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Abstract— The problem of guessing a random string is revisited
and some prior results on guessing exponents are re-derived
using the theory of large deviations. It is shown that if the
sequence of distributions of the information spectrum satisfies
the large deviation property with a certain rate function, then the
limiting guessing exponent exists and is a scalar multiple of the
Legendre-Fenchel dual of the rate function. Example applications
re-deriving prior results are also given.

I. INTRODUCTION

Let Xn = (X1, · · · , Xn) denote n letters of a process

where each letter is drawn from a finite set X with joint

probability mass function (pmf) (Pn(xn) : xn ∈ X
n). Let

xn be a realisation and suppose that we wish to guess this

realisation by asking questions of the form “Is Xn = xn?”,

stepping through the elements of X
n until the answer is

“Yes”. We wish to do this using the minimum number of

expected guesses. There are several applications that motivate

this problem. Consider cipher systems employed in digital

television or DVDs to block unauthorised access to special

features. The ciphers used are amenable to such exhaustive

guessing attacks and it is of interest to quantify the effort

needed by an attacker.

Massey [1] observed that the expected number of guesses

is minimised by guessing in the decreasing order of Pn-

probabilities. Define the guessing function G∗
n : X

n →
{1, 2, · · · , |X|n} to be one such optimal guessing order 1.

G∗
n(xn) = g implies that xn is the gth guess. Massey’s

question was to characterise E [G∗
n(Xn)]. Arikan [2] con-

sidered the more general problem of identifying the growth

of E [G∗
n(Xn)ρ] as a function of n for an independent and

identically distributed (iid) source with marginal pmf P1 and

ρ > 0. He showed that the growth is exponential in n; limiting

exponent

E(ρ) := lim
n→∞

1

n
log E[G∗

n(Xn)ρ] (1)

exists and equals ρHα(P1) with α = 1/(1+ρ), where Hα(Pn)
is the Rényi entropy of order α for the pmf Pn, given by

1

1 − α
log

(

∑

xn∈Xn

Pn(xn)α

)

, α 6= 1. (2)

Malone and Sullivan [3] showed that the limiting exponent

E(ρ) of an irreducible Markov chain exists and equals the

1If there are several sequences with the same probability of occurrence,
they may be guessed in any order without affecting the expected number of
guesses.

logarithm of the Perron-Frobenius eigenvalue of a matrix

formed by raising each element of the transition probability

matrix to the power α. From their proof, one obtains the more

general result that the limiting exponent exists for any source

if the Rényi entropy rate of order α,

lim
n→∞

n−1Hα(Pn), (3)

exists for α = 1/(1 + ρ). Pfister and Sullivan [4] showed

the existence of (1) for a class of stationary probability

measures where the probability of finite-length strings are

approximately determined by letter combinations. For such a

class, they showed that the guessing exponent has a variational

characterisation (see (4) later). For unifilar sources Sundaresan

[5] obtained a simplification of this variational characterisation

using a direct approach and the method of types.

In this paper, we give a different proof of Malone &

Sullivan’s implicit result in [3] that the limiting exponent

exists if and only if the limiting Rényi entropy rate exists. Our

proof exploits a connection between guessing and compression

highlighted by Sundaresan [5]. A simple argument then leads

to the following useful result: if the sequence of distributions

of the information spectrum (1/n) log(1/Pn(Xn)) (see Han

[6]) satisfies the large deviation property, then the limiting

exponent exists. This is useful because several existing large

deviations results can be readily applied. Our approach gener-

alises all prior results on guessing (without side information

and key-rate constraints).

