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An elementary proof without Cauchy’s integral formula and contour integrals
for the Laurent series expandibility of holomorphic functions on annuli is
given.

The purpose of this note is to present an approach to the Laurent series of
holomorphic functions, which may serve as a starting step of a course in com-
plex analysis. Actually, our proof requires an additional hypothesis, the (local)
boundedness of the derivative. However, one can eliminate this technical as-
sumption immediately after our proof, by an application of Goursat’s theorem
[1] with squares. It may be worth to note that, with our approach, the in-
troduction of contour integration may be postponed and somewhat simplified
using a treatment with analytic functions and homotopy arguments concerning
piecewise smooth curves similar to that in [1, Ch.IV]. Also the classification of
isolated singularities along with the residue formula are available at an early
stage. For the sake of a concise presentation we use Lebesgue’s majorized
convergence theorem. Assuming additionally the continuity of the derivatives,
one can replace this tool with routine arguments involving only Riemann inte-
gration of continuous functions. (The number of analysis courses introducing
immediately Lebesgue integration is rapidly growing, e.g. see [2].)

Before turning to our result, we provide some heuristics. The domain of
convergence of a Laurent series on the complex plane € is an annulus. If

flz)= Z anz" (r <|z| < R)

n=—00
then a, = (27)7! 02“ flpe®)(pe) “dp  (n = 0,%1,%2,...) with arbi-
trary radius r < p < R because fo% e dp = [27r ifn=0, 0ifn# O]. It fol-
1 21 o0 A . .
lows fl@)=5- /0 D Fone™)(pne®) "2 do

N==-=00

with uniform convergence in the integrand for r < inf, p,, < sup,, pr < R. In

particular, if » < 7’ < |z| < R’ < R then with p, := [R’ if n>0, rif n<0]
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we get
1 27 f(Rleiq.)) R f(,rlei(p) v .

1 = — - - - i

1 fz) 27r/0 [ Rew — » T — 2z } Tdp
since (for 0 <1’ < |z| < R’ < o0)

[o'e) . _1 .
o m Rleup . —n T.Ieup
!t no__ !t n _
(2) ,;)(R e¥) " = T 5 n;oo(r e¥) " = o

PROPOSITION. Suppose f : A — C is a holomorphic function with bounded
derivative on the annulus A== {2 € € : r < |2| < R}. Then for every z € A

2T

f(z)= " anz™ where =g | Fpe'?)(pe™) " dy

n=—oo

independently of the choice of the radius p € (r,R).
PROOF. Let us fix z € A arbitrarily. First we show that

L [TIER S)
0

(3) flz)= lim —
' Alz)

Rletv —z  rleiv — 4

Indeed, from (2) it follows

1 27 RI T'I .
- 3 - = e == 1 4 4 .
27T/O [R’e“f’——z r’ez‘P—z}e dy O<r<|z|<R < 00)
Hence
1 2r f(Rleigo) R f(,’,leilp) ! i
é;r—/o [R'ei‘P—z h r’eiﬁ"—z]e dp =
(4) o | ,
_ L [Trf(Re) — f(2) o () = f(2) ] 4o,
_f(z)+27r/0 [ Rlety — 2 E- rlete — r]e dp
for r <r’ < |2] < R' < R. Observe that
RN y I AN .
lim [f(Re ) f(z) Rl_f(T'e ) f(z) 7",} =0 whenever lZ!eup—‘,éZ .
R'/>|!z,| Rle*® — z r'et — z '

The integrand on the right hand side of (4) is bounded by (R'+7")ysup |f'] < co.
Thus we may apply Lebesgue’s majorized convergence theorem to conclude that
the right hand side of (4) converges to f(z) for v/ |2|, R’ \, [z].

oo

Taking (2) into account, we have f(z) = lim L, (pn(r', R} 2™ where
RNz p
Az BE—0O

pn(r', R) := [R’ ifn>0,rifn< 0] and I,,(p) := (27r)‘1f027rf(pei“’) (pe™?) "dy
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forr < p < R,n=0,+£1,.... Thus, to complete the proof, it suffices to estab-
lish that all the integrals p — I,(p) are constant.

Let us fix any index n and write F({) := f({)(™™ (¢ € A). Notice that
the function F' is holomorphic with locally bounded derivative and we have
I.(p) = (2n)7! 02” F(pe*?)dp (r < p < R). We can use again Lebesgue’s
majorized convergence theorem to establish that

L(p)=In(p) _ /2”F<p ) Flpe?) 4, 1 /2”, o i
F'(pe*?)e'?dy (o’ .
o p " 5 5%/ (pe'?) e*dp (p'—p)
On the other hand
2w 27
. 1 0 . 1 , 27
FI el 2ip do = — —F eW’ dy = _._.F ezw ' =0 .
/O (pe?)e0dp = = | g, Flpe)dp= o Fpe™)|
Thus the function I, : (r, R) — @ is differentiable (in real sense) and its
derivative vanishes. This completes the proof. O

REMARK. We sketch a way how to relax the assumption of the (local) bound-
edness of the derivative in the Proposition. For ¢ > 0, write 4. := {2z €
C: r+e< |zl < R—e¢} and for any z € € let Q(z,¢) denote the square
Q(z,e) :=={{ € C: |Re(¢—2)|, Im(¢ —2)| <e/2}. Let 0 < 6 < (R—71)/4
be an arbitrarily fixed number. Given a holomorphic function f : 4 — C,
consider the averages of the function f:

1 .
f-(2) ::Ei/ f(z +iy)dz dy (z€ 45, 0<e<é)
2,€)
where z,y denote the real and imaginary coordinates, respectively. All the
functions f, have bounded continuous derivatives in real sense. The key obser-
vation is that

18 <0 1
_fe(z) (~—+ )fe( )= 52.—6—2}({9@(2,6) F(Q)d(=0 (z€45, 0<e<b)

20y

since, by Goursat’s theorem [1], the contour integral of a holomorphic function
along the contour of a square vanishes. Thus all the functions f. are holomor-
phic and we may apply the Proposition to them. It follows that, by setting
7' =1 +26 and R := R — 26, for every fixed z € Ags we have (1) with any
fe instead of f. Since sup |f.(Ass)| < sup|f(4s)| < oo uniformly, by passing
to the limit € ™\, 0, Lebesgue’s majorized convergence theorem yiels (1) for
z € Ags. Taking (2) into account, we obtain a Laurent expansion for f on the
annulus Ags.
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