

Applied Mathematics Letters 12 (1999) 31-35

A Minimax Inequality for Vector-Valued Mappings

Z. F. LI AND S. Y. WANG Institute of Systems Science Chinese Academy of Sciences Beijing 100080, P.R. China <zfli><sywang>@iss02.iss.ac.cn

(Received October 1997; accepted October 1998)

Abstract—This paper presents a minimax inequality for vector-valued mappings in Hausdorff topological vector spaces with pointed closed convex cones. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords-Minimax inequalities, Vector-valued mapping, Generalized cone-convexity.

Let X and Y be two nonempty sets and f be a scalar-valued function on the product space $X \times Y$. The following minimax equality:

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y)$$
(1)

was extensively investigated in the literature of optimization, such as [1]. See [2] for a survey. It is obvious that (1) holds if and only if

$$\min_{x \in X} \max_{y \in Y} f(x, y) \le \max_{y \in Y} \min_{x \in X} f(x, y).$$
⁽²⁾

In recent years, a number of authors focussed their attention on minimax problems of vectorvalued mappings. They gave some versions of (2) when f is a vector-valued mapping, such as Nieuwenhuis [3], Ferro [4-6], Tanaka [7,8], and Shi and Lin [9]. In this paper, we establish a new minimax inequality for vector-valued mappings in Hausdorff topological vector spaces with closed convex pointed cones.

First we give some notations and definitions as follows

Let Z be a topological vector space. We denote by Z^* the topological dual space of Z and 0_Z the zero element in Z. For a subset C of Z, int C and clC denote its topological interior and closure, respectively. Denote

$$\operatorname{cone} C := \{ \lambda c : \lambda \ge 0, \ \forall \ c \in C \}, \\ C^+ := \{ f \in Y^* : f(c) \ge 0, \ \forall \ c \in C \}$$

 and

Supported by the National Natural Science Foundation of China under Grant No. 19501022. The authors are grateful to an anonymous referee for his/her valuable comments and suggestions.

$$C^{+i} := \{ f \in Y^* : f(c) > 0, \forall c \in C \setminus \{0_Z\} \}.$$

Recall that a base B of a cone C is a convex subset of C such that

$$0_Z \notin \operatorname{cl} B$$
 and $C = \operatorname{cone} B$.

It is obvious that a cone C is pointed (i.e., $C \cap (-C) = \{0_Z\}$) if C has a base. Moreover, if C is a nonempty closed convex pointed cone in Z, then $C^{+i} \neq \emptyset$ if and only if C has a base.

DEFINITION 1. (See [10,11].) Let V be a nonempty subset of Z and C a closed convex pointed cone in Z with int $C \neq \emptyset$.

- (i) A point $z \in V$ is said to be a C-maximal point of V if $V \cap (z + C) = \{z\}$;
- (ii) a point $z \in V$ is said to be a weakly C-minimal point of V if $V \cap (z \operatorname{int} C) = \emptyset$;
- (iii) a point $z \in V$ is said to be a Benson properly C-minimal point of V if

$$(-C) \cap \operatorname{cl} \operatorname{cone} (V + C - z) = \{0_Z\}.$$

We denote Max V, $\operatorname{Min}_{w} V$, and $\operatorname{Min}_{p} V$ the set of all the C-maximal points of V, the set of all the weakly C-minimal points of V and the set of all the Benson properly C-minimal points of V, respectively.

Similarly, we can define $\operatorname{Max}_{w} V$, Min V, and $\operatorname{Max}_{p} V$.

It is easy to show that

$$\operatorname{Min}_{\mathbf{p}} V \subset \operatorname{Min} V \subset \operatorname{Min}_{w} V \quad \text{and} \quad \operatorname{Max}_{\mathbf{p}} V \subset \operatorname{Max} V \subset \operatorname{Max}_{w} V. \tag{3}$$

DEFINITION 2. (See [4].) Let X be a nonempty convex subset of a real vector space E and Z an ordered topological vector space with a pointed convex cone C. A vector-valued mapping $f: X \to Z$ is said to be

(i) C-convex if for any $x, y \in X$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \in \lambda f(x) + (1 - \lambda)f(y) - C;$$

(ii) properly quasi-C-convex if for any $x, y \in X$,

$$\text{either } f(\lambda x + (1-\lambda)y) \in f(x) - C \quad \text{or} \quad f(\lambda x + (1-\lambda)y) \in f(y) - C.$$

It should be mentioned that a C-convex mapping is not necessarily properly quasi-C-convex. Conversely a properly quasi-C-convex mapping is not necessarily C-convex. See [4] for a detailed discussion. When Z = R and $C = R_+ := \{r \in R : r \ge 0\}$, the C-convexity and the properly quasi-C-convexity reduce to the ordinary convexity and quasiconvexity, respectively.