II. MAIN RESULTS

We begin with some words on notation. Let M(Xn) denote

the set of pmfs on X
n. The Shannon entropy for a Pn ∈

M(Xn) is

H(Pn) = −
∑

xn∈Xn

Pn(xn) log Pn(xn)

and the Rényi entropy of order α 6= 1 is (2). The Kullback-

Leibler divergence or relative entropy between two pmfs Qn

and Pn is

D(Qn ‖ Pn) =







∑

xn∈Xn

Qn(xn) log
Qn(xn)

Pn(xn)
, if Qn � Pn,

∞, otherwise,

where Qn � Pn means Qn is absolutely continuous with

respect to Pn. By a source, we mean a sequence of pmfs

(Pn : n ∈ N) where Pn ∈ M(Xn) and N is the set of natural

numbers. Recall the definitions of limiting guessing exponent
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in (1) and Rényi entropy rate in (3) when the limits exist.

G∗
n is an optimal guessing function for a pmf Pn ∈ M(Xn).

Our proof route will use results from source compression. We

therefore define a length function Ln : X
n → N to be one

which satisfies Kraft’s inequality
∑

xn∈Xn

2−Ln(xn) ≤ 1.

Given a length function, it is well-known that there exists a

source code such that the compression length of any string

xn is Ln(xn). For a ρ > 0, we define α = 1/(1 + ρ) and

β = ρ/(1 + ρ), and use these consistently throughout this

paper.

Our first contribution is a proof of the following implicit

result of Malone & Sullivan [3]. The proof is given in Section

IV-A.

Proposition 1: Let ρ > 0. For a source (Pn : n ∈ N), E(ρ)
exists if and only if the Rényi entropy rate exists. Furthermore,

E(ρ)/ρ equals the Rényi entropy rate.

The question now boils down to the existence of the limit

in the definition of Rényi entropy rate. The theory of large

deviations immediately yields a sufficient condition. We begin

with a definition.

Definition 1 (Large deviation property): A sequence (νn :
n ∈ N) of probability measures on R satisfies the large

deviation property (LDP) with rate function I : R → [0,∞] if

the following conditions hold:

• I is lower semicontinuous on R;

• I has compact level sets;

• lim supn→∞ n−1 log νn{K} ≤ − inft∈K I(t) for each

closed subset K of R;

• lim infn→∞ n−1 log νn{G} ≥ − inft∈G I(t) for each

open set G of R.

Several commonly encountered sources satisfy the LDP

with known and well-studied rate functions. We describe some

of these in the examples treated subsequently.

Let νn denote the distribution of the information spectrum

given by the real-valued random variable −n−1 log Pn(Xn).

Proposition 2: Let the sequence of distributions (νn : n ∈
N) of the information spectrum satisfy the LDP with rate

function I . Then the limiting Rényi entropy rate of order

1/(1 + ρ) exists for all ρ > 0 and equals

β−1 sup
t∈R

{βt − I(t)},

where β = ρ/(1 + ρ). Consequently, the limiting guessing

exponent exists and equals

(1 + ρ) sup
t∈R

{βt − I(t)}.

The function I∗(β) := supt∈R {βt−I(t)} is the Legendre-

Fenchel dual of the rate function I . As we will see in Section

IV, the proofs of the aforementioned results provide a ready

connection between guessing, compression, and large devia-

tions. Before giving the proofs, we show how known prior

results can be obtained using the large deviations approach in

the following examples.

III. EXAMPLES

Example 1 (An iid source): This example was first studied

by Arikan [2]. Recall that an iid source is one for which

Pn(xn) =
∏n

i=1 P1(xi), where P1 is the marginal of X1.

It is then clear that the information spectrum can be written

as a sample mean of iid random variables

−n−1 log Pn(Xn) = −n−1
n
∑

i=1

log P1(Xi).

The sequence (νn : n ∈ N) of distributions of information

spectrum therefore satisfies the LDP with rate function given

by the Legendre-Fenchel dual of the cumulant of the random

variable − log P1(X1) (see for example [7, Thm. II.4.1] or [6,

eqn. (1.9.66-67)]):

log E

[

exp
{

β(− log P1(X1))
}

]

= log

(

∑

x∈X

P1(x)α

)

= (1 − α)Hα(P1).

