MINIMAX THEOREMS FOR UPPER SEMICONTINUOUS FUNCTIONS

By

V. KOMORNIK (Budapest)

1. The various generalizations of von Neumann's classical minimax theorem [1] constitute an important chapter of the modern analysis. In the economic applications it might have some interest to prove minimax theorems for vector-valued functions, e.g. for functions mapping into \mathbb{R}^n , endowed with the lexicographic order. As the first theorem of this paper shows, without any further conditions Neumann's result does not remain true for such functions.

In a recent publication [5], C.-W. HA generalized Neumann's minimax theorem (see also in [3]) for upper semicontinuous functions. Our second theorem establishes a slightly more general form of this result, which contains also Theorem 1 in [4]. Our proof is based on the considerations, developed by I. Joó in [2] and [3]; thus we can eliminate the application of Brouwer's fixed point theorem, essentially used in [5]. Theorem 2 is formulated for functions mapping into a linearly ordered space. Thus we obtain a positive answer for the minimax problem of vector-valued functions.

The third theorem of this paper asserts that in case if one of the underlying spaces is a convex subset of some topological vector space, the continuity conditions of Theorem 2 can be weakened.

The author is grateful to I. Joó for proposing the minimax problem of vectorvalued functions.

2. THEOREM 1. There exists a continuous function $f:[0,1]\times[-1,1] \rightarrow [-1,1]\times[-1,1]$ such that

(1^x) the subfunctions $f(\cdot, y)$ are concave for any fixed $y \in [-1, 1]$,

(1^y) the subfunctions $f(x, \cdot)$ are convex for any fixed $x \in [0, 1]$; nevertheless

(2)
$$\max_{x} \min_{y} f(x, y) = (0, -1) \neq (0, 0) = \min_{y} \max_{x} f(x, y)$$

 $([-1, 1] \times [-1, 1])$ is equipped with the lexicographic order).

PROOF. Consider the continuous function

 $f: [0, 1] \times [-1, 1] \rightarrow [-1, 1] \times [-1, 1], f(x, y) = (xy, -y).$

It is easy to see that

$$\min_{y} f(x, y) = \begin{cases} (0, -1) & \text{if } x = 0, \\ (-x, 1) & \text{if } 0 < x \le 1, \end{cases}$$
$$\max_{x} f(x, y) = \begin{cases} (0, -y) & \text{if } -1 \le y \le 0, \\ (y, -y) & \text{if } 0 < y \le 1. \end{cases}$$

From these relations we obtain (2) at once.

To prove (1^x) and (1^y) , we have to show that

$$f(tx_1 + (1-t)x_2, y) \ge tf(x_1, y) + (1-t)f(x_2, y)$$

for any $x_1, x_2 \in [0, 1], y \in [-1, 1], t \in [0, 1]$, and

 $f(x, ty_1 + (1-t)y_2) \le tf(x, y_1) + (1-t)f(x, y_2)$

for any $x \in [0, 1]$, $y_1, y_2 \in [-1, 1]$, $t \in [0, 1]$. But these conditions are obviously satisfied; moreover, we have not only inequality but also equality in both cases:

$$(tx_1y + (1-t)x_2y, -y) = t(x_1y, -y) + (1-t)(x_2y, -y)$$

and

$$(xty_1 + x(1-t)y_2, -ty_1 - (1-t)y_2) = t(xy_1, -y_1) + (1-t)(xy_2, -y_2).$$

The theorem is proved.

3. We recall that by an *interval space* (see [4]) we mean a topological space X endowed with a mapping $[\cdot, \cdot]: X \times X \rightarrow \{\text{connected subsets of } X\}$ such that $x_1, x_2 \in [x_1, x_2] = [x_2, x_1]$ for all $x_1, x_2 \in X$. A subset K of an interval space is *convex* if for every $x_1, x_2 \in K$ we have $[x_1, x_2] \subset K$. Any convex subset of a real topological vector space is an interval space with its natural interval structure.

A linearly ordered space (see [6]) is called *complete* if every subset has a least upper bound. Such spaces are the extended real line $\overline{\mathbf{R}}$, the extended euclidean *n*-space $\overline{\mathbf{R}}^n$ or any compact (in the euclidean topology) subset of \mathbf{R}^n with respect to the lexicographic order.

Let X be an interval space and Z a complete linearly ordered space. A function $f: X \rightarrow Z$ is called *quasiconvex* (resp. *quasiconcave*) if the sets

$$\{x \in X: f(x) \leq z\} \quad (\text{resp. } \{x \in X: f(x) \geq z\})$$

are convex for all $z \in \mathbb{Z}$. Furthermore, f is called upper semicontinuous if all the sets

$$\{x \in X: f(x) \ge z\}, \quad z \in \mathbb{Z},$$

are closed in X.

