# Generalized bi-circular projections 

Pei-Kee Lin<br>Department of Mathematics, University of Memphis, Memphis, TN 38152, USA<br>Received 11 April 2007<br>Available online 20 July 2007<br>Submitted by Steven G. Krantz


#### Abstract

Recall that a projection $P$ on a complex Banach space $X$ is a generalized bi-circular projection if $P+\lambda(I-P)$ is a (surjective) isometry for some $\lambda$ such that $|\lambda|=1$ and $\lambda \neq 1$. It is easy to see that every hermitian projection is generalized bi-circular. A generalized bi-circular projection is said to be nontrivial if it is not hermitian. Botelho and Jamison showed that a projection $P$ on $C([0,1])$ is a nontrivial generalized bi-circular projection if and only if $P-(I-P)$ is a surjective isometry. In this article, we prove that if $P$ is a projection such that $P+\lambda(I-P)$ is a (surjective) isometry for some $\lambda$, then either $P$ is hermitian or $\lambda$ is an $n$th unit root of unity. We also show that for any $n$th unit root $\lambda$ of unity, there are a complex Banach space $X$ and a nontrivial generalized bi-circular projection $P$ on $X$ such that $P+\lambda(I-P)$ is an isometry.


© 2007 Elsevier Inc. All rights reserved.
Keywords: Isometry; Generalized bi-circular projection

Let $X$ be a complex Banach space and let $\operatorname{Iso}(X)$ denote the set of all surjective isometries on $X$. Recall that an operator $T: X \rightarrow X$ is hermitian if $e^{i \alpha T} \in \operatorname{Iso}(X)$ for all $\alpha \in \mathbb{R}[1]$. It is known that a projection $P: X \rightarrow X$ is hermitian if and only if $P+e^{i \alpha}(I-P) \in \operatorname{Iso}(X)$ for all $\alpha \in \mathbb{R}$. Note that a hermitian projection is also called bi-circular projection [8]. Let $S^{1}$ denote the unit circle of $\mathbb{C}$. A projection $P$ is said to be a generalized bi-circular projection if $P+\lambda(I-P) \in \operatorname{Iso}(X)$ for some $\lambda \in S^{1} \backslash\{1\}[3,4]$. It is easy to see that if $P$ is a generalized bicircular projection, then $I-P$ is also a generalized bi-circular projection. A generalized bi-circular projection is said to be nontrivial if it is not hermitian. Botelho and Jamison showed that a projection $P$ on $C([0,1])$ is a nontrivial generalized bi-circular projection if and only if $P-(I-P)$ is a surjective isometry [2]. It is natural to ask whether for any $\lambda \in S^{1} \backslash\{1\}$, there is a nontrivial generalized bi-circular projection $P$ such that $P+\lambda(I-P)$ is an isometry. In this article, we show that if $\lambda$ is an $n$th unit root of unity, then there are a complex Banach space and a nontrivial generalized bi-circular projection $P$ on $X$ such that $P+\lambda(I-P)$ is an isometry.

Theorem 1. Let $X$ be a complex Banach space and $P$ be a projection on $X$. Suppose that $P+\lambda(I-P)$ is an isometry. If $\lambda$ is of infinite order in $\left(S^{1}, \cdot\right)$, then $P$ is hermitian.

[^0]Proof. Suppose that $\lambda$ is of infinite order in $\left(S^{1}, \cdot\right)$ and $P$ is a projection such that $P+\lambda(I-P)$ is an isometry. Then for any $n \in \mathbb{N}$,

$$
P+\lambda^{n}(I-P)=(P+\lambda(I-P))^{n}
$$

is an isometry on $X$. Since the set $\left\{\lambda^{n}: n \in \mathbb{N}\right\}$ is dense in $S^{1}, P+\alpha(I-P)$ is an isometry for all $\alpha \in S^{1}$. This implies that $P$ is a hermitian projection.

Corollary 2. Every generalized bi-circular projection is a contraction.
Proof. Let $P$ be a projection such that $P+\lambda(I-P)$ is an isometry for some $\lambda \in S^{1} \backslash\{1\}$. If $\lambda$ is of infinite order, then $P$ is hermitian and $\|P\| \leqslant 1$. So we may assume that $\lambda^{n}=1$ for some $n \in \mathbb{N}$. Note that $\sum_{j=1}^{n} \lambda^{j}=0$. This implies that $P=\frac{1}{n} \sum_{j=1}^{n}\left(P+\lambda^{j}(I-P)\right)$ and $\|P\| \leqslant 1$.