The Legendre-Fenchel dual of the rate function is therefore

the cumulant itself ([7, Thm. VI.4.1.e]). An application of

Proposition 2 yields that (1+ρ) times this cumulant, given by

ρHα(P1), is the guessing exponent. We thus recover Arikan’s

result [2].

The rate function I can also be obtained using the so-

called contraction principle [8, Th. 6.12] as follows. Consider

a mapping that takes xn to its empirical pmf in M(X).
Empirical pmf is then a random variable. The distribution of

Xn induces a distribution on M(X). The sequence of these

distributions of empirical pmfs, indexed by n, satisfies the

level-2 LDP2 with rate function I
(2)
P1

(·) = D(· ‖ P1). See for

example [7, Thm II.4.3]. The contraction principle provides a

formula for I in terms of D(· ‖ P1) as follows [7, Thm II.5.1].

Let

θ(t) :=
{

Q ∈ M(X) : H(Q) + D(Q ‖ P1) = t
}

.

Then

I(t) = inf{I
(2)
P1

(Q) : Q ∈ θ(t)}.

Using this, we can write

I∗(β) = sup
t∈R

{

βt − inf
Q∈θ(t)

D(Q ‖ P1)
}

= sup
t∈R

sup
Q∈θ(t)

{

βt − D(Q ‖ P1)
}

= sup
Q∈M(X)

{

β(H(Q) + D(Q ‖ P1)) − D(Q ‖ P1)
}

= (1 + ρ)−1 sup
Q∈M(X)

{

ρH(Q) − D(Q ‖ P1)
}

,

2Level-1 refers to sequence of distributions (indexed by n) of the sample
means, level-2 refers to sample histograms, and level-3 to sample paths.
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thus yielding

E(ρ) = sup
Q∈M(X)

{

ρH(Q) − D(Q ‖ P1)
}

. (4)

This formula extends to more general sources, as is seen in

the next few examples.

Example 2 (Markov source): This example was studied by

Malone & Sullivan [3]. Consider an irreducible Markov chain

taking values on X with transition probability matrix π. Our

goal is to calculate E(ρ) defined by (1) for this source.

Let Ms(X
2) denote the set of stationary pmfs defined by

Ms

(

X
2
)

=
{

Q ∈ M
(

X
2
)

:
∑

x1∈X

Q(x1, x) =
∑

x2∈X

Q(x, x2)∀x ∈ X

}

.

Denote the common marginal by q and let

η(· | x1) :=

{

Q(x1, ·)/q(x1), if q(x1) 6= 0,
1/|X|, otherwise.

We may then denote Q = q × η where q is the distribution of

X1 and η the conditional distribution of X2 given X1. Then,

the empirical pmf random variable satisfies the level-2 LDP

with rate function I
(2)
π (Q), given by [9]

I(2)
π (Q) = D(η ‖ π | q)

:=
∑

x1∈X

q(x1)D(η(· | x1) ‖ π(· | x1)).

The contraction principle then yields that the sequence of

distributions of information spectrum satisfies the LDP with

rate function I given by

I(t) = inf{I(2)
π (Q) : Q ∈ θ(t)}.

where θ(t) ⊂ Ms(X
2) is defined by

θ(t) =

{

Q ∈ Ms(X
2) :

∑

x1,x2

Q(x1, x2) log
1

π(x2|x1)
= t

}

.

By Proposition 1 the limiting guessing exponent exists. Perron-

Frobenius theory (Seneta [10, Ch. 1], see also [11, pp.60-61])

yields the cumulant directly as log λ(β) where λ(β) is unique

largest eigenvalue (Perron-Frobenius eigenvalue) of a matrix

formed by raising each element of matrix π to the power

α. (Recall that α = 1/(1 + ρ) and β = ρ/(1 + ρ)). Thus

E(ρ) = (1+ρ) log λ(β), and we recover the result of Malone

& Sullivan [3]. It is useful to note that the steps that led to (4)

hold in the Markov case (with appropriate changes to entropy

and divergence terms) and we may write

E(ρ) = sup
Q∈Ms(X2)

{

ρH(η | q) − D(η ‖ π | q)
}

, (5)

where H(η | q) is the conditional entropy of X2 given X1

under the joint distribution Q, i.e.,

H(η | q) := −
∑

x∈X

q(x)H(η(· | x)).

