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Abstract. We prove that, ifE is a real JB*-triple having a predualE∗ , then
E∗ is the unique predual ofE and the triple product onE is separately
σ(E,E∗)−continuous.
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1 Introduction

In last years, a special category of complex Banach spaces, called JB*-
triples, has focused the attention of many researchers. Historically, JB*-
triples arose in the study of bounded symmetric domains in complex Banach
spaces (see [L] and [K1]) and it has been shown by Kaup [K2], that every
such domain is biholomorphic to the open unit ball of a JB*-triple. Every C*-
algebra is a JB*-triple in the triple product{a, b, c} = 1

2 (ab∗c+ cb∗a) and
every JB*-algebra is a JB*-triple in the triple product{a, b, c} = (a ◦ b∗) ◦
c+(c ◦ b∗)◦a−(a ◦ c)◦b∗. In the context of Functional Analysis, JB*-triples
arise in a natural way in the solution of the contractive projection problem
for C*-algebras, concretely, the range of such a projection is a JB*-triple
for a suitable triple product (see [S], [K3] and [FR1]).

We refer to ([R], [Ru] and [CM]) for recent surveys and to [U] for the
general theory of JB*-triples.

Recently, a theory of real JB*-triples has been developed (see [D] ,
[CDRV], [DR], [BC] , [IKR], [K4] and [CGR]) extending to the real context
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many results in (complex) JB*-triples. However, the extension to the real
case, of the important result proved by Barton-Timoney [BT] assuring that if
E is a JB*-triple which is a dual Banach space, thenE has a unique predual
and the triple product onE is separately weak*-continuous, was an open
problem which explicitly appears in the papers [IKR] and [CGR]. In this
paper we solve this problem, so extending the above mentioned result of
Barton-Timoney.

Isidro-Kaup-Rodŕıguez [IKR] introduce the concept of real JBW*-triple
(as a real form of a complex JBW*-triple) and they have shown [IKR, The-
orem 4.4] that every real JB*-tripleE is a real JBW*-triple if and only if
E has a predual in such a way that the triple product is separately weak*-
continuous. From this, using our main result, we conclude that every dual
real JB*-triple is a real JBW*-triple.

JB*-algebras and JB-algebras are real JB*-triples. If they have a unit,
then the Jordan product is uniquely determined by the triple product (see
[U, Proposition 19.13]) and the unit. Therefore our main result also gives
the known separately weak*-continuity of the product in dual JB*-algebras
and JB-algebras.

The proof of our main result (Theorem 2.11) follows several steps.
In a first step we prove that the dual of a real JB*-triple is well-framed,

(Lemma 2.2). As a consequence the predual of every dual real JB*-triple,
sayE, is unique and every isometric bijection ofE is weak*-continuous.

Once it is proved that the Peirce projections onE and the operators
L (e, e) andQ (e) are weak*-continuous for all tripotentse inE (Proposition
2.4), it can be concluded that ifE has a distinguished unitary element, then
the triple product is separately weak*-continuous (Proposition 2.7).

Finally, starting from the existence of complete tripotents in dual real
JB*-triples and using Peirce decomposition, we conclude the proof.

2 Main result

We recall that a complex JB*-triple is a complex Banach spaceB with a
continuous triple product{., ., .} : B × B × B → B which is bilinear and
symmetric in the outer variables and conjugate linear in the middle variable,
satisfying:

1. (Jordan Identity)L(a, b){x, y, z} = {L(a, b)x, y, z} − {x, L(b, a)y, z}
+ {x, y, L(a, b)z} for all a, b, c, x, y, z in B, where
L(a, b)x := {a, b, x};

2. The mapL(a, a) from B to B is an hermitian operator with spectrum
≥ 0 for all a in B;

3. ‖{a, a, a}‖ = ‖a‖3 for all a in B.
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A real Banach spaceA together with a trilinear map{., ., .} : A× A×
A → A is called (see [IKR]) a real JB*-triple if there is a complex JB*-
triple B and anR-linear isometryλ from A to B such thatλ{x, y, z} =
{λx, λy, λz} for all x, y, z in A.