Our main result is the following minimax theorem.

THEOREM 1. Let E_1 , E_2 , and Z be Hausdorff topological vector spaces, X and Y a nonempty compact convex subset of E_1 and E_2 , respectively. Let C be a closed convex pointed cone in Z with int $C \neq \emptyset$ and have a compact base. Let $f: X \times Y \to Z$ be a mapping such that

- (i) it is continuous;
- (ii) for each $y \in Y$, $f(\cdot, y)$ is C-convex;

(iii) for each $x \in X$, $-f(x, \cdot)$ is properly quasi-C-convex.

Then

$$\emptyset \neq \operatorname{Min}_{p} \bigcup_{x \in X} \operatorname{Max} f(x, Y) \subset \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y) + Z \setminus (C \setminus \{0_{Z}\}).$$
(4)

If, in addition, the following condition

(iv) for each $x \in X$, $\operatorname{Min}_p \bigcup_{x \in X} \operatorname{Max} f(x, Y) \subset \operatorname{Max} f(x, Y) - C$,

Minimax Inequality

is satisfied, then

$$\operatorname{Min}_{p} \bigcup_{x \in X} \operatorname{Max} f(x, Y) \subset \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y) - C.$$
(5)

PROOF. Define a set-valued mapping $F: X \to 2^Z$ by

$$F(x) = \operatorname{Max} f(x, Y).$$

By Conditions (i),(ii) and [5, Lemma 2.3], F is single-valued, continuous and C-convex. Hence, by the compactness of X, $\bigcup_{x \in X} \operatorname{Max} f(x, Y) = F(X)$ is compact. Since the closed convex pointed cone C has a base, we can take a $\varphi \in C^{+i}$. Thus, there exists a $z_0 \in F(X)$ such that

$$\varphi(z_0) = \min\{\varphi(z) : z \in F(X)\}.$$

By [11, Theorem 4.1],

$$z_0 \in \operatorname{Min}_p \bigcup_{x \in X} \operatorname{Max} f(x, Y) \neq \emptyset.$$

Let $\bar{z} \in \operatorname{Min}_p \bigcup_{x \in X} \operatorname{Max} f(x, Y)$. Thus, there exist $\bar{x} \in X$ and $\bar{y} \in Y$ such that

$$\bar{z} = f(\bar{x}, \bar{y}) = F(\bar{x}) \in \operatorname{Min}_{p} F(X).$$
(6)

Since F is C-convex, by [11, Theorem 4.2], (6) implies that there exists $h \in C^{+i}$ such that

$$h(\bar{z}) = \min_{x \in X} hF(x). \tag{7}$$

Let $x \in X$. Since $hf(x, \cdot)$ is continuous and Y is compact, there exists a $y_x \in Y$ such that

$$\max_{y \in Y} hf(x, y) = hf(x, y_x).$$
(8)

Again by [11, Theorem 4.1], (8), (3), and $h \in C^{+i}$ imply that

$$f(x, y_x) \in \operatorname{Max}_p f(x, Y) \subset \operatorname{Max} f(x, Y) = F(x).$$
(9)

Combining (7)-(9), we have

$$h(\bar{z}) \le hf(x, y_x) = \max_{y \in Y} hf(x, y).$$
⁽¹⁰⁾

Because x can be any element of X, (10) yields

$$h(\bar{z}) \le \min_{x \in X} \max_{y \in Y} hf(x, y).$$
(11)

It is easy to verify that the real-valued function $hf: X \times Y \to R$ has the following properties: it is continuous; $hf(\cdot, y)$ is convex for each $y \in Y$; and $hf(x, \cdot)$ is quasiconcave for each $x \in X$. By the minimax theorem in [12], it follows that

$$\min_{x \in X} \max_{y \in Y} hf(x, y) = \max_{y \in Y} \min_{x \in X} hf(x, y).$$

So, there exist $x_0 \in X$ and $y_0 \in Y$ such that

$$\min_{x \in X} \max_{y \in Y} hf(x, y) = \max_{y \in Y} hf(x_0, y)$$

=
$$\max_{y \in Y} \min_{x \in X} hf(x, y) = \min_{x \in X} hf(x, y_0) = hf(x_0, y_0),$$
 (12)

which together with $h \in C^{+i}$ and (3) yields

$$f(x_0, y_0) \in \operatorname{Min} f(X, y_0) \subset \operatorname{Min}_w f(X, y_0), \qquad (13)$$

 and

$$f(x_0, y_0) \in \text{Max } f(x_0, Y) = F(x_0).$$
 (14)

