L\left(a_{2}, a_{1}\right)+L\left(a_{1}, a_{2}\right)+L\left(a_{2}, a_{2}\right)
\end{aligned}
$$

we deduce that

$$
\begin{aligned}
& L\left(a_{1}, a_{1}\right) \\
& =2\left(L(a, L(e, e) a)-\frac{1}{2} L\left(a_{2}, a_{1}\right)-L\left(a_{1}, a_{2}\right)-L\left(a_{2}, a_{2}\right)\right)
\end{aligned}
$$

is w^{*}-continuous which follows from (3.3) and (3.4). We have proved that $L\left(a_{1}, a_{1}\right)$ is w^{*}-continuous for all $a_{1} \in E_{1}(e)$.

Finally since $E=E_{1}(e) \oplus E_{2}(e)$, and $L(.,$.$) is bilinear, by (3.3) and$ (3.5) we can conclude that $L(a, b)$ is w^{*}-continuous for all $a, b \in E$.

The last part of the proof is devoted to prove that $Q(a, b)$ is w^{*}-continuous for all $a, b \in E$.

We fix $a, b \in E$. It is easy to check that $Q(b) Q(a)=2 L(b, a) L(b, a)-$ $L(\{b, a, b\}, a)$. Thus $Q(b) Q(a)$ is w^{*}-continuous for all $a, b \in E$ by (3.6). In particular $Q(u) Q(a)$ is w^{*}-continuous for every tripotent u in E. So (using Proposition 2.4) $P_{2}(u) Q(a)=Q(u) Q(u) Q(a)$ is w^{*}-continuous (3.7) for every tripotent u in E.

Now by Lemma 2.10, 2., $Q(a)$ is w^{*}-continuous if and only if $P_{2}(u) Q(a)$ is w^{*}-continuous for every tripotent u in E. Hence, using (3.7), we conclude the proof.

Edwards [E, Theorems 3.2 and 3.4] has shown that the complexification of a JB-algebra, J, is a JBW^{*}-algebra if and only if J is a JBW-algebra. This result now is a consequence of our main result and [IKR, Theorem 4.4].

Corollary 2.12 Let J be a JB-algebra. Then J is a $J B W$-algebra if and only if its complexification is a $J B W^{*}$-algebra.

Proof. Consider $B=J \oplus i J$ (the complexification of J) as JB*-triple, τ the natural involution on B and $J=B^{\tau}$.

Acknowledgements. The authors wish to thank W. Kaup for his suggestions.

References

[A] Alvermann, K.: Real normed Jordan algebras with involution, Arch. Math. 47, 135-150 (1986).
[BT] Barton, T. and Timoney, R. M.: Weak*-continuity of Jordan triple products and its applications, Math. Scand. 59, 177-191 (1986).
[BD] Bonsall, F. F. and Duncan, J.: Complete Normed Algebras, Springer-Verlag, New York 1973.
[BKU] Braun, R. B., Kaup, W. and Upmeier, H.: A holomorphic characterization of Jordan-C*-algebras, Math. Z. 161, 277-290 (1978).
[BC] Bunce, L. J. and Chu, C-H.: Real contractive projections on commutative C*algebras, Math. Z. 226, 85-101 (1997).
[CDRV] Chu, C-H., Dang, T., Russo, B., and Ventura, B.: Surjective isometries of real C*-algebras, J. London Math. Soc. 47, 97-118 (1993).
[CGR] Chu, C-H., Galindo, A. M., and Rodríguez, A.: On prime real JB*-triples. Contemporary Mathematics 232, 105-109 (1999).
[CM] Chu, C-H., Mellon, P.: Jordan structures in Banach spaces and symmetric manifolds, Expo. Math. 16, 157-180 (1998).
[D] Dang, T.: Real isometries between JB*-triples, Proc. Amer. Math. Soc. 114, 971980 (1992).
[DR] Dang, T. and Russo, B.: Real Banach Jordan triples, Proc. Amer. Math. Soc. 122, 135-145 (1994).
[E] Edwards, C. M.: On Jordan W*-algebras, Bull. Sc. Math., 2 ${ }^{a}$ serie, 104, 393-403 (1980).
[FR1] Friedman, Y. and Russo, B.: Solution of the contractive projection problem, J. Funct. Anal. 60, 56-79 (1985).
[FR2] Friedman, Y. and Russo, B.: Structure of the predual of a JBW*-triple, J. Reine u. Angew. Math. 356, 67-89 (1985).
[G] Godefroy, G.: Parties admissibles d'un espace de Banach. Applications, Ann. Scient. Ec. Norm. Sup. 4^{a} série, 16, 109-122 (1983).
[Go] Goodearl, K. R.: Notes on real and complex C*-algebras, Shiva Publ. 1982.
[H] Hanche-Olsen, H. and Størmer, E.: Jordan operator algebras, Monographs and Studies in Mathematics 21, Pitman, London-Boston-Melbourne 1984.
[IKR] Isidro, J. M., Kaup, W. and Rodríguez, A.: On real forms of JB*-triples, Manuscripta Math. 86, 311-335 (1995).
[IR] Isidro, J. M. and Rodríguez, A.: On the definition of real W*-algebras, Proc. Amer. Math. Soc. 124, 3407-3410 (1996).
[K1] Kaup, W.: Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228, 39-64 (1977).
[K2] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183, 503-529 (1983).
[K3] Kaup, W.: Contractive projections on Jordan C*-algebras and generalizations, Math. Scand. 54, 95-100 (1984).
[K4] Kaup, W.: On real Cartan factors, Manuscripta Math. 92, 191-222 (1997).
[KU] Kaup, W. and Upmeier, H.: Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. 157, 179-200, (1977).
[L] Loos, O.: Bounded symmetric domains and Jordan pairs, Math. Lectures, University of California, Irvine (1977).
[R] Rodríguez A.: Jordan structures in Analysis. In Jordan algebras: Proc. Oberwolfach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon and H. Petersson), 97-186. Walter de Gruyter, Berlin, 1994.
[Ru] Russo B.: Structure of JB*-triples. In Jordan algebras: Proc. Oberwolfach Conf., August 9-15, 1992 (ed. by W. Kaup, K. McCrimmon and H. Petersson), 209-280. Walter de Gruyter, Berlin, 1994.
[S] Stachó, L.: A projection principle concerning biholomorphic automorphisms, Acta Sci. Math. 44, 99-124 (1982).
[U] Upmeier, H.: Symmetric Banach Manifolds and JC*-algebras, Mathematics Studies 104, (Notas de Matemática, ed. by L. Nachbin) North Holland 1985.

[^0]: * Partially supported by DGICYT Grant PB95-1146 and Junta de Andalucía FQM 0199.
 ** Supported by Programa Nacional F.P.I., Ministry of Education and Science grant.