Theorem 3. Let $n$ be any integer such that $n \geqslant 2$ and let $\lambda=e^{i 2 \pi / n}$. Then there is a complex Banach space $X$ and $a$ nontrivial generalized bi-circular projection $P$ on $X$ such that $P+\lambda(I-P)$ is an isometry on $X$.

Proof. Let $C$ be a nonempty closed convex compact subset of a Banach space and $D$ be a nonempty closed subset of $C$. It is known that if $x$ is an extreme point of $C$ and if $x$ is in the closed convex hull of $D$, then $x \in D$. Let $n$ be any integer such that $n \geqslant 2$ and let

$$
\begin{aligned}
& C=\{(\alpha, \beta) \in \mathbb{C} \oplus \mathbb{C}:|\alpha| \leqslant 1,|\beta| \leqslant 1\}, \\
& D=\{(\alpha, 0):|\alpha|=1\} \cup\left\{\left(\beta, \beta e^{\frac{i 2 k \pi}{n}}\right):|\beta|=1 \text { and } k \leqslant n\right\}, \\
& B=\overline{\operatorname{co}}(D) .
\end{aligned}
$$

Then $B \subset C$, and $\gamma D=D$ for all $\gamma \in S^{1}$. Let $\|\cdot\|$ be the norm defined on $X=\mathbb{C} \oplus \mathbb{C}$ such that

$$
\|(\alpha, \beta)\|=(\sup \{\gamma>0:(\gamma \alpha, \gamma \beta) \in B\})^{-1},
$$

and let $P$ be the projection on $X$ defined by

$$
P(\alpha, \beta)=(\alpha, 0)
$$

It is known that
(1) $(\alpha, \beta)$ is an extreme point of $C$ if and only if $|\alpha|=1=|\beta|$;
(2) $(1, \beta) \in D$ with $|\beta|=1$ if and only if $\beta=e^{\frac{i 2 k \pi}{n}}$ for some $k \leqslant n$.

Thus $P+\gamma(I-P)$ is an isometry on $X$ if and only if $\gamma=e^{\frac{i 2 k \pi}{n}}$ for some $k \leqslant n$. The proof is complete.
Let $(\Omega, \mu)$ be a $\sigma$-finite measure space and let $X$ be a separable complex Banach space. For any $1 \leqslant p<\infty, X$ is said to have the trivial $L^{p}$-structure if $X$ is not $p$-direct sum of two nontrivial subspaces of $X$, i.e., $X=(Y \oplus Z)_{p}$ for some subspaces $Y, Z$ of $X$ implies $Y=X$ or $Z=X$. Let $L^{p}(\Omega, X)$ be all strongly measurable $X$-valued functions $f$ such that

$$
\int_{\Omega}\|f(t)\|^{p} d t<\infty
$$

Then $L^{p}(\Omega, X)$ is a Banach space with the norm

$$
\|f\|_{p}=\left(\int_{\Omega}\|f(t)\|^{p} d t\right)^{1 / p}
$$

Fix $1 \leqslant p<\infty$ and $p \neq 2$. Let $(\Omega, \mu)$ be a $\sigma$-finite measure space, and let $X$ be a complex Banach space with trivial $L^{p}$-structure. It is known that [9]:
(1) If $H$ is a hermitian operator on $L^{p}(\Omega, X)$, then there is a hermitian valued strongly measurable mapping $A$ of $\Omega$ to $\mathcal{B}(X)$ such that $(H f)(\cdot)=A(\cdot) f(\cdot)$.
(2) If $T$ is a surjective isometry on $L^{p}(\Omega, X)$, then

$$
\begin{aligned}
(T f)(\cdot) & =S(\cdot) h(\cdot)(\Phi(f))(\cdot) \\
& =S(\cdot) h(\cdot) f(\sigma(\cdot)) \quad \text { for all } f \in L^{p}(\Omega, X),
\end{aligned}
$$

where $\Phi$ is a set isomorphism of the measure space onto itself, $\sigma: \Omega \rightarrow \Omega$ a point isomorphism induced by $\Phi$ $[6,7], h=\left(d \mu \circ \Phi^{-1} / d \mu\right)^{1 / p}$, and $S$ is a strongly measurable mapping from $\Omega$ to $\operatorname{Iso}(X)$.

It is also known that the above results are still true for $p=2$ if there is no subspace $Y$ of $X$ such that $\operatorname{dim}(Y)>1$ and $Y=(Z \oplus \mathbb{C})_{2}[5]$.