Real JB*-triples are essentially the closed real subtriples of complex
JB*-triples and, by [IKR, Proposition 2.2], given a real JB*-tripleA there
exists a unique complex JB*-tripleB and a unique conjugation (conjugate
linear and isometric mapping of period 2)τ onB such thatA = Bτ :=
{x ∈ B : τ(x) = x}. In fact,B is the complexification of the vector space
A,with triple product extending in a natural way the triple product ofA and
a suitable norm.

The class of real JB*-triples includes all JB-algebras [H], all real C*-
algebras [Go], and all J*B-algebras [A].

Real JB*-triples are Jordan triples. So, given a tripotente ({e, e, e} = e)
in a real JB*-tripleA, there exists a decomposition ofA into the eigenspaces
of L(e, e), known as the Peirce decomposition;

A = A0(e) ⊕A1(e) ⊕A2(e)

whereAk(e) = {x ∈ A : L(e, e)x = k
2x} for k = 0, 1, 2.

Ak(e) is called the Peircek-space ofe. Peircek-spaces satisfy the fol-
lowing multiplication rules:

1. {Ai(e), Aj(e), Ak(e)} ⊆ Ai−j+k(e), where i, j, k = 0, 1, 2 and
Al(e) = 0 for l �= 0, 1, 2.

2. {A0(e), A2(e), A} = {A2(e), A0(e), A} = 0.

These rules are known as Peirce arithmetic. In particular, Peircek-spaces
are subtriples.

The projectionPk(e) of A ontoAk(e) is called the Peircek-projection
of e. These projections are given by

P2(e) = Q(e)2;
P1(e) = 2(L(e, e) −Q(e)2);
P0(e) = IdA − 2L(e, e) +Q(e)2;

whereQ(e)x = {e, x, e}.
If X is a dual Banach space with predualX∗, we will denote byw∗

theσ(X,X∗) topology inX. The next Lemma summarizes some important
results on well-framed Banach spaces, relevant to our purpose. We refer to
[G] for a detailed presentation of the well-framed property and the proof of
the next Lemma.

Lemma 2.1 [G, Th. 15 and Th. 16 ]
LetX be a real or complex Banach space, then
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1. If X is well-framed, thenX is the unique predual ofX∗. Furthermore,
every isometric bijection onX∗ isw∗-continuous.

2. IfX is well-framed, then so is any closed linear subspace ofX.

In the proof of [BT, Theorem 2.1] it is shown that the dualB∗ of a
complex JB*-tripleB is well-framed. The next lemma shows that this is
still true for real JB*-triples.

Lemma 2.2 The dual of a real JB*-triple is well-framed.

Proof. LetA be a real JB*-triple and suppose thatB is a complex JB*-triple
such thatA = Bτ , whereτ is a conjugation onB. Thenτ∗ : B∗ → B∗

defined by(τ∗f)x := fτ(x), for all f in B∗ andx in B, is a conjugation
onB∗. Furthermore, the mapf → f |Bτ is an isometric bijection between
(B∗)τ∗

and (Bτ)∗ , henceA∗ = (B∗)τ∗
is a real subspace ofB∗. It is

known [IR, Lemma 1.4] that ifX is a well-framed complex Banach space,
then its underlying real Banach spaceXR is well-framed, too. Hence(B∗)

R

is well-framed, soA∗ is well-framed too by Lemma 2.1, 2.��
The following proposition is a first application of Godefroy´s theory of

well-framed Banach spaces to dual real JB*-triples (that is real JB*-triples
which are dual Banach spaces).

Proposition 2.3 LetE be a real JB*-triple with a predualE∗ . Then

1. E∗ is the unique predual ofE and every isometric bijection onE is
w∗-continuous.

2. The operatorL(a, b) − L(b, a) onE isw∗-continuous for alla, b in E.

Proof. 1. By the above Lemma,E∗ is well-framed. SinceE∗ is a subspace
of E∗, Lemma 2.1 gives the first assertion.