Example 3 (Unifilar source): This example was studied by

Sundaresan in [5]. A unifilar source is a generalisation of the

Markov case in Example 2. Let X denote the alphabet set

as before. In addition, let S denote a set of finite states. Fix

an initial state s0 and let the joint probability of observing

(xn, sn) be

Pn(xn, sn) =

n
∏

i=1

π(xi, si | si−1)

where π(xi, si | si−1) is the joint probability of (xi, si)
given the previous state si−1. The dependence of Pn on s0

is understood. Furthermore, assume that π(xi, si | si−1) is

such that si = φ(si−1, xi), a deterministic function. Such a

source is called a unifilar source.

PS,X(si−1, xi) and φ completely specify the process: the

initial state S0 is random with distribution the marginal of S
in PS,X , the rest being specified by PX|S(xi | si−1) and φ.

Example 2 is a unifilar source with S = X, φ(si−1, xi) = xi,

and PS,X = q×π where q is the stationary distribution of the

Markov chain.

Let Ms(S × X) denote the set of joint measures on the

indicated space so that the resulting process (Sn : n ≥ 0) is a

stationary and irreducible Markov chain. Let a Q ∈ Ms(S×X)
be written as Q = q × η. For a t ∈ R let

θ(t) :=







Q ∈ Ms(S × X) :
∑

(s,x)

Q(s, x) log
1

π(x | s)
= t







.

Then the sequence of distributions of information spectrum

−n−1 log Pn(Xn) satisfies the LDP ([6, eqn. (1.9.30)]) with

rate function given (once again via contraction principle) by

I(t) = inf{D(η ‖ π | q) : Q ∈ θ(t)}.

The limiting exponent therefore exists. Following the same

procedure that led to (4) in the iid case and (5) for a Markov

chain, we get

E(ρ) = sup
Q∈Ms(S×X)

{

ρH(η | q) − D(η ‖ π | q)
}

, (6)

where H(η | q) and D(η ‖ π | q) are analogously defined,

and the result of Sundaresan [5] is recovered.

Example 4 (A class of stationary sources): Pfister & Sulli-

van [4] consider a class of stationary sources with distribution

P ∈ M
(

X
N
)

that satisfy two hypotheses (H1 and H2 of

[4, Sec. II-B]). They prove that E(ρ) exists, and provide a

variational characterisation analogous to (6), i.e.,

E(ρ) = sup
Q∈MP

s

{

ρH(Q) − D(Q ‖ P )
}

, (7)

where H(Q) is the Shannon entropy rate and with Pn and Qn

restrictions of P and Q to n letters

D(Q ‖ P ) = lim
n→∞

n−1
∑

xn

Qn(xn) log
Qn(xn)

Pn(xn)
.

MP
s is the set of stationary sources that satisfy Qn � Pn for

all n.
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En route to their result they show that the sequence of

distributions of the empirical process satisfies the level-3 LDP

with rate function I
(3)
P (Q) = D(Q ‖ P ) given above. In order

to prove (7) using our recipe, the contraction principle is first

applied to argue that an approximation to the information spec-

trum sequence satisfies the level-1 LDP with the contracted

rate function. A result [8, Th. 6.14] is then be used to show

that the information spectrum sequence too satisfies the LDP

with the same rate function. Proposition 2 immediately yields

that the limit E(ρ) exists. Finally, the Legendre-Fenchel dual

of the rate function is computed similar to the technique used

to obtain (4), (5), and (6), thus yielding (7). The details are

technical, but quite straightforward, and therefore omitted.

