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Let S be a nonvoid set endowed with a ”segment structure“ which generalizes the notion of a segment
in a linear space, and which allows to define affine functions. The problem is treated, whether a pair
of sets X,Y ⊂ S can be separated by some affine function f : S → R. Here separation means f(y) ≥
f(z), y ∈ Y, z ∈ Z in it’s weakest and infy∈Y f(y) > supz∈Z f(z) in it’s strongest form. Several solutions
of this problem are presented as a consequence of von Neumann’s minimax theorem. As special cases
we obtain all the classical separation theorems for linear spaces, linear topological spaces, locally convex
spaces, normed spaces, etc., but also new results for convex metric spaces are derived.
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1. Preliminaries

1.1. Notation

Let S be a nonvoid set and 2S the power set of S. Then every nonvoid subset P ⊂ 2S is
called a paving in S and (S,P) is a paved space. We write P(S) (E(S)) for the paving of
all nonvoid (finite) subsets of S. If S is a topological space, then we set F(S) (K(S)) for
the paving of all closed (compact) subsets of S.

A paving P in S is called upward filtrating iff ∀A,B ∈ P ∃C ∈ P : C ⊃ A ∪ B, and
P resp. the paved space (S,P) is called compact iff every subpaving Q ⊂ P with the
finite intersection property

⋂

{P : P ∈ R} 6= ∅ ∀ R ∈ E(Q), has the global intersection
property

⋂

{P : P ∈ Q} 6= ∅, and a subset T of S is called compact (in P) iff the trace
PT := {C ∩ T : C ∈ P} is compact.

A paving is said to be ∩f−closed (∩c−closed, ∩a−closed) iff it is closed under finite
(countable, arbitrary) intersections and it is called ∪f−closed iff it is closed under finite
unions.

We shall use the extensions R• := R∪{+∞}, R• := R∪{−∞}, and R := R∪{−∞,+∞}
of the set R of reals, and we set Pn := {(α1, . . . , αn) ∈ Rn : αi ≥ 0, i ≤ n,

∑n
i=1 αi = 1}.

For a nonvoid subset R ⊂ R let RS denote the set of all functions f : S → R, and let

infT f := inft∈T f(t), T ∈ P(S). For H ⊂ RS
and T ∈ P(S) the family of all restrictions

h|T, h ∈ H, will be denoted by H|T , and we set H + R := {h + γ : h ∈ H, γ ∈ R}.
H is called ∨f − (∨c−,∨a−)closed iff H is closed w.r.t. formation of finite (countable,
arbitrary) suprema.
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Now let (S,P) be a paved space. Then a function f ∈ RS
is called lower semicontinuous

iff {f ≤ α} := {s ∈ S : f(s) ≤ α} ∈ P for all α ∈ R, and f is continuous iff f and −f
are lower semicontinuous. We set LSC(S,P) for the family of all lower semicontinous
functions and C(S,P) for the family of all continuous real-valued functions.

Remark 1.1. Let (S,P) be a paved space.

a) If T ∈ P(S) is compact in P, then every f |T, f ∈ LSC(S,P), attains its minimum.

b) (i) γf ∈ LSC(S,P) ∀γ > 0, f ∈ LSC(S,P).
f + γ ∈ LSC(S,P) ∀f ∈ LSC(S,P), γ ∈ R.

(ii) S ∈ P, f ∈ LSC(S,P) =⇒ f ∧ γ ∈ LSC(S,P) ∀ γ ∈ R.
∅ ∈ P, f ∈ LSC(S,P) =⇒ f ∨ γ ∈ LSC(S,P) ∀ γ ∈ R.

(iii) If P is ∩f − (∩c−,∩a−) closed, then LSC(S,P) is ∨f − (∨c−,∨a−) closed.
(iv) If P is ∪f − ∩c−closed, then LSC(S,P) ∩ R•S (LSC(S,P) ∩ RS

• ) is a convex
subcone of R•S (RS

• ), and C(S,P) is a linear sublattice of RS.
(v) {∅, S} ⊂ P ⇐⇒ R ⊂ C(S,P) ⇐⇒ R ⊂ LSC(S,P).

Proof. a) W.l.g. let infT f < ∞. For Pn := {f ≤ (infT f) ∨ (−n) + 1
n
} we have

P1 ⊃ . . . ⊃ Pn ∈ P and Pn ∩ T 6= ∅, n ∈ N, hence argmin f |T =
⋂∞

n=1 Pn ∩ T 6= ∅.
b) Part (iv) follows from the identity {f + g ≤ α} =

⋂

ρ∈Q{f ≤ ρ} ∪ {g ≤ α − ρ}. The
other assertions are obvious.