Theorem 4. Let $(\Omega, \mu)$ be a $\sigma$-finite measure space, $1 \leqslant p<\infty, p \neq 2$, and $X$ be a separable complex Banach space with trivial $L^{p}$-structure. Suppose that $P$ is a generalized bi-circular projection on $L^{p}(\Omega, X)$. Then one of the following holds.
(1) $P-(I-P)$ is a reflection.
(2) There are $\lambda \in S^{1} \backslash\{1\}$ and a strong measurable mapping $A$ from $\Omega$ to $\mathcal{B}(X)$ such that for almost all $t \in \Omega, A(t)$ is a projection, $A(t)+\lambda(I-A(t))$ is an isometry, and $(P f)(\cdot)=A(\cdot) f(\cdot)$.

Proof. Let $P$ be a generalized bi-circular projection on $L^{p}(\Omega, X)$. Suppose that $T=P+\lambda(I-P)$ is an isometry on $L^{p}(\Omega, X)$ for some $\lambda \in S^{1} \backslash\{1\}$. Then for any $f \in L^{p}(\Omega, X)$,

$$
(T f)(\cdot)=S(\cdot) h(\cdot)(\Phi(f))(\cdot) \quad \text { for all } f \in L^{p}(\Omega, X)
$$

for some strongly measurable function $S$ from $\Omega$ to $\mathcal{B}(X), \Phi$ a set isomorphism of the measure space $\Omega$ to itself, and $h=\left(d \mu \circ \Phi^{-1} / d \mu\right)^{1 / p}$. We claim that $\Phi^{2}=I$.

Suppose that $\Phi^{2} \neq I$. Then there is a measurable set $A_{1}$ such that $\mu\left(A_{1}\right)>0$ and $A_{1} \neq \Phi^{2}\left(A_{1}\right)$. Let $A_{2}=A_{1} \backslash$ $\Phi^{2}\left(A_{1}\right)$ if $\mu\left(A_{1} \backslash \Phi^{2}\left(A_{1}\right)\right) \neq 0$; otherwise let $A_{2}=\Phi^{-2}\left(\Phi^{2}\left(A_{1}\right) \backslash A_{1}\right)$. Then $\mu\left(A_{2} \cap \Phi^{2}\left(A_{2}\right)\right)=0$ and $\mu\left(A_{2}\right)>0$.

Note that if $A_{2} \subseteq \Phi\left(A_{2}\right)$, then $A_{2} \subseteq \Phi^{2}\left(A_{2}\right)$. So $\mu\left(A_{2} \backslash \Phi\left(A_{2}\right)\right) \neq 0$. Let $A=A_{2} \backslash \Phi\left(A_{2}\right)$. Then

$$
\mu(A)>0 \quad \text { and } \quad \mu(A \cap \Phi(A))=0=\mu\left(A \cap \Phi^{2}(A)\right) .
$$

Note that

$$
P=\frac{T-\lambda I}{1-\lambda}, \quad \operatorname{supp}\left(T 1_{A}\right)=\Phi(A) \quad \text { and } \quad \operatorname{supp}\left(T^{2} 1_{A}\right)=\Phi^{2}(A)
$$

We have

$$
0=1_{A} \cdot T\left(1_{A}\right)=1_{A} \cdot T^{2}\left(1_{A}\right)
$$

and

$$
\begin{aligned}
\frac{-\lambda 1_{A}}{1-\lambda} & =\frac{1}{1-\lambda} \cdot 1_{A} \cdot(T-\lambda I)\left(1_{A}\right) \\
& =1_{A} \cdot P\left(1_{A}\right)=1_{A} \cdot P^{2}\left(1_{A}\right) \\
& =\frac{1}{(1-\lambda)^{2}} \cdot 1_{A} \cdot(T-\lambda I)^{2}\left(1_{A}\right) \\
& =\frac{1}{(1-\lambda)^{2}} \cdot 1_{A}\left(T^{2} 1_{A}-2 T 1_{A}+\lambda^{2} 1_{A}\right)=\frac{\lambda^{2} 1_{A}}{(1-\lambda)^{2}} .
\end{aligned}
$$

This implies that $\frac{-\lambda}{1-\lambda}=1$, a contradiction. We have proved our claim.
Suppose that $\Phi \neq I$. Then there is a measurable set $A_{1}$ such that

$$
\infty>\mu\left(A_{1}\right)>0 \quad \text { and } \quad A_{1} \neq \Phi\left(A_{1}\right) .
$$