From (11) and (12), we get

$$h\left(\bar{z}\right)\leq hf\left(x_{0},y_{0}\right),$$

which together with $h \in C^{+i}$ implies

$$\bar{z} \notin f(x_0, y_0) + C \setminus \{0_Z\}.$$
(15)

From (15) and (13), we have

$$\bar{z} \in f(x_0, y_0) + Z \setminus (C \setminus \{0_Z\})
\subset \operatorname{Min}_w f(X, y_0) + Z \setminus (C \{0_Z\})
\subset \bigcup_{y \in Y} \operatorname{Min}_w f(X, y) + Z \setminus (C \setminus \{0_Z\}).$$
(16)

Because f is continuous and because X and Y are compact, by [6, Lemma 2.1], $\bigcup_{y \in Y} \operatorname{Min}_w f(X, y)$ is compact. Hence, by [13, Lemma 1],

$$\bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y) \subset \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y) - C.$$
(17)

From (16) and (17), we have

$$\bar{z} \in \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y) - C + Z \setminus (C \setminus \{0_{Z}\})$$
$$= \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min} f(X, y) + Z \setminus (C \setminus \{0_{Z}\}).$$

Hence, conclusion (4) holds. In addition, if Condition (iv) is satisfied, then

$$\begin{aligned} \bar{z} &\in \operatorname{Max} f(x_0, Y) - C = F(x_0) - C \\ &= f(x_0, y_0) - C \quad (by \ (14) \text{ and the single-valuedness of } F) \\ &\subset \operatorname{Min}_w f(X, y_0) - C \quad (by \ (13)) \\ &\subset \bigcup_{y \in Y} \operatorname{Min}_w f(X, y) - C \subset \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_w f(X, y) - C - C \quad (by \ (17)) \\ &= \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_w f(X, y) - C. \end{aligned}$$

Therefore, conclusion (5) holds. The proof is completed.

REMARK 1. Minimax inequalities (4) and (5) remain true if we replace the Benson properly C-minimal point set $Min_p(\cdot)$ by the Borwein properly C-minimal point set [14] or the super C-minimal point set [15]. So far as we know, we are first to study the minimax inequalities with the properly C-minimal point sets.

In comparison with those minimax inequalities in [3,5-9], our minimax inequality (4) is new. The proof of Theorem 1 is also different from the others. The minimax inequality (5) is somewhat similar to the one in [8], but the conditions are different.

REFERENCES

- 1. J. von Neumann, Zur theorie der gesellschaftsspiele, Math. Ann. 100, 295-320 (1928).
- 2. M.L. Bennati and F. Ferro, Teoremi di minimax, Report No. 113, Istituto per la Matematica Applicata del CNR, Genova, Italy, (1981).
- 3. J.W. Nieuwenhuis, Some minimax theorems in vector-valued functions, J. Optim. Theory Appl. 40, 463-475 (1983).
- 4. F. Ferro, Minimax type theorems for n-valued functions, Annali di Matematica Pura ed Applicata 32, 113-130 (1982).
- 5. F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl. 60, 19-31 (1989).
- 6. F. Ferro, A minimax theorem for vector-valued functions, Part 2, J. Optim. Theory Appl. 68, 35-48 (1991).
- 7. T. Tanaka, Some minimax problems of vector-valued functions, J. Optim. Theory Appl. 59, 505-524 (1988).
- T. Tanaka, Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued funtions, J. Optim. Theory Appl. 81, 355-357 (1994).
- 9. D.S. Shi and C. Lin, Minimax theorems and cone saddle points of uniformly same-order vector-valued functions, J. Optim. Theory Appl. 84, 575-587 (1995).
- 10. D.T. Luc, Theory of vector optimization, Lecture Notes in Economics and Mathematical System, Volume 319, Springer-Verlag, Berlin, (1989).
- 11. H.P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones, J. Math. Anal. Appl. 71, 232-241 (1979).
- 12. L.L. Stachò, Minimax theorems beyond topological vector spaces, Acta Scientiarum Mathematicarum, Szeged 42, 157-164 (1980).
- G.Y. Chen, A generalized section theorem and minimax inequality for a vector-valued mapping, *Optimization* 22, 745-754 (1991).
- 14. J.M. Borwein, Proper efficient points for maximizations with respect to cones, SIAM J. Control Optim. 15, 57-63 (1977).
- 15. J.M. Borwein and D.M. Zhuang, Super efficiency in vector optimization, Transactions of the American Mathematical Society, pp. 105-122, (1993).