Applied Mathematics
Letters

A Minimax Inequality for Vector-Valued Mappings

Z. F. Li and S. Y. Wang
Institute of Systems Science
Chinese Academy of Sciences
Beijing 100080, P.R. China
<zfli><sywang>0iss02.iss.ac.cn

(Received October 1997; accepted October 1998)

Abstract

This paper presents a minimax inequality for vector-valued mappings in Hausdorff topological vector spaces with pointed closed convex cones. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords-Minimax inequalities, Vector-valued mapping, Generalized cone-convexity.
Let X and Y be two nonempty sets and f be a scalar-valued function on the product space $X \times Y$. The following minimax equality:

$$
\begin{equation*}
\min _{x \in X} \max _{y \in Y} f(x, y)=\max _{y \in Y} \min _{x \in X} f(x, y) \tag{1}
\end{equation*}
$$

was extensively investigated in the literature of optimization, such as [1]. See [2] for a survey. It is obvious that (1) holds if and only if

$$
\begin{equation*}
\min _{x \in X} \max _{y \in Y} f(x, y) \leq \max _{y \in Y} \min _{x \in X} f(x, y) . \tag{2}
\end{equation*}
$$

In recent years, a number of authors focussed their attention on minimax problems of vectorvalued mappings. They gave some versions of (2) when f is a vector-valued mapping, such as Nieuwenhuis [3], Ferro [4-6], Tanaka [7,8], and Shi and Lin [9]. In this paper, we establish a new minimax inequality for vector-valued mappings in Hausdorff topological vector spaces with closed convex pointed cones.

First we give some notations and definitions as follows
Let Z be a topological vector space. We denote by Z^{*} the topological dual space of Z and 0_{Z} the zero element in Z. For a subset C of $Z, \operatorname{int} C$ and $\mathrm{cl} C$ denote its topological interior and closure, respectively. Denote

$$
\begin{aligned}
\operatorname{cone} C & :=\{\lambda c: \lambda \geq 0, \forall c \in C\} \\
C^{+} & :=\left\{f \in Y^{*}: f(c) \geq 0, \forall c \in C\right\},
\end{aligned}
$$

and

[^0]$$
C^{+i}:=\left\{f \in Y^{*}: f(c)>0, \forall c \in C \backslash\left\{0_{z}\right\}\right\}
$$

Recall that a base B of a cone C is a convex subset of C such that

$$
0_{Z} \notin \mathrm{cl} B \quad \text { and } \quad C=\operatorname{cone} B .
$$

It is obvious that a cone C is pointed (i.e., $\left.C \cap(-C)=\left\{0_{z}\right\}\right)$ if C has a base. Moreover, if C is a nonempty closed convex pointed cone in Z, then $C^{+i} \neq \emptyset$ if and only if C has a base.
Definition 1. (See $[10,11]$.) Let V be a nonempty subset of Z and C a closed convex pointed cone in Z with int $C \neq \emptyset$.
(i) A point $z \in V$ is said to be a C-maximal point of V if $V \cap(z+C)=\{z\}$;
(ii) a point $z \in V$ is said to be a weakly C-minimal point of V if $V \cap(z-\operatorname{int} C)=\emptyset$;
(iii) a point $z \in V$ is said to be a Benson properly C-minimal point of V if

$$
(-C) \cap \mathrm{cl} \text { cone }(V+C-z)=\left\{0_{z}\right\} .
$$

We denote Max $V, \operatorname{Min}_{w} V$, and $\operatorname{Min}_{p} V$ the set of all the C-maximal points of V, the set of all the weakly C-minimal points of V and the set of all the Benson properly C-minimal points of V, respectively.

