

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 340 (2008) 1-4

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

Generalized bi-circular projections

Pei-Kee Lin

Department of Mathematics, University of Memphis, Memphis, TN 38152, USA Received 11 April 2007 Available online 20 July 2007 Submitted by Steven G. Krantz

Abstract

Recall that a projection P on a complex Banach space X is a generalized bi-circular projection if $P + \lambda(I - P)$ is a (surjective) isometry for some λ such that $|\lambda| = 1$ and $\lambda \neq 1$. It is easy to see that every hermitian projection is generalized bi-circular. A generalized bi-circular projection is said to be nontrivial if it is not hermitian. Botelho and Jamison showed that a projection P on C([0, 1]) is a nontrivial generalized bi-circular projection if and only if P - (I - P) is a surjective isometry. In this article, we prove that if P is a projection such that $P + \lambda(I - P)$ is a (surjective) isometry for some λ , then either P is hermitian or λ is an *n*th unit root of unity. We also show that for any *n*th unit root λ of unity, there are a complex Banach space X and a nontrivial generalized bi-circular projection P on X such that $P + \lambda(I - P)$ is an isometry.

Keywords: Isometry; Generalized bi-circular projection

Let X be a complex Banach space and let Iso(X) denote the set of all surjective isometries on X. Recall that an operator $T: X \to X$ is *hermitian* if $e^{i\alpha T} \in Iso(X)$ for all $\alpha \in \mathbb{R}$ [1]. It is known that a projection $P: X \to X$ is hermitian if and only if $P + e^{i\alpha}(I - P) \in Iso(X)$ for all $\alpha \in \mathbb{R}$. Note that a hermitian projection is also called *bi-circular projection* [8]. Let S^1 denote the unit circle of \mathbb{C} . A projection P is said to be a *generalized bi-circular projection* if $P + \lambda(I - P) \in Iso(X)$ for some $\lambda \in S^1 \setminus \{1\}$ [3,4]. It is easy to see that if P is a generalized bicircular projection, then I - P is also a generalized bi-circular projection. A generalized bi-circular projection is said to be nontrivial if it is not hermitian. Botelho and Jamison showed that a projection P on C([0, 1]) is a nontrivial generalized bi-circular projection if and only if P - (I - P) is a surjective isometry [2]. It is natural to ask whether for any $\lambda \in S^1 \setminus \{1\}$, there is a nontrivial generalized bi-circular projection P such that $P + \lambda(I - P)$ is an isometry. In this article, we show that if λ is an *n*th unit root of unity, then there are a complex Banach space and a nontrivial generalized bi-circular projection P on X such that $P + \lambda(I - P)$ is an isometry.

Theorem 1. Let X be a complex Banach space and P be a projection on X. Suppose that $P + \lambda(I - P)$ is an isometry. If λ is of infinite order in (S^1, \cdot) , then P is hermitian.

E-mail address: pklin@memphis.edu.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.07.017

Proof. Suppose that λ is of infinite order in (S^1, \cdot) and *P* is a projection such that $P + \lambda(I - P)$ is an isometry. Then for any $n \in \mathbb{N}$,

$$P + \lambda^{n}(I - P) = \left(P + \lambda(I - P)\right)^{n}$$

is an isometry on X. Since the set $\{\lambda^n : n \in \mathbb{N}\}$ is dense in S^1 , $P + \alpha(I - P)$ is an isometry for all $\alpha \in S^1$. This implies that P is a hermitian projection. \Box

Corollary 2. Every generalized bi-circular projection is a contraction.

Proof. Let *P* be a projection such that $P + \lambda(I - P)$ is an isometry for some $\lambda \in S^1 \setminus \{1\}$. If λ is of infinite order, then *P* is hermitian and $||P|| \leq 1$. So we may assume that $\lambda^n = 1$ for some $n \in \mathbb{N}$. Note that $\sum_{j=1}^n \lambda^j = 0$. This implies that $P = \frac{1}{n} \sum_{j=1}^n (P + \lambda^j (I - P))$ and $||P|| \leq 1$. \Box

Theorem 3. Let *n* be any integer such that $n \ge 2$ and let $\lambda = e^{i2\pi/n}$. Then there is a complex Banach space X and a nontrivial generalized bi-circular projection P on X such that $P + \lambda(I - P)$ is an isometry on X.