Example 5 (Mixed source): Consider a mixture of two iid

sources with letters from X. We may write

Pn(xn) = λ

n
∏

i=1

R(xi) + (1 − λ)

n
∏

i=1

S(xi)

where λ ∈ (0, 1) with R,S ∈ M(X) the two marginal pmfs

that define the iid components of the mixture. It is easy to

see directly that the guessing exponent is the maximum of the

guessing exponent for the two component sources. We next

verify this using Proposition 2.

The sequence of distributions of the information spectrum

satisfies the LDP with rate function given as follows (see Han

[6, eqn. (1.9.41)]). Define

θ1 =
{

Q ∈ M(X) : D(Q ‖ S) − D(Q ‖ R) ≥ 0
}

,

θ2 =
{

Q ∈ M(X) : D(Q ‖ S) − D(Q ‖ R) ≤ 0
}

,

and for t ∈ R

At = θ1 ∩
{

Q ∈ M(X) : H(Q) + D(Q ‖ R) = t
}

Bt = θ2 ∩
{

Q ∈ M(X) : H(Q) + D(Q ‖ S) = t
}

.

The rate function (via the contraction principle) is given by

I(t) = min

{

inf
Q∈At

D(Q ‖ R), inf
Q∈Bt

D(Q ‖ S)

}

.

From Proposition 2 we conclude that the limiting guessing

exponent exists. I∗(β) is then

sup
t∈R

{

βt − min
{

inf
Q∈At

D(Q ‖ R), inf
Q∈Bt

D(Q ‖ S)
}

}

= max

{

sup
t∈R

sup
Q∈At

{

βt − D(Q ‖ R)
}

,

sup
t∈R

sup
Q∈Bt

{

βt − D(Q ‖ S)
}

}

= max

{

sup
Q∈θ1

{

βH(Q) − (1 − β)D(Q ‖ R)
}

,

sup
Q∈θ2

{

βH(Q) − (1 − β)D(Q ‖ S)
}

}

= (1 + ρ)−1 max

{

sup
Q

{

ρH(Q) − D(Q ‖ R)
}

,

sup
Q

{

ρH(Q) − D(Q ‖ S)
}

}

= (1 + ρ)−1 max
{

ρHα(R), ρHα(S)
}

,

yielding

E(ρ) = max
{

ρHα(R), ρHα(S)
}

.

IV. PROOFS

We now provide proofs of Propositions 1 and 2. The

approach taken is via compression, but with exponentiated

costs.

A. Proof of Proposition 1

We first transform the guessing problem into a compression

problem with an exponentially weighted cost structure. A

result from Sundaresan [5, Prop. 6] implies that the limit

in (4) exists if and only if the following problem originally

considered by Campbell [12] has a limit:

lim
n→∞

inf
Ln

1

n
log E

[

exp{ρLn(Xn)}
]

, (8)

where the infimum is taken over all length functions Ln :
X

n → N. Moreover, the two limits are equal. This result arises

from [5, Prop. 6] because the difference between two quantities

as a function of n decays as O((log n)/n). It is therefore

sufficient to show that the limit in (8) for Campbell’s coding

problem exists if and only if the Rényi entropy rate exists,

with the former ρ times the latter.

Fix n. In the rest of the proof, we use the notation EPn
[·]

for expectation with respect to distribution Pn. The length

function can be thought of as a bounded (continuous) function

from X
n to R and therefore our interest is in the logarithm

of its moment generating function of ρ, the cumulant. The

cumulant associated with a bounded continuous function (here

Ln) has a variational characterisation [13, Prop. 1.4.2] as

the following Legendre-Fenchel dual of the Kullback-Leibler

divergence, i.e.,

log EPn

[

exp{ρLn(Xn)}
]

= sup
Qn∈M(Xn)

{

ρEQn
[Ln(Xn)] − D(Qn ‖ Pn)

}

. (9)

Taking infimum on both sides over all length functions, we

arrive at the following chain of inequalities:

inf
Ln

log EPn

[

exp{ρLn(Xn)}
]

(10)

