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MINIMAX THEOREMS FOR UPPER 
SEMICONTINUOUS FUNCTIONS 

By 
V. KOMORNIK (Budapest) 

1. The various generalizations of von Neumann's classical minimax theorem 
[1] constitute an important chapter of the modern analysis. In the economic applica- 
tions it might have some interest to prove minimax theorems for vector-valued 
functions, e.g. for functions mapping into R", endowed with the lexicographic order. 
As the first theorem of this paper shows, without any further conditions Neumann's 
result does not remain true for such functions. 

In a recent publication [5], C.-W. HA generalized Neumann's minimax theorem 
(see also in [3]) for upper semicontinuous functions. Our second theorem establishes 
a slightly more general form of this result, which contains also Theorem 1 in [4]. 
Our proof is based on the considerations, developed by I. Jo6 in [2] and [3]; thus we 
can eliminate the application of Brouwer's fixed point theorem, essentially used in 
[5]. Theorem 2 is formulated for functions mapping into a linearly ordered space. 
Thus we obtain a positive answer for the minimax problem of vector-valued functions. 

The third theorem of this paper asserts that in case if one of the underlying spaces 
is a convex subset of some topological vector space, the continuity conditions of 
Theorem 2 can be weakened. 

The author is grateful to I. Jo6 for proposing the minimax problem of vector- 
valued functions. 

2. Trmo~M 1. There exists a continuous function f : [ 0 ,1 ]X[ -1 ,1 ] - -  
-*[--1, 1 ] •  1] such that 

(1 x) the subfunctions f ( . , y )  are concave for any fixed yE[ -1 ,  1], 
(1 y) the subfunctions f ( x ,  �9 ) are convex for any fixed xE[O, 1]; 

nevertheless 
(2) max minf (x ,  y) = (0, - 1) ~ (0, O) = min maxf(x,  y)  

x y y x 

( [ -1 ,  1 ] •  1] is equipped with the lexicographic order). 

PROOF. Consider the continuous function 

f :  [0, 1]X[-1, 11 -* [--1, 1]• 11, 

It is easy to see that 
(0 , -  1) ff 

m i n f ( x , y ) =  ( -x ,  1) if 

(0 , -y)  if 
m a x f ( x , y )  -- t ( y , - y )  if 

From these relations we obtain (2) at once. 

f (x ,  y) = (xy, - y ) .  

x = ~  

O < x ~ l ,  

- - l ~ y ~ O ,  

O < y ~ l .  
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To prove (1 x) and (U), we have to show that 

f ( t x l  + (1 - t)x~, y)  ~ tf(xl,  y)  -t- (1 - t)f(x~, y) 

for any xl,  x~E[0, 1], y E [ - 1 ,  1], rE[0, 1], and 

f ( x ,  ty 1 + (1 - t) y~) N tf(x, Yl) + (1 - t)f(x, y~) 

for any xE[0, 1], yl ,  y~E[-1 ,  1], tel0, 1]. But these conditions are obviously satis- 
fied; moreover, we have not only inequality but  also equality in both cases: 

(tx~y+(1-t)x2y,  - y )  = t(xly, - y ) + ( 1 - t ) ( x 2 y , - - y )  
and 

(xty 1 + x (1 - t) Y2, - t y , -  (1 - t) y=) = t (xyl, - Yl) + (1 - t) (xy~, - y,). 

The theorem is proved. 

3. We recall that by an interval space (see [4]) we mean a topological space X 
endowed with a mapping [ . ,  �9 ]: X X X +  {connected subsets of X} such that xl ,  x~E 
E[Xl, x~]=[x~, xl] for all xl; x=EX. A subset K of an interval space is convex if 
for every xl,  x=EK we have Ix1, x=]cK. Any convex subset of  a real topological 
vector space is an interval space with its natural interval structure. 

A linearly ordered space (see [6]) is called complete if every subset has a least 
upper bound. Such spaces are the extended real line ~ ,  the extended euclidean n-space 
R" or any compact (in the euclidean topology) subset of  R" with respect to the lexi- 
cographic order. 

Let X be an interval space and Z a complete linearly ordered space. A function 
f :  X ~ Z  is called quasiconvex (resp. quasiconcave) if the sets 

{xEX: f ( x )  <= z} (resp. {xEX: f ( x )  >= z}) 

are convex for all zEZ. Furthermore, f i s  called upper semicontinuous if all the sets 

{xEX: f ( x )  >- z}, zEZ, 
are closed in X. 

If  X is compact and .f: X ~ Z  is upper semicontinuous, then there exists an xoEX 
such that f(xo)= supf(x) .  Given a family (f0~e~ of  upper semicontinuous functions 

x E X  

from X into Z, the map }enfJ] is also upper semicontinuous. These statements are 

proved in the same way as in ease Z = I I .  

TH~OltEM 2. Let X be a compact interval space, Y an arbitrary interval space, Z 
a complete linearly ordered space and f:  XN Y-~Z an upper semicontinuousfunction 
such that 

(3 ~) the subfunctions f ( . ,  y) are quasiconcave on X for any fixed yE Y, 
(3 y) the subfunctions f (x ,  �9 ) are quasiconvex on Y for any fixed xEX. 