Proof. Let *C* be a nonempty closed convex compact subset of a Banach space and *D* be a nonempty closed subset of *C*. It is known that if *x* is an extreme point of *C* and if *x* is in the closed convex hull of *D*, then $x \in D$. Let *n* be any integer such that $n \ge 2$ and let

$$C = \left\{ (\alpha, \beta) \in \mathbb{C} \oplus \mathbb{C} \colon |\alpha| \leq 1, \ |\beta| \leq 1 \right\},\$$
$$D = \left\{ (\alpha, 0) \colon |\alpha| = 1 \right\} \cup \left\{ \left(\beta, \beta e^{\frac{i2k\pi}{n}} \right) \colon |\beta| = 1 \text{ and } k \leq n \right\},\$$
$$B = \overline{co}(D).$$

Then $B \subset C$, and $\gamma D = D$ for all $\gamma \in S^1$. Let $\|\cdot\|$ be the norm defined on $X = \mathbb{C} \oplus \mathbb{C}$ such that

$$\left\| (\alpha, \beta) \right\| = \left(\sup \left\{ \gamma > 0: \ (\gamma \alpha, \gamma \beta) \in B \right\} \right)^{-1},$$

and let *P* be the projection on *X* defined by

$$P(\alpha, \beta) = (\alpha, 0).$$

It is known that

- (1) (α, β) is an extreme point of *C* if and only if $|\alpha| = 1 = |\beta|$;
- (2) $(1,\beta) \in D$ with $|\beta| = 1$ if and only if $\beta = e^{\frac{i2k\pi}{n}}$ for some $k \leq n$.

Thus $P + \gamma(I - P)$ is an isometry on X if and only if $\gamma = e^{\frac{i2k\pi}{n}}$ for some $k \le n$. The proof is complete. \Box

Let (Ω, μ) be a σ -finite measure space and let X be a separable complex Banach space. For any $1 \le p < \infty$, X is said to have the *trivial* L^p -structure if X is not p-direct sum of two nontrivial subspaces of X, i.e., $X = (Y \oplus Z)_p$ for some subspaces Y, Z of X implies Y = X or Z = X. Let $L^p(\Omega, X)$ be all strongly measurable X-valued functions f such that

$$\int_{\Omega} \left\| f(t) \right\|^p dt < \infty.$$

Then $L^p(\Omega, X)$ is a Banach space with the norm

$$\|f\|_{p} = \left(\int_{\Omega} \|f(t)\|^{p} dt\right)^{1/p}$$

Fix $1 \le p < \infty$ and $p \ne 2$. Let (Ω, μ) be a σ -finite measure space, and let *X* be a complex Banach space with trivial L^p -structure. It is known that [9]:

- (1) If *H* is a hermitian operator on $L^p(\Omega, X)$, then there is a hermitian valued strongly measurable mapping *A* of Ω to $\mathcal{B}(X)$ such that $(Hf)(\cdot) = A(\cdot)f(\cdot)$.
- (2) If T is a surjective isometry on $L^p(\Omega, X)$, then

$$(Tf)(\cdot) = S(\cdot)h(\cdot)(\Phi(f))(\cdot)$$

= $S(\cdot)h(\cdot)f(\sigma(\cdot))$ for all $f \in L^p(\Omega, X)$

where Φ is a set isomorphism of the measure space onto itself, $\sigma : \Omega \to \Omega$ a point isomorphism induced by Φ [6,7], $h = (d\mu \circ \Phi^{-1}/d\mu)^{1/p}$, and *S* is a strongly measurable mapping from Ω to Iso(*X*).

It is also known that the above results are still true for p = 2 if there is no subspace Y of X such that $\dim(Y) > 1$ and $Y = (Z \oplus \mathbb{C})_2$ [5].

Theorem 4. Let (Ω, μ) be a σ -finite measure space, $1 \leq p < \infty$, $p \neq 2$, and X be a separable complex Banach space with trivial L^p -structure. Suppose that P is a generalized bi-circular projection on $L^p(\Omega, X)$. Then one of the following holds.