1.2. Abstract segment spaces

Let S be a nonvoid set. Then a function 〈·, ·〉 : S×S → 2S with {s, t} ⊂ 〈s, t〉, (s, t) ∈ S2,
is called a segment function and the sets 〈s, t〉 are segments in S. (Compare [5], [19], [22],
[34], [36], [41] for examples.) A subset T ⊂ S is convex iff {s, t} ⊂ T implies 〈s, t〉 ⊂ T .
The paving C of convex subsets of S contains ∅ and S, and it is closed with respect to
arbitrary intersections and nested unions. Here LSC(S, C) is the family of all quasiconvex
or lower convexity preserving [41] functions f : S → R.
We shall now consider special segment spaces with an additional structure which makes
it possible to define convex functions forming a convex subcone of R•S or RS

• contained
in LSC(S, C):
A function µ : S × S × [0, 1] → S with µ(s, t, 1) = s and µ(s, t, 0) = t for s, t ∈ S will be
called a segment structure for S, and (S, µ) endowed with the segments

〈s, t〉µ = µ(s, t, [0, 1]) := {µ(s, t, λ) : λ ∈ [0, 1]}, s, t ∈ S

is a structured segment space. The convex subsets are also called µ−convex, a function
f : S → R is said to be (µ−)convex iff f ∈ R•S or f ∈ RS

• and

f(µ(s, t, λ)) ≤ λf(s) + (1− λ)f(t), s, t ∈ S, λ ∈ [0, 1], (1)

and f is (µ−)affine iff relation (1) holds with equality.
We set Cµ for the paving of all µ−convex subsets of S, Cµ for the family of all µ−convex
functions f : S → R, and Aµ for the family of all real-valued µ−affine functions.

A paved structured segment space is given by a triplet Σ = (S,P, µ), where (S,P) is a
paved space and µ is a segment structure for S. We set C∗(Σ) = Cµ ∩ P and A∗(Σ) =
Aµ ∩ C(S,P).



J. Kindler / Separation Theorems for Abstract Convex Structures 75

A segment structure µ is called

• reflexive, iff µ(s, s, λ) = s for all s ∈ S, λ ∈ [0, 1],

• symmetric, iff µ(x, y, λ) = µ(y, x, (1− λ)) for all (x, y, λ) ∈ S × S × [0, 1],

• associative, iff µ(x, µ(y, z, τ), λ) = µ(µ(x, y, λ[λ+ (1− λ)τ ]−1), z, λ+ (1− λ)τ) for all
(x, y, z, λ, τ) ∈ S × S × S × (0, 1)× (0, 1),

• cancellative iff µ(x, y, λ) = µ(x, z, λ) for some (x, y, z, λ) ∈ S × S × S × (0, 1) implies
y = z,

• convexor [35] iff it is reflexive, symmetric and associative.

The segment space (S, µ) is said to have the

• Pasch Property [41] iff for all (s0, s1, s2, λ1, λ2) ∈ S × S × S × (0, 1) × (0, 1) there
exists a pair (τ1, τ2) ∈ (0, 1]2 with

µ(s2, µ(s1, s0, λ1), τ1) = µ(s1, µ(s2, s0, λ2), τ2) (2)

If one can choose τi = (1 − λi)λ3−i(1 − λ1λ2)
−1, i ∈ {1, 2}, then we say that (S, µ)

has the Algebraic Pasch Property.

Remark 1.2. Let (S, µ) be a structured segment space. Then the following properties
hold:

a) The paving Cµ contains the singletons iff µ is reflexive.

b) Cµ ∩ R•S (Cµ ∩ RS
• ,Cµ ∩ RS) is a ∨a−closed (∨f−closed) convex subcone of R•S

(RS
• ,RS) and a subset of LSC(S, Cµ).

c) Aµ is a linear subspace of RS and a subset of C(S, Cµ).
d) A symmetric segment structure possesses the Algebraic Pasch Property iff it is

associative.

Let (S, µ) be a structured segment space. Then for T ⊂ S the (µ−)core of T (in S) is
defined according to

corµT = {t ∈ T : ∀s ∈ S \ {t} ∃λ ∈ (0, 1] with µ(s, t, λ) ∈ T}.