2. Leta, b in E. It is known [IKR, proposition 2.5] that
exp(t(L(a, b) − L(b, a))) is an isometric bijection onE, for all t in R.
Hence by the first assertion it isw∗-continuous. Now the operator

L(a, b) − L(b, a) = limt→0
exp (t (L(a, b) − L(b, a))) − IdE

t

is w∗-continuous, because the set of allw∗-continuous operators onE
is norm-closed in the Banach space of all bounded linear operators on
E. ��
We recall that ifY is aw∗-closed subspace of a Banach dual spaceX,

thenY is a Banach dual space (with predualX∗/Y◦). Furthermoreσ(Y, Y∗)
andσ(X,X∗) |Y are the same topology onY. On the other hand ife is a
tripotent in a complex JB*-tripleB, thene is a tripotent in the subtriple
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B2 (e) such thatL(e, e) is the identity map onB2 (e) (i.e. e is a unitary
element inB2 (e)). ThereforeB2 (e) is a unital JB*-algebra with product
x ◦ y = {x, e, y} and involutionx∗ = Q (e)x ([BKU, Theorem 2.2] and
[KU, Theorem 3.7], see also [U, Proposition 19.13]).

The next proposition shows that the triple product in a dual real JB*-triple
is separatelyw∗-continuous if we fix the same tripotent in two variables.

Proposition 2.4 Let E be a dual real JB*-triple ande a tripotent inE.
Then the Peirce projections,L(e, e) andQ(e) arew∗-continuous operators
onE.

Proof. Let B a complex JB*-triple andτ a conjugation onB such that
E = Bτ . First we observe that every tripotent inE is a tripotent inB and
the restrictions toE of Peirce projections onB are the Peirce projections
onE.

For everyε ∈ C let Sε := Sε (e) =
2∑

k=0 εkPk (e) . ThenSε is an
isometric automorphism ofB if |ε| = 1 by [FR2, Lemma 1.1]. ThenS±1 are
isometries of E and hencew∗-continuous. ThereforeP1(e) = (S1 −S−1)/2
isw∗-continuous and the subtripleE2(e)+E0(e) isw∗-closed inE. ButSi

andP0(e)−P2(e) have the same restriction toE2(e)+E0(e). This implies
thatP0(e), P2(e) andL(e, e) = P2(e) + 1

2P1(e) arew∗-continuous. The
restriction ofQ(e) to thew∗-closed subtripleE2(e) is isometric and hence
isw∗-continuous onE. ��

Following [IKR] a real JBW*-triple is a real JB*-tripleE such that
E = Bτ for a dual complex JB*-triple (JBW*-triple)B and a conjugation
τ onB.

From [IKR, Theorem 4.4]E is a real JBW*-triple if an only ifE has a
predualE∗ in such a way that the triple product is separatelyw∗-continuous.
In this paper we prove that every dual real JB*-triple is a real JBW*-triple.
Concretely we will prove that in every dual real JB*-triple the triple product
is separatelyw∗-continuous.

The following Proposition is a first approach to our purpose.

Proposition 2.5 Let E be a dual real JB*-triple. Suppose that for every
a in E and for everyε > 0, there exists a family{e1 , ..., en} of pairwise

orthogonal tripotents andλ1 , ..., λn in R, such that

∥∥∥∥a−
n∑

i=1 λiei

∥∥∥∥ < ε.

Then the triple product ofE is separatelyw∗-continuous.

Proof. Let a ∈ E and1 > ε > 0. Then by hypothesis, there exists a family
{e1 , ..., en} of pairwise orthogonal tripotents andλ1 , ..., λn in R, such that

‖a− an‖ < ε

2 (1 + ‖a‖)
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for an :=
n∑

i=1 λiei . By orthogonalityL(an, an) =
n∑

i=1 λ2
iL (ei , ei) .

HenceL (an, an) isw∗-continuous by Proposition 2.4. Since

‖L(a, a) − L(an, a)‖ = ‖L(a− an, a)‖ ≤ ‖a− an‖ ‖a‖
<

ε

2 (1 + ‖a‖)
(1 + ‖a‖)

and

‖L(an, an) − L(an, a)‖ = ‖L(an, an − a)‖ ≤ ‖a− an‖ ‖an‖
<

ε

2 (1 + ‖a‖)
(1 + ‖a‖)

(where we have used that‖a− an‖ < ε ⇒ ‖an‖ < ε + ‖a‖ < 1 + ‖a‖).
It follows that

‖L(a, a) − L(an, an)‖ ≤ ‖L(a, a) − L(an, a)‖
+ ‖L(an, an) − L(an, a)‖

< ε.