= inf
Ln

sup
Qn∈M(Xn)

{

EQn
[ρLn(Xn)] − D(Qn ‖ Pn)

}

= sup
Qn∈M(Xn)

inf
Ln

{

EQn
[ρLn(Xn)]−D(Qn ‖ Pn)

}

+Θ(1)(11)

= sup
Qn∈M(Xn)

{

ρHn(Qn) − D(Qn ‖ Pn)
}

+ Θ(1)(12)

= ρH 1
1+ρ

(Pn) + Θ(1). (13)
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Equation (11) follows because (i) the mapping

(Ln, Qn) 7→ EQn
[ρLn(Xn)] − D(Qn ‖ Pn)

is a concave function of Qn, (ii) for fixed Qn and for any two

length functions L1
n and L2

n, for any λ ∈ [0, 1], the function

Ln =
⌈

λL1
n + (1 − λ)L2

n

⌉

is also a length function and

EQn
[Ln] = λEQn

[L1
n] + (1 − λ)EQn

[L2
n] + Θ(1).

(iii) M(Xn) is compact and convex, and therefore the infimum

and supremum may be interchanged upon an application

of a version of Ky Fan’s minimax result [14]. This yields

a compression problem, the infimum over Ln of expected

lengths with respect to a distribution Qn. The answer is the

well-known Shannon entropy H(Qn) to within 1 bit, and (12)

follows. Lastly, (13) is a well-known identity which may also

be obtained directly by writing the supremum term in (12) as

(1 + ρ) sup
Qn∈M(Xn)

{

EQn

[

−

(

ρ

1 + ρ

)

log Pn(Xn)

]

− D(Qn ‖ Pn)
}

and then applying (9) with −(ρ/(1+ ρ) log Pn(Xn)) in place

of ρLn(Xn) to get the scaled Rényi entropy.

Normalise both (10) and (13) by n and let n → ∞ to

deduce that (8) exists if and only if the limiting normalised

Rényi entropy rate exists. This concludes the proof.

B. Proof of Proposition 2

This is a straightforward application of Varadhan’s theorem

[15] on asymptotics of integrals. Recall that νn is the distri-

bution of the information spectrum n−1 log Pn(Xn). Define

F (t) = βt. Since the (νn : n ∈ N) sequence satisfies the

LDP with rate function I , Varadhan’s theorem (see Ellis [7,

Th. II.7.1.b]) states that if

lim
M→∞

lim sup
n→∞

1

n
log

∫

t≥M
β

exp{nβt} dνn(t) = −∞ (14)

then the limit

lim
n→∞

1

n
log

∫

R

exp{nβt} νn(dt) = sup
t∈R

{βt − I(t)} (15)

holds. The integral on the left side in (15) can be simplified

by defining the finite cardinality set

An = {−n−1 log Pn(xn) : ∀xn ∈ X
n} ⊂ R

and by observing that
∫

R

exp{nβt}νn(dt)

=
∑

t∈An

exp{nβt}
∑

xn:Pn(xn)=exp{−nt}

Pn(xn)

=
∑

xn

Pn(xn)1−β

=
∑

xn

Pn(xn)
1

1+ρ = exp
{

βH1/(1+ρ)(Pn)
}

.

Take logarithms, normalise by n, take limits, and apply (15)

to get the desired result. It therefore remains to prove (14).

The event {t ≥ M
β } occurs if and only if {Pn(xn) ≤

exp{−nM
β }. The integral in (14) can therefore be written as

∑

t∈An,t≥M
β

∑

xn:Pn(xn)=exp{−nt}

exp{nβt}Pn(xn)

=
∑

xn:Pn(xn)≤exp{−nM
β

}

Pn(xn)
1

1+ρ

≤ |X|n · exp
{ −nM

β(1 + ρ)

}

.

The sequence in n on the left side of (14) is then

log |X| −
M

β(1 + ρ)
,

a constant sequence. Take the limit as M → ∞ to verify (14).

This concludes the proof.
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