If X is compact and $f: X \to Z$ is upper semicontinuous, then there exists an $x_0 \in X$ such that $f(x_0) = \sup_{x \in X} f(x)$. Given a family $(f_i)_{i \in I}$ of upper semicontinuous functions from X into Z, the map $\inf_{i \in I} f_i$ is also upper semicontinuous. These statements are proved in the same way as in case $Z = \overline{\mathbf{R}}$.

THEOREM 2. Let X be a compact interval space, Y an arbitrary interval space, Z a complete linearly ordered space and $f: X \times Y \rightarrow Z$ an upper semicontinuous function such that

(3^x) the subfunctions $f(\cdot, y)$ are quasiconcave on X for any fixed $y \in Y$,

(3) the subfunctions $f(x, \cdot)$ are quasiconvex on Y for any fixed $x \in X$.

Then

(4)
$$\max_{x} \inf_{y} f(x, y) = \inf_{y} \max_{x} f(x, y).$$

PROOF. The expressions in (4) make sense by the two statements mentioned just before this theorem. Being the relation $\max_{x} \inf_{y} f(x, y) \leq \inf_{y} \max_{x} f(x, y)$ obvious,

it is enough to show that the family of sets

$$\{K(y) \equiv \{x \in X : f(x, y) \ge \inf_{y} \max_{x} f(x, y)\} : y \in Y\}$$

has a non-empty intersection.

For any $y \in Y$, the set K(y) is convex by (3^x) and non-empty by the definition of $\inf \max f(x, y) \equiv z^*$. Moreover, K(y) is compact because X is compact and f is upper semicontinuous.

It follows from (3^{ν}) that for any $y_1, y_2 \in Y$ and $y \in [y_1, y_2]$, $K(y) \subset K(y_1) \cup K(y_2)$. Finally, if $\lim_{i \in I} x_i = x$, $\lim_{i \in I} y_i = y$ and $x_i \in K(y_i)$ for all $i \in I$, then $x \in K(y)$. Indeed, we have $f(x_i, y_i) \ge z^*$ for all $i \in I$ and $\lim_{i \in I} (x_i, y_i) = (x, y)$. Hence, by the upper semicontinuity of f, $f(x, y) \ge z^*$, i.e. $x \in K(y)$.

On the basis of these properties, our theorem follows from the fixed point theorem of I. Joó [2], which can be proved by simple tools (the present formulation is due to L. L. STACHÓ [4]):

Let X, Y be interval spaces and $K(\cdot)$ a mapping of Y into the family of compact convex subsets of X, such that

(i) $K(y) \neq \emptyset$ for all $y \in Y$,

(ii) $K(y) \subset \overline{K}(y_1) \cup \overline{K}(y_2)$ whenever $y \in [y_1, y_2]$ and $y_1, y_2 \in Y$; (iii) $x \in K(y)$ whenever $y = \lim_{i \in I} y_i$, $x = \lim_{i \in I} x_i$ and $x_i \in K(y_i)$ for all $i \in I$.

Then we have

$$\bigcap_{\mathbf{y}\in\mathbf{Y}}K(\mathbf{y})\neq\emptyset.$$

4. THEOREM 3. Let X be a compact interval space, Y a convex subset of some real topological vector space, Z a complete linearly ordered space and $f: X \times Y \rightarrow Z$ a function, having the properties

 (5^{x}) the subfunctions $f(\cdot, y)$ are quasiconcave on X and upper semicontinuous on X for all fixed $y \in Y$.

 (5^{y}) the subfunctions $f(x, \cdot)$ are quasiconvex on Y and upper semicontinuous on any interval of Y for all fixed $x \in X$. Then

$$\max_{x} \inf_{y} f(x, y) = \inf_{y} \max_{x} f(x, y).$$

REMARK. As Theorem 2 in [4] shows, this assertion is true if we require in (5^{y}) lower semicontinuity instead of upper semicontinuity.

PROOF. It suffices again to prove that the family of sets

$$\mathscr{F} \equiv \left\{ K(y) \equiv \left\{ x \in X : f(x, y) \ge \inf_{y} \max_{x} f(x, y) \right\} : y \in Y \right\}$$

has a non-empty intersection. Being the elements of \mathcal{F} compact (because of (5^x) and the compactness of X), it suffices to show that \mathcal{F} has the finite intersection property. The definition of $\inf_{y} \max_{x} f(x, y) \equiv z^*$ ensures that $K(y) \neq \emptyset$ for all $y \in Y$. $\bigcap_{i=1}^{n} K(y_i) \neq \emptyset \text{ for every choice of } y_1, \dots, y_n \in Y,$ Assume now that but