Let $A=A_{1} \backslash \Phi\left(A_{1}\right)$ if $\mu\left(A_{1} \backslash \Phi\left(A_{1}\right)\right)>0$; otherwise let $A=\Phi^{-1}\left(\Phi\left(A_{1}\right) \backslash A_{1}\right)$. Then $\mu(A \cap \Phi(A))=0$. So

$$
\begin{aligned}
T 1_{A} & =1_{\Phi(A)} \cdot T 1_{A}=1_{\Phi(A)} \cdot\left(T 1_{A}-\lambda 1_{A}\right) \\
& =1_{\Phi(A)} \cdot(1-\lambda) P 1_{A}=1_{\Phi(A)}(1-\lambda) P^{2} 1_{A} \\
& =1_{\Phi(A)} \cdot \frac{1}{1-\lambda}(T-\lambda I)^{2} 1_{A} \\
& =1_{\Phi(A)} \cdot \frac{1}{1-\lambda}\left(T^{2} 1_{A}-2 \lambda T 1_{A}+1_{A}\right) \\
& =1_{\Phi(A)} \cdot \frac{1}{1-\lambda}\left(-2 \lambda T 1_{A}\right)=\frac{1}{1-\lambda}\left(-2 \lambda T 1_{A}\right) .
\end{aligned}
$$

This implies that $-2 \lambda=1-\lambda$. We have proved that if $\Phi^{2} \neq I$, then $\lambda=-1$ and $P-(I-P)$ is a reflection.
Now suppose that $\Phi=I$. Then for any $f \in L^{p}(\Omega, X)$,

$$
(1-\lambda) P f(\cdot)=S(\cdot) f(\cdot)-\lambda f(\cdot)
$$

Thus, for almost all $t \in \Omega, A(t)=\frac{1}{1-\lambda}(S(t)-\lambda I)$ is a projection and $A(t)-\lambda(I-A(t))$ is an isometry on $X$. The proof is complete.

Corollary 5. Let $(\Omega, \mu)$ be a $\sigma$-finite measure space, $1 \leqslant p<\infty, p \neq 2$, and $X$ be a separable complex Banach space with trivial $L^{p}$-structure. Suppose that there is a nontrivial generalized bi-circular projection $P$ on $L^{p}(X)$ that is not reflection. Then there is a nontrivial generalized bi-circular projection on $X$.

Remark 6. Let $H$ be a separable Hilbert space and $E$ be a rearrangement invariant space over $[0,1]$ that is not equal to $L_{p}$ for any $1 \leqslant p \leqslant \infty$. The Köthe-Bochner function space $E(H)$ is the set of all strongly measurable functions $F:[0,1] \rightarrow H$ such that $\|f\|_{E(H)}=\| \| f(\cdot)\left\|_{H}\right\|_{E}<\infty$. B. Randrianantoanina [7, Theorem 11] proved that for any surjective isometry $T$ from the Köthe function space $E(H)$ onto itself, there are an invertible Borel mapping $\sigma:[0,1] \rightarrow[0,1]$ and a strong measurable mapping $S:[0,1] \rightarrow \operatorname{Iso}(H)$ such that

$$
T f(t)=S(t) f(\sigma(t)) .
$$

Suppose that $H$ is a separable complex space and $E$ is a complex rearrangement invariant space over [0,1]. If $P$ is a generalized bi-circular projection on $E(H)$ and if $P-(I-P)$ is not a reflection, then there are $\lambda \in S^{1} \backslash\{1\}$ and a strong measurable mapping $A$ from $\Omega$ to $\mathcal{B}(H)$ such that for almost all $t \in \Omega, A(t)$ is a projection, $A(t)+\lambda(I-A(t))$ is an isometry, and $(P f)(\cdot)=A(\cdot) f(\cdot)$.

## Acknowledgments

The author would like to thank J. Jamison and M. Wierdl for their valuable discussion.

## References

[1] E. Berkson, A.R. Sourour, The hermitian operators on some Banach spaces, Studia Math. 52 (1974) 33-41.
[2] F. Botelho, J. Jamison, Gereralized circular projections, preprint.
[3] F. Botelho, J. Jamison, Gereralized circular projections on minimal ideals of operators, Linear Algebra Appl. 420 (2007) 596-608.
[4] M. Fosner, D. Ilisevic, C. Li, $G$-invariant norms and bicircular projections, preprint.
[5] P.K. Lin, The isometries of $L^{2}(\Omega, X)$, Illinois J. Math. 33 (1989) 621-630.
[6] J. von Neumann, Einige Sätze über meassbare Abbildungen, Ann. of Math. 33 (1932) 574-586.
[7] B. Randrianantoanina, Isometries of Hilbert space valued function spaces, J. Aust. Math. Soc. Ser. A 61 (1996) 150-161.
[8] L.L. Stachó, B. Zalar, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004) 9-20.
[9] A.R. Sourour, The isometries of $L^{p}(\Omega, X)$, J. Funct. Anal. 30 (1978) 276-285.


[^0]:    E-mail address: pklin@ memphis.edu.