- (1) P (I P) is a reflection.
- (2) There are $\lambda \in S^1 \setminus \{1\}$ and a strong measurable mapping A from Ω to $\mathcal{B}(X)$ such that for almost all $t \in \Omega$, A(t) is a projection, $A(t) + \lambda(I A(t))$ is an isometry, and $(Pf)(\cdot) = A(\cdot)f(\cdot)$.

Proof. Let *P* be a generalized bi-circular projection on $L^p(\Omega, X)$. Suppose that $T = P + \lambda(I - P)$ is an isometry on $L^p(\Omega, X)$ for some $\lambda \in S^1 \setminus \{1\}$. Then for any $f \in L^p(\Omega, X)$,

$$(Tf)(\cdot) = S(\cdot)h(\cdot)(\Phi(f))(\cdot)$$
 for all $f \in L^p(\Omega, X)$

for some strongly measurable function *S* from Ω to $\mathcal{B}(X)$, Φ a set isomorphism of the measure space Ω to itself, and $h = (d\mu \circ \Phi^{-1}/d\mu)^{1/p}$. We claim that $\Phi^2 = I$.

Suppose that $\Phi^2 \neq I$. Then there is a measurable set A_1 such that $\mu(A_1) > 0$ and $A_1 \neq \Phi^2(A_1)$. Let $A_2 = A_1 \setminus \Phi^2(A_1)$ if $\mu(A_1 \setminus \Phi^2(A_1)) \neq 0$; otherwise let $A_2 = \Phi^{-2}(\Phi^2(A_1) \setminus A_1)$. Then $\mu(A_2 \cap \Phi^2(A_2)) = 0$ and $\mu(A_2) > 0$. Note that if $A_2 \subseteq \Phi(A_2)$, then $A_2 \subseteq \Phi^2(A_2)$. So $\mu(A_2 \setminus \Phi(A_2)) \neq 0$. Let $A = A_2 \setminus \Phi(A_2)$. Then

$$\mu(A) > 0$$
 and $\mu(A \cap \Phi(A)) = 0 = \mu(A \cap \Phi^2(A)).$

Note that

$$P = \frac{T - \lambda I}{1 - \lambda}$$
, $\operatorname{supp}(T 1_A) = \Phi(A)$ and $\operatorname{supp}(T^2 1_A) = \Phi^2(A)$.

We have

$$0 = 1_A \cdot T(1_A) = 1_A \cdot T^2(1_A)$$

and

$$\begin{aligned} \frac{-\lambda \mathbf{1}_A}{\mathbf{1} - \lambda} &= \frac{1}{\mathbf{1} - \lambda} \cdot \mathbf{1}_A \cdot (T - \lambda I)(\mathbf{1}_A) \\ &= \mathbf{1}_A \cdot P(\mathbf{1}_A) = \mathbf{1}_A \cdot P^2(\mathbf{1}_A) \\ &= \frac{1}{(1 - \lambda)^2} \cdot \mathbf{1}_A \cdot (T - \lambda I)^2(\mathbf{1}_A) \\ &= \frac{1}{(1 - \lambda)^2} \cdot \mathbf{1}_A \left(T^2 \mathbf{1}_A - 2T \mathbf{1}_A + \lambda^2 \mathbf{1}_A\right) = \frac{\lambda^2 \mathbf{1}_A}{(1 - \lambda)^2}. \end{aligned}$$

This implies that $\frac{-\lambda}{1-\lambda} = 1$, a contradiction. We have proved our claim. Suppose that $\Phi \neq I$. Then there is a measurable set A_1 such that

 $\infty > \mu(A_1) > 0$ and $A_1 \neq \Phi(A_1)$.