11

 $\bigcap_{i=1}^{n+1} K(y_i^*) = \emptyset \text{ for some } y_1^*, \dots, y_{n+1}^* \in Y. \text{ To complete the proof, we show that}$ this is impossible. Set $K^*(y) \equiv \bigcap_{i=3}^{n+1} K(y_i^*) \cap K(y)$ for all $y \in Y$, then

(6)
$$K^*(y_1^*) \cap K^*(y_2^*) = \emptyset.$$

It follows from the inductive hypothesis and (5^x) that

(7)
$$K^*(y)$$
 is non-empty, convex and compact for all $y \in Y$

 (5^{y}) implies that

(8)
$$K^*(y) \subset K^*(y_1) \cup K^*(y_2)$$
 whenever $y_1, y_2 \in Y$ and $y \in [y_1, y_2]$.

Furthermore,

(9) either
$$K^*(y) \subset K^*(y_1^*)$$
 or $K^*(y) \subset K^*(y_2^*)$ for any $y \in [y_1^*, y_2^*]$.

Indeed, if there were points x_1, x_2 such that $x_i \in K^*(y) \cap K^*(y_i^*)$ (i=1, 2) for some $y \in [y_1^*, y_2^*]$, then — using (6), (7) and (8) — the connected set $[x_1, x_2]$ could be represented as the union of two closed, non-empty and disjoint subsets:

$$[x_1, x_2] = \bigcup_{i=1}^{2} [x_1, x_2] \cap K^*(y) \cap K^*(y_i^*),$$

which is impossible.

For brevity, we write henceforth $[y_1, y_2) = (y_2, y_1]$ instead of $[y_1, y_2] \setminus \{y_2\}$. It follows from (6)—(9) that the sets

$$\{y \in [y_1^*, y_2^*]: K^*(y) \subset K^*(y_i^*)\}, i = 1, 2$$

are disjoint convex sets and their union is $[y_1^*, y_2^*]$. Therefore there exists a point $y_0 \in [y_1^*, y_2^*]$ such that

(10)
$$K^*(y) \subset K^*(y_i^*)$$
 for all $y \in [y_i^*, y_0], i = 1, 2.$

Suppose

(11)
$$K^*(y_0) \subset K^*(y_1^*)$$

(the case $K^*(y_0) \subset K^*(y_2^*)$ is similar). Then $\bigcap_{y \in [y_2^*, y_0)} K^*(y) \neq \emptyset$. Indeed, being the sets $K^*(y)$ compact, it is enough to show that for any $y_1 \in (y_0, y_2], y_2 \in (y_0, y_2^*]$: $K^*(y_1) \subset K^*(y_2)$. But this is true: the application of (8), (11), (10) and (6) gives

$$K^{*}(y_{1}) \subset (K^{*}(y_{0}) \cup K^{*}(y_{2})) \cap K^{*}(y_{2}^{*}) \subset (K^{*}(y_{1}^{*}) \cup K^{*}(y_{2})) \cap K^{*}(y_{2}^{*}) =$$

= $(K^{*}(y_{1}^{*}) \cap K^{*}(y_{2}^{*})) \cup (K^{*}(y_{2}) \cap K^{*}(y_{2}^{*})) = \emptyset \cup K^{*}(y_{2}) = K^{*}(y_{2}).$

Choosing an arbitrary $x_0 \in \bigcap_{y \in [y_2^*, y_0]} K^*(y)$, we have by definition $f(x_0, y) \ge z^*$ for

Acta Mathematica Academiae Scientiarum Hungaricae 40, 1982

162

all $y \in [y_2^*, y_0]$; and taking the limit $y \to y_0$, we obtain by (5^y)

$$(12) f(x_0, y_0) \ge z^*.$$

On the other hand; $x_0 \in K^*(y_2^*)$, (6) and (11) imply $x_0 \neq K^*(y_0)$ i.e. $f(x_0, y_0) < z^*$, contradicting (12). This contradiction proves the theorem.

References

- [1] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann., 100 (1928), 295-320.
- [2] I. Joó and A. P. Sövegjártó, A fixed point theorem, Ann. Univ. Sci. Budapest, Sect. Math. (to appear).
- [3] I. Joó, A simple proof for von Neumann's minimax theorem, Acta Sci. Math. Szeged, 42 (1980), 91-94.
- [4] L. L. Stachó, Minimax theorems beyond topological vector spaces, Acta Sci. Math. Szeged, 42 (1980), 157–164.
- [5] C.-W. Ha, Minimax and fixed point theorems, Math. Ann., 248 (1980), 73-77.

[6] R. Engelking, General topology (Warszawa, 1977).

(Received May 14, 1981)

DEPARTMENT II OF ANALYSIS LORÁND EÖTVÖS UNIVERSITY H-1445 BUDAPEST 8, PF. 323.