This implies thatL(a, a) is in the norm closure of the set of allw∗-continuous
operators and hence isw∗-continuous for alla in E. In particularL(a, b) +
L(b, a) = L(a + b, a + b) − L(a, a) − L(b, b) is w∗-continuous. Now by
using Proposition 2.3, 2., we haveL(a, b) isw∗-continuous for alla, b inE.

It is known [IKR, Lemma 3.6] thatei , ej are orthogonal tripotents if and
only if ei ± ej are tripotents. Therefore, ifei , ej are orthogonal tripotents,
thenQ(ei + ej) isw∗-continuous by Proposition 2.4. Thus

Q (an , an) =
n∑

i,j=1
λiλjQ (ei , ej)

=
1
2

n∑
i,j=1

λiλj(Q (ei + ej) −Q (ei) −Q (ej))

isw∗-continuous.
Again

‖Q(a) −Q(an, a)‖ = ‖Q(a− an, a)‖ ≤ ‖a− an‖ ‖a‖
<

ε

2 (1 + ‖a‖)
(1 + ‖a‖)

and

‖Q(an) −Q(an, a)‖ = ‖Q(an, an − a)‖ ≤ ‖a− an‖ ‖an‖
<

ε

2 (1 + ‖a‖)
(1 + ‖a‖) ,
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so
‖Q(a) −Q(an)‖ < ε.

HenceQ (a) isw∗-continuous for alla in E. Finally

Q (a, b) =
1
2

(Q (a+ b) −Q (a) −Q (b))

isw∗-continuous for alla, b in E. ��
If E is a real JB*-triple there exists a complex JB*-tripleB and a conju-

gationτ onB such thatE = Bτ . Let e be a tripotent inE, as we have com-
mented before,B2 (e) is a JB*-algebra. ThereforeA (e) := {x ∈ E2 (e) :
Q (e)x = x} is a JB-algebra as a closed subalgebra of the JB-algebra
{x ∈ B2 (e) : Q (e)x = x∗ = x}.

We are going to show that ifE is a dual real JB*-triple ande is a tripotent
in E, then every element inA (e) can be approximated by finite linear
combinations of pairwise orthogonal tripotents. An argument similar to that
in the proof of Proposition 2.5 then shows thatL(a, b) andQ (a, b) are
w∗-continuous for alla, b in A (e).

Proposition 2.6 Let E be a dual real JB*-triple ande a tripotent inE.
ThenL(a, b) andQ (a, b) arew∗-continuous for alla, b in A (e) .

Proof. A (e) is a JB-algebra and sinceQ (e) is w∗-continuous, thenA (e)
isw∗-closed inE. ThereforeA (e) is a JBW-algebra [H, Theorem 4.4.16].
Again by [H, Lemma 4.1.11] ifa ∈ A (e) , then thew∗-closure of the
subalgebra generated bya, W (a) , is isometrically isomorphic to a mono-
tone completeC (X) whereX is a compact Hausdorff space and for all
ε > 0, there exist pairwise orthogonal idempotentse1, ..., en in W (a) and

λ1 , ..., λn in R such that

∥∥∥∥a−
n∑

i=1 λiei

∥∥∥∥ < ε [H, Proposition 4.2.3]. In

fact e1 , ..., en are pairwise orthogonal tripotents inE becauseei ± ej are
tripotents inE for all i �= j. Finally we proceed as in the proof of Proposi-
tion 2.5. ��

The following result is one of the keys in the proof of our main result
and gives the separatew∗-continuity of the triple product in the case that
the dual real JB*-tripleE has a unitary elementu, i.e. L (u, u) = IdE

(E = E2 (u)).

Proposition 2.7 Let E be a dual real JB*-triple with a unitary element.
Then the triple product is separatelyw∗-continuous.