Similarly, we can define $\operatorname{Max}_{w} V$, $\operatorname{Min} V$, and $\operatorname{Max}_{p} V$.
It is easy to show that

$$
\begin{equation*}
\operatorname{Min}_{p} V \subset \operatorname{Min} V \subset \operatorname{Min}_{w} V \quad \text { and } \quad \operatorname{Max}_{p} V \subset \operatorname{Max} V \subset \operatorname{Max}_{w} V . \tag{3}
\end{equation*}
$$

Definition 2. (See [4].) Let X be a nonempty convex subset of a real vector space E and Z an ordered topological vector space with a pointed convex cone C. A vector-valued mapping $f: X \rightarrow Z$ is said to be
(i) C-convex if for any $x, y \in X$ and $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \in \lambda f(x)+(1-\lambda) f(y)-C ;
$$

(ii) properly quasi- C-convex if for any $x, y \in X$,

$$
\text { either } f(\lambda x+(1-\lambda) y) \in f(x)-C \text { or } f(\lambda x+(1-\lambda) y) \in f(y)-C .
$$

It should be mentioned that a C-convex mapping is not necessarily properly quasi- C-convex. Conversely a properly quasi- C-convex mapping is not necessarily C-convex. See [4] for a detailed discussion. When $Z=R$ and $C=R_{+}:=\{r \in R: r \geq 0\}$, the C-convexity and the properly quasi- C-convexity reduce to the ordinary convexity and quasiconvexity, respectively.

Our main result is the following minimax theorem.
Theorem 1. Let E_{1}, E_{2}, and Z be Hausdorff topological vector spaces, X and Y a nonempty compact convex subset of E_{1} and E_{2}, respectively. Let C be a closed convex pointed cone in Z with int $C \neq \emptyset$ and have a compact base. Let $f: X \times Y \rightarrow Z$ be a mapping such that
(i) it is continuous;
(ii) for each $y \in Y, f(\cdot, y)$ is C-convex;
(iii) for each $x \in X,-f(x, \cdot)$ is properly quasi-C-convex.

Then

$$
\begin{equation*}
\emptyset \neq \operatorname{Min}_{p} \bigcup_{x \in X} \operatorname{Max} f(x, Y) \subset \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y)+Z \backslash\left(C \backslash\left\{0_{Z}\right\}\right) . \tag{4}
\end{equation*}
$$

If, in addition, the following condition
(iv) for each $x \in X, \operatorname{Min}_{p} \bigcup_{x \in X} \operatorname{Max} f(x, Y) \subset \operatorname{Max} f(x, Y)-C$,
is satisfied, then

$$
\begin{equation*}
\operatorname{Min}_{p} \bigcup_{x \in X} \operatorname{Max} f(x, Y) \subset \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y)-C \tag{5}
\end{equation*}
$$

Proof. Define a set-valued mapping $F: X \rightarrow 2^{Z}$ by

$$
F(x)=\operatorname{Max} f(x, Y)
$$

By Conditions (i),(ii) and [5, Lemma 2.3], F is single-valued, continuous and C-convex. Hence, by the compactness of $X, \bigcup_{x \in X} \operatorname{Max} f(x, Y)=F(X)$ is compact. Since the closed convex pointed cone C has a base, we can take a $\varphi \in C^{+i}$. Thus, there exists a $z_{0} \in F(X)$ such that

$$
\varphi\left(z_{0}\right)=\min \{\varphi(z): z \in F(X)\}
$$

By [11, Theorem 4.1],

$$
z_{0} \in \operatorname{Min}_{p} \bigcup_{x \in X} \operatorname{Max} f(x, Y) \neq \emptyset .
$$

Let $\bar{z} \in \operatorname{Min}_{p} \bigcup_{x \in X} \operatorname{Max} f(x, Y)$. Thus, there exist $\bar{x} \in X$ and $\bar{y} \in Y$ such that

$$
\begin{equation*}
\bar{z}=f(\bar{x}, \bar{y})=F(\bar{x}) \in \operatorname{Min}_{p} F(X) . \tag{6}
\end{equation*}
$$