Then 
(4) max inff (x ,  y)  = in fmaxf (x ,  y). 

y x 

PROOF. The expressions in (4) make sense by the two statements mentioned just 
before this theorem. Being the relation max in f f ( x , y )~ in fmax f ( x , y )  obvious, 

x y y x 
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it is enough to show that the family of sets 

{K(y) = {xEX:f(x, y) >- infmaxf(x,  y)}:yEY} 

has a non-empty intersection. 
For any yE Y, the set K(y) is convex by (3 ~) and non-empty by the definition of 

infmaxf(x,y)=z*.  Moreover, K(y) is compact because X is compact and f is 

upper semicontinuous. 
It follows from (3 y) that for any y~, y~E Y and yE[Yl, y~], K(y)cK(y~)UK(y2). 

Finally, if limx~--x, l imyi=y and xiEK(y~) for all iEI, then xEK(y). Indeed, 
iEI  fE I  

we have f (x i ,y i )~z* for all iE1 and lim(xi,yi)=(x,y). Hence, by the upper 
i E I  

semicontinuity o f f ,  f (x ,y )~z* ,  i.e. xEK(y). 
On the basis of these properties, our theorem follows from the fixed point theo- 

rem ofI. Jo6 [2], which can be proved by simple tools (the present formulation is due 
to L. L. STACH6 [4]): 

Let X, Y be interval spaces and K(.  ) a mapping of Y into the family of compact 
convex subsets of X, such that 

(i) K(y)~ ~ for all yE Y, 
(ii) K(y)cK(y~)UK(y~) whenever yE[y~,y2] and y l , y ,  EY, 

(iii) xEK(y) whenever y=lj.myi, x=l imxi  and xiEK(yO for all iEL 

Then we have 
N K(y) # O .  

yEY 

4. THEOREM 3. Let X be a compact interval space, Y a convex subset o f  some real 
topological vector space, Z a complete linearly ordered space and f:  X X  Y ~ Z  a 
function, having the properties 

(5 ~) the subfunctions f ( . ,  y) are quasiconeave on X and upper semicontinuous on 
X for all fixed YE Y, 

(5Y) the subfunctions f(x ,  �9 ) are quasiconvex on Y and upper semicontinuous on 
any interval of  Y for all fixed xE X. 
Then 

maxx inff(x,, y) -- infmaxf(x,  y). 

REMARK. As Theorem 2 in [4] shows, this assertion is true if we require in (5Y) 
lower semicontinuity instead of upper semicontinuity. 

PROOF. It suffices again to prove that the family of sets 

~ {K(y) ---- {xE X: f (x ,  y) >-_ infmaxf(x,  y)} : yE Y} 
y x 

has a non-empty intersection. Being the elements of ~- compact (because of (5 x) 
and the compactness of X), it suffices to show that ~ has the finite intersection pro- 
perty. The definition of infmaxf(x,y)--z* ensures that K ( y ) r  for all yEY. 

Assume now that f i  K(yi) ~ 0 for every choice of Yl,...,Y,,EY, but 
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n + l  

n K(y*)= 0 
i = l  

n + l  

this is impossible. Set K*(y) - n K(y*)NK(y) for all yEY, 
i=8  

(6) K* t,  *~ n K* r, *~ I . y l /  kyg.] ~--- ~ .  

It follows from the inductive hypothesis and (5 ~) that 

(7) K*(y) is non-empty, convex and compact for all 

(5 0 implies that 

(8) g*(y) c K*(yl)UK*(y~) 

Furthermore, 

for some y*, * �9 .., Yn+IEY. To complete the proof, we show that 

then 

Y E Y .  

whenever yl, y~E Y and YE[yl,Y2]. 

E * * (9) either K*(y)cK*(y~)  or K*(y) cK*(y~) for any y [Yl,Y~]. 

Indeed, if there were points X1; X 2 such that xiEK*(y)NK*(y*) (i= 1, 2) for some 
yE[y*, y~], then - -  using (6), (7) and (8) - -  the connected set [Xl, x~] could be repre- 
sented as the union of two closed, non-empty and disjoint subsets: 

2 

Ix1, x2] = U [Xl, x~lOK* (y)NK*(y*), 
[=1 

which is impossible. 
For brevity; we write henceforth [yx,y2)=(y~,,yd instead of [yl,y~]\{y~}. 

It follows from (6)--(9) that the sets 

E * * {Y [Yl, y~]:K*(y) ~ g*(y*)}, i = 1, 2 

are disjoint convex sets and their union is [y~, y~]. Therefore there exists a point 
Y0E[Y~', Y~'] such that 

(10) K*(y)cK*(y*)  for all yE[Y*,yo), i = 1 , 2 .  
Suppose 
(11) K* (Yo) c K* (y~) 

(the case K*(yo)cK*(y~) is similar). Then (-] K*(y)#O.  Indeed, being 

the sets K*(y) compact, it is enough to show that for any ylE (Yo, Y~], y~E (Yo, Y~]: 
K*(yl)=K*(y~). But this is true: the application of (8), (11), (10) and (6) gives 

K* (Yl) c (K* (Yo) U K* (Y2)) n K* (y*) c (K* (y~') U K* (y~) N K* (y~') = 

= (g* (y*) N K* (y~')) U (K* (y~ f~ K* (y*)) = O U K* (yp) = K* (y~). 

Choosing an arbitrary x0E n K*(y), we have by definition f(xo,y)>=z * for 
YC[Y~,Yc) 
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all yE[y~, Y0); and  taking the l imit  Y-*Yo, we obtain  by  (50  

(12) f (Xo,  Yo) >= z*. 

On the o ther  handi  x "K*"  *" o~ tYa), (6) and  (11) imply  xo#K*(yo)  i.e. f (xo,Yo)<z*,  
contradict ing (12). This contradict ion proves  the theorem.  
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