Proof. SinceE is a real JB*-triple, there exists a complex JB*-tripleB and
a conjugationτ on B such thatE = Bτ . Let u be a unitary element in
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E. Thenu is a unitary element inB. SoB is a complex JB*-triple with a
unitary elementu. By [BKU, Theorem 2.2] and [KU, Theorem 3.7], (see
also [U, Proposition 19.13]) it follows thatB is a unital JB*-algebra with
productx ◦ y := {x, u, y}, involutionx∗ := {u, x, u} = Q (u)x and unit
u.

PutA := {x ∈ E : Q (u)x = x} andD := {x ∈ E : Q (u)x = −x} .
ThenE = A⊕D, becauseQ (u) is an involution onE.

ForMa := L(a, u) the identities

L(a, b) = MaMb∗ −Mb∗Ma +Ma◦b∗ ,

Q(a, b) = (MaMb +MbMa −Ma◦b)Q(u)

for all a, b ∈ E imply that only thew∗-continuity of everyMa, a ∈ E, has
to be shown. Fora = a∗ this follows from Proposition 2.6 and fora∗ = −a
from the identity

2Ma = L(a, u) − L(u, a)

and Proposition 2.3, 2.��
Proposition 2.8 Let E be a dual real JB*-triple ande a tripotent inE.
ThenL (a, b) andQ (a, b) arew∗-continuous operators onE for all a, b in
E2 (e) .

Proof. E2 (e) is a dual real JB*-triple with a unitary elemente. Then by
Proposition 2.7 the triple product is separatelyw∗-continuous onE2(e).
ThereforeE2 (e) is a real JBW*-triple [IKR, Theorem 4.4].

From [IKR, Proof of Theorem 4.8] it can be concluded that for alla ∈
E2 (e) andε > 0, there exist a family of pairwise orthogonal tripotents

{e1 , ..., en} in E2 (e) andλ1 , ..., λn ∈ R such that

∥∥∥∥a−
n∑

i=1λiei

∥∥∥∥ < ε.

As in the proof of Proposition 2.5, we conclude thatL (a, b) andQ (a, b)
arew∗-continuous operators onE for all a, b in E2 (e). ��

The next two lemmas are needed in the proof of the Main Theorem below.
We are inspired in some results of Friedman and Russo [FR2, Propositions
1 and 2] for their proofs.

Lemma 2.9 LetE be a real JB*-triple,f ∈ E∗ ande a tripotent inE such
that‖fP2 (e)‖ = ‖f‖ . Thenf = fP2 (e) .

Proof. The same proof as in [FR2, Proposition 1] runs here.��
Lemma 2.10 LetE be a dual real JB*-triple. Then

1. If f ∈ E∗ , there exists a tripotente in E such thatf = fP2 (e) .
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2. A net{xα} converges to zero in thew∗-topology if and only if{P2(u)xα}
converges to zero in thew∗-topology for every tripotentu in E.

Proof. 1. Let us suppose‖f‖ = 1, then the setS = {x ∈ E : f (x) = ‖x‖
= ‖f‖ = 1} is nonempty convex andw∗-compact. Therefore there exists
an extreme point of the closed unit ball ofE, e, such thate is in S, too.
Hencee is a tripotent [IKR, Lemma 3.3], andf (e) = ‖f‖ = 1.We have
f = fP2 (e) by Lemma 2.9.

2. (⇒) Straightforward becauseP2 (u) isw∗-continuous (for every tripotent
u in E) by Proposition 2.4.

(⇐) Suppose thatP2 (u)xα
w∗→ 0, for every tripotentu in E. Let f ∈

E∗ . From the first assertion, there exists a tripotente in E such that

f = fP2 (e) . By hypothesisP2 (e)xα
w∗→ 0. ThereforefP2 (e)xα =

f(xα) → 0. ��

A tripotente in a Jordan tripleA is called complete ifA0 (e) = 0. In a
dual real JB*-tripleE we have many complete tripotents because by [IKR,
Lemma 3.3], the complete tripotents inE are exactly the extreme points
of the closed unit ball ofE, BE . Banach-Alaoglu´s and Krein-Millman´s
theorems give thatBE is thew∗-closed convex hull of its extreme points.