Since F is C-convex, by [11, Theorem 4.2], (6) implies that there exists $h \in C^{+i}$ such that

$$
\begin{equation*}
h(\bar{z})=\min _{x \in X} h F(x) . \tag{7}
\end{equation*}
$$

Let $x \in X$. Since $h f(x, \cdot)$ is continuous and Y is compact, there exists a $y_{x} \in Y$ such that

$$
\begin{equation*}
\max _{y \in Y} h f(x, y)=h f\left(x, y_{x}\right) . \tag{8}
\end{equation*}
$$

Again by [11, Theorem 4.1], (8), (3), and $h \in C^{+i}$ imply that

$$
\begin{equation*}
f\left(x, y_{x}\right) \in \operatorname{Max}_{p} f(x, Y) \subset \operatorname{Max} f(x, Y)=F(x) \tag{9}
\end{equation*}
$$

Combining (7)-(9), we have

$$
\begin{equation*}
h(\bar{z}) \leq h f\left(x, y_{x}\right)=\max _{y \in Y} h f(x, y) . \tag{10}
\end{equation*}
$$

Because x can be any element of $X,(10)$ yields

$$
\begin{equation*}
h(\bar{z}) \leq \min _{x \in X} \max _{y \in Y} h f(x, y) . \tag{11}
\end{equation*}
$$

It is easy to verify that the real-valued function $h f: X \times Y \rightarrow R$ has the following properties: it is continuous; $h f(\cdot, y)$ is convex for each $y \in Y$; and $h f(x, \cdot)$ is quasiconcave for each $x \in X$. By the minimax theorem in [12], it follows that

$$
\min _{x \in X} \max _{y \in Y} h f(x, y)=\max _{y \in Y} \min _{x \in X} h f(x, y) .
$$

So, there exist $x_{0} \in X$ and $y_{0} \in Y$ such that

$$
\begin{align*}
\min _{x \in X} \max _{y \in Y} h f(x, y) & =\max _{y \in Y} h f\left(x_{0}, y\right) \\
& =\max _{y \in Y} \min _{x \in X} h f(x, y)=\min _{x \in X} h f\left(x, y_{0}\right)=h f\left(x_{0}, y_{0}\right) \tag{12}
\end{align*}
$$

which together with $h \in C^{+i}$ and (3) yields

$$
\begin{equation*}
f\left(x_{0}, y_{0}\right) \in \operatorname{Min} f\left(X, y_{0}\right) \subset \operatorname{Min}_{w} f\left(X, y_{0}\right), \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(x_{0}, y_{0}\right) \in \operatorname{Max} f\left(x_{0}, Y\right)=F\left(x_{0}\right) \tag{14}
\end{equation*}
$$

From (11) and (12), we get

$$
h(\bar{z}) \leq h f\left(x_{0}, y_{0}\right),
$$

which together with $h \in C^{+i}$ implies

$$
\begin{equation*}
\bar{z} \notin f\left(x_{0}, y_{0}\right)+C \backslash\left\{0_{z}\right\} . \tag{15}
\end{equation*}
$$

From (15) and (13), we have

$$
\begin{align*}
\bar{z} & \in f\left(x_{0}, y_{0}\right)+Z \backslash\left(C \backslash\left\{0_{z}\right\}\right) \\
& \subset \operatorname{Min}_{w} f\left(X, y_{0}\right)+Z \backslash\left(C\left\{0_{z}\right\}\right) \tag{16}\\
& \subset \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y)+Z \backslash\left(C \backslash\left\{0_{z}\right\}\right)
\end{align*}
$$

Because f is continuous and because X and Y are compact, by [6, Lemma 2.1], $\bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y)$ is compact. Hence, by [13, Lemma 1],

$$
\begin{equation*}
\bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y) \subset \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y)-C . \tag{17}
\end{equation*}
$$