Let $A = A_1 \setminus \Phi(A_1)$ if $\mu(A_1 \setminus \Phi(A_1)) > 0$; otherwise let $A = \Phi^{-1}(\Phi(A_1) \setminus A_1)$. Then $\mu(A \cap \Phi(A)) = 0$. So

$$T 1_{A} = 1_{\Phi(A)} \cdot T 1_{A} = 1_{\Phi(A)} \cdot (T 1_{A} - \lambda 1_{A})$$

= $1_{\Phi(A)} \cdot (1 - \lambda) P 1_{A} = 1_{\Phi(A)} (1 - \lambda) P^{2} 1_{A}$
= $1_{\Phi(A)} \cdot \frac{1}{1 - \lambda} (T - \lambda I)^{2} 1_{A}$
= $1_{\Phi(A)} \cdot \frac{1}{1 - \lambda} (T^{2} 1_{A} - 2\lambda T 1_{A} + 1_{A})$
= $1_{\Phi(A)} \cdot \frac{1}{1 - \lambda} (-2\lambda T 1_{A}) = \frac{1}{1 - \lambda} (-2\lambda T 1_{A})$

This implies that $-2\lambda = 1 - \lambda$. We have proved that if $\Phi^2 \neq I$, then $\lambda = -1$ and P - (I - P) is a reflection. Now suppose that $\Phi = I$. Then for any $f \in L^p(\Omega, X)$,

$$(1 - \lambda) P f(\cdot) = S(\cdot) f(\cdot) - \lambda f(\cdot).$$

Thus, for almost all $t \in \Omega$, $A(t) = \frac{1}{1-\lambda}(S(t) - \lambda I)$ is a projection and $A(t) - \lambda(I - A(t))$ is an isometry on X. The proof is complete. \Box

Corollary 5. Let (Ω, μ) be a σ -finite measure space, $1 \le p < \infty$, $p \ne 2$, and X be a separable complex Banach space with trivial L^p -structure. Suppose that there is a nontrivial generalized bi-circular projection P on $L^p(X)$ that is not reflection. Then there is a nontrivial generalized bi-circular projection on X.

Remark 6. Let *H* be a separable Hilbert space and *E* be a rearrangement invariant space over [0, 1] that is not equal to L_p for any $1 \le p \le \infty$. The Köthe–Bochner function space E(H) is the set of all strongly measurable functions $F : [0, 1] \rightarrow H$ such that $||f||_{E(H)} = |||f(\cdot)||_H||_E < \infty$. B. Randrianantoanina [7, Theorem 11] proved that for any surjective isometry *T* from the Köthe function space E(H) onto itself, there are an invertible Borel mapping $\sigma : [0, 1] \rightarrow [0, 1]$ and a strong measurable mapping $S : [0, 1] \rightarrow \text{Iso}(H)$ such that

$$Tf(t) = S(t) f(\sigma(t)).$$

Suppose that *H* is a separable complex space and *E* is a complex rearrangement invariant space over [0, 1]. If *P* is a generalized bi-circular projection on E(H) and if P - (I - P) is not a reflection, then there are $\lambda \in S^1 \setminus \{1\}$ and a strong measurable mapping *A* from Ω to $\mathcal{B}(H)$ such that for almost all $t \in \Omega$, A(t) is a projection, $A(t) + \lambda(I - A(t))$ is an isometry, and $(Pf)(\cdot) = A(\cdot)f(\cdot)$.

Acknowledgments

The author would like to thank J. Jamison and M. Wierdl for their valuable discussion.

References

- [1] E. Berkson, A.R. Sourour, The hermitian operators on some Banach spaces, Studia Math. 52 (1974) 33-41.
- [2] F. Botelho, J. Jamison, Gereralized circular projections, preprint.
- [3] F. Botelho, J. Jamison, Gereralized circular projections on minimal ideals of operators, Linear Algebra Appl. 420 (2007) 596-608.
- [4] M. Fosner, D. Ilisevic, C. Li, G-invariant norms and bicircular projections, preprint.
- [5] P.K. Lin, The isometries of $L^{2}(\Omega, X)$, Illinois J. Math. 33 (1989) 621–630.
- [6] J. von Neumann, Einige Sätze über meassbare Abbildungen, Ann. of Math. 33 (1932) 574–586.
- [7] B. Randrianantoanina, Isometries of Hilbert space valued function spaces, J. Aust. Math. Soc. Ser. A 61 (1996) 150-161.
- [8] L.L. Stachó, B. Zalar, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004) 9-20.
- [9] A.R. Sourour, The isometries of $L^{p}(\Omega, X)$, J. Funct. Anal. 30 (1978) 276–285.