Having disposed of these preliminary steps we can now prove the Main
Theorem.

Theorem 2.11 LetE be a dual real JB*-triple. Then the triple product is
separatelyw∗-continuous, i.e.,E is a real JBW*-triple.

Proof. We first prove thatL (a, b) isw∗-continuous for alla, b ∈ E.
Let e be a complete tripotent inE. If we fix a ∈ E1 (e) andb ∈ E2 (e) ,

using Peirce arithmetic, it is easy to check that

L (a, b) = L (a, b)P2 (e) and

L (b, a) = L (b, a)P1 (e) .

From Proposition 2.3, 2.,L (a, b) − L (b, a) is w∗-continuous and by
Proposition 2.4,P2 (e) andP1 (e) arew∗-continuous. Therefore

L (a, b) = L (a, b)P2 (e) − L (b, a)P1 (e)P2 (e)
= (L (a, b) − L (b, a))P2 (e)

isw∗-continuous. (3.1)

In a similar wayL (b, a) = − (L (a, b) − L (b, a))P1 (e) isw∗-continu-
ous. (3.2)
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Now if a ∈ E andb ∈ E2 (e) , thena = a1 + a2 whereai ∈ Ei (e) for
i = 1, 2. Since

L (a, b) = L (a1 , b) + L (a2 , b)
L (b, a) = L (b, a1) + L (b, a2)

we can conclude by (3.1), (3.2) and Proposition 2.8 thatL (a, b) andL (b, a)
arew∗-continuous for alla ∈ E andb ∈ E2 (e) .(3.3)

Let a ∈ E, by applying Jordan identity, we have

L (a, L (e, e) a) = −L (e, a)L (a, e) + L ({e, a, a}, e) + L (a, e)L (e, a) .

Thus by (3.3),L (a, L (e, e) a) isw∗-continuous becausee ∈ E2 (e) .(3.4)

From

L (a, L (e, e) a) = L (a1 + a2 , L (e, e) a1 + a2)

= L

(
a1 + a2 ,

1
2
a1 + a2

)

=
1
2
L (a1 , a1) +

1
2
L (a2 , a1) + L (a1 , a2) + L (a2 , a2)

we deduce that

L (a1 , a1)

= 2
(
L (a, L (e, e) a) − 1

2
L (a2 , a1) − L (a1 , a2) − L (a2 , a2)

)

is w∗-continuous which follows from (3.3) and (3.4). We have proved that
L (a1 , a1) isw∗-continuous for alla1 ∈ E1 (e) .(3.5)

Finally sinceE = E1 (e) ⊕ E2 (e) , andL(., .) is bilinear, by (3.3) and
(3.5) we can conclude thatL (a, b) isw∗-continuous for alla, b ∈ E.(3.6)

The last part of the proof is devoted to prove thatQ (a, b) is w∗-conti-
nuous for alla, b ∈ E.

We fixa, b ∈ E. It is easy to check thatQ (b)Q (a) = 2L (b, a)L (b, a)−
L({b, a, b}, a). ThusQ (b)Q (a) isw∗-continuous for alla, b ∈ E by (3.6).
In particularQ (u)Q (a) is w∗-continuous for every tripotentu in E. So
(using Proposition 2.4)P2 (u)Q (a) = Q (u)Q (u)Q (a) isw∗-continuous
for every tripotentu in E.(3.7)

Now by Lemma 2.10, 2.,Q (a) isw∗-continuous if and only ifP2(u)Q(a)
isw∗-continuous for every tripotentu inE.Hence, using (3.7), we conclude
the proof. ��

Edwards [E, Theorems 3.2 and 3.4] has shown that the complexification
of a JB-algebra,J, is a JBW*-algebra if and only ifJ is a JBW-algebra. This
result now is a consequence of our main result and [IKR, Theorem 4.4].
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Corollary 2.12 LetJ be a JB-algebra. ThenJ is a JBW-algebra if and only
if its complexification is a JBW*-algebra.

Proof. ConsiderB = J ⊕ iJ (the complexification ofJ) as JB*-triple,τ
the natural involution onB andJ = Bτ . ��
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