From (16) and (17), we have

$$
\begin{aligned}
\bar{z} & \in \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y)-C+Z \backslash\left(C \backslash\left\{0_{z}\right\}\right) \\
& =\operatorname{Max} \bigcup_{y \in Y} \operatorname{Min} f(X, y)+Z \backslash\left(C \backslash\left\{0_{z}\right\}\right)
\end{aligned}
$$

Hence, conclusion (4) holds. In addition, if Condition (iv) is satisfied, then

$$
\begin{aligned}
\bar{z} & \in \operatorname{Max} f\left(x_{0}, Y\right)-C=F\left(x_{0}\right)-C \\
& \left.=f\left(x_{0}, y_{0}\right)-C \quad \text { (by (14) and the single-valuedness of } F\right) \\
& \subset \operatorname{Min}_{w} f\left(X, y_{0}\right)-C \quad \text { (by (13)) } \\
& \subset \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y)-C \subset \operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y)-C-C \quad(\text { by }(17)) \\
& =\operatorname{Max} \bigcup_{y \in Y} \operatorname{Min}_{w} f(X, y)-C .
\end{aligned}
$$

Therefore, conclusion (5) holds. The proof is completed.
Remark 1. Minimax inequalities (4) and (5) remain true if we replace the Benson properly C-minimal point set $\operatorname{Min}_{p}(\cdot)$ by the Borwein properly C-minimal point set [14] or the super C-minimal point set [15]. So far as we know, we are first to study the minimax inequalities with the properly C-minimal point sets.
In comparison with those minimax inequalities in [3,5-9], our minimax inequality (4) is new. The proof of Theorem 1 is also different from the others. The minimax inequality (5) is somewhat similar to the one in [8], but the conditions are different.

REFERENCES

1. J. von Neumann, Zur theorie der gesellschaftsspiele, Math. Ann. 100, 295-320 (1928).
2. M.L. Bennati and F. Ferro, Teoremi di minimax, Report No. 113, Istituto per la Matematica Applicata del CNR, Genova, Italy, (1981).
3. J.W. Nieuwenhuis, Some minimax theorems in vector-valued functions, J. Optim. Theory Appl. 40, 463-475 (1983).
4. F. Ferro, Minimax type theorems for n-valued functions, Annali di Matematica Pura ed Applicata 32, 113-130 (1982).
5. F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl. 60, 19-31 (1989).
6. F. Ferro, A minimax theorem for vector-valued functions, Part 2, J. Optim. Theory Appl. 68, 35-48 (1991).
7. T. Tanaka, Some minimax problems of vector-valued functions, J. Optim. Theory Appl. 59, 505-524 (1988).
8. T. Tanaka, Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued funtions, J. Optim. Theory Appl. 81, 355-357 (1994).
9. D.S. Shi and C. Lin, Minimax theorems and cone saddle points of uniformly same-order vector-valued functions, J. Optim. Theory Appl. 84, 575-587 (1995).
10. D.T. Luc, Theory of vector optimization, Lecture Notes in Economics and Mathematical System, Volume 319, Springer-Verlag, Berlin, (1989).
11. H.P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones, J. Math. Anal. Appl. 71, 232-241 (1979).
12. L.L. Stachò, Minimax theorems beyond tọpological vector spaces, Acta Scientiarum Mathematicarum, Szeged 42, 157-164 (1980).
13. G.Y. Chen, A generalized section theorem and minimax inequality for a vector-valued mapping, Optimization 22, 745-754 (1991).
14. J.M. Borwein, Proper efficient points for maximizations with respect to cones, SIAM J. Control Optim. 15, 57-63 (1977).
15. J.M. Borwein and D.M. Zhuang, Super efficiency in vector optimization, Transactions of the American Mathematical Society, pp. 105-122, (1993).

[^0]: Supported by the National Natural Science Foundation of China under Grant No. 19501022. The authors are grateful to an anonymous referee for his/her valuable comments and suggestions.