This definition, which is not standard in literature, turns out to be useful in the sequel.
For convex subsets of linear spaces it coincides with the usual one (cf. Example 1.5 below).

Lemma 1.3. Let (S, µ) be a structured segment space, and let T ∈ P(S) with corµT 6= ∅.
Let α ∈ R and let f ∈ RS

be µ−convex. Then the following holds:

a) f |T ≥ α > infS f implies f | corµT > α.

b) Let (S, µ) possess the Pasch Property, and let T be convex.
(i) For s0 ∈ corµT, s1 ∈ T and λ ∈ [0, 1) we have z1 := µ(s1, s0, λ) ∈ corµT . In

particular, corµT is a convex set.
(ii) f |corµT ≥ α implies either f |corµT ≡ ∞ or f |T ≥ α.

Proof. a) Let t0 ∈ corµT . Choose s ∈ S with f(s) < α and λ ∈ (0, 1] with x :=
µ(s, t0, λ) ∈ T . Then s /∈ T implies λ < 1, and α ≤ f(x) ≤ λf(s) + (1 − λ)f(t0) <
λα+ (1− λ)f(t0) yields f(t0) > α.
b)(i) We may assume λ1 := λ ∈ (0, 1). Let s2 ∈ S \ {z1}. Since s0 ∈ corµT there
exists a λ2 ∈ (0, 1] with z2 := µ(s2, s0, λ2) ∈ T . In case λ2 = 1 we have µ(s2, z1, 1) =
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s2 = z2 ∈ T . In case λ2 ∈ (0, 1) we choose τ1, τ2 according to (2), and we obtain
µ(s2, z1, τ1) = µ(s1, z2, τ2) ∈ T , since s1, z2 ∈ T .
(ii) Let t ∈ T and t0 ∈ corµT with f(t0) 6= ∞. By (i) we have zn := µ(t, t0, 1 − 1

n
) ∈

corµT , and from α ≤ f(zn) ≤ (1− 1
n
)f(t) + 1

n
f(t0), n ∈ N, we infer f(t) ≥ α.

Let (S, µ) and (T, ρ) be two structured segment spaces. Then a map ϕ : S → T is affine
iff

ϕ(µ(s1, s2, λ)) = ρ(ϕ(s1), ϕ(s2), λ), s1, s2 ∈ S, λ ∈ [0, 1].

Especially, if (T, ρ) = (R, ν) with the natural segment structure ν, then ϕ is affine iff
f ∈ Aµ.

Remark 1.4. Let (S, µ) and (T, ρ) be two structured segment spaces and ϕ : (S, µ) →
(T, ρ) an affine bijection. Then the following holds:

a) ϕ−1 is affine, and µ is reflexive/symmetric/associative/cancellative iff ρ has these
properties.

b) ϕ(C) ∈ Cρ ∀C ∈ Cµ.
c) g ◦ ϕ ∈ Aµ ∀g ∈ Aρ.

d) ϕ(corµY ) = corρϕ(Y ), Y ⊂ S.

1.3. Some first examples

Example 1.5. Let E be a linear space over the reals and E ′ the (algebraic) dual space
of all linear functionals f : E → R. Every nonvoid convex subset S of E can be equipped
with the natural segment structure

ν(s, t, λ) = λs+ (1− λ)t, (s, t, λ) ∈ S × S × [0, 1]

which is a cancellative convexor. It is well-known that this is – in essence – the unique
example of a cancellative convexor. (Cf. Lemma 3.3 below.)
Now let S = E and T a convex subset of E. Here Aν = E ′ + R is point separating (take
a Hamel base), and a ν−affine function f ∈ R•E is real-valued iff f 6≡ ∞. The ν−core
corνT , the algebraic interior [17] cor T and the set of all internal points [7] coincide. In
particular, by Lemma 1.3 b), cor T is convex.

In the sequel, if not otherwise stated, convex subsets of linear spaces will always be
endowed with the natural segment structure.

Sometimes the following simple observation is helpful [15].

Example 1.6. Let S be an arbitrary set and C a convex subset of a real linear space.
Suppose that there exists a bijection ϕ : S → C. Then

µ(s, t, λ) = ϕ−1(λϕ(s) + (1− λ)ϕ(t)), (s, t, λ) ∈ S × S × [0, 1]

defines a segment structure on S such that ϕ : S → C is affine. Hence, Remark 1.4
applies. In particular, µ is a cancellative convexor.

Example 1.7. The set R• may be endowed with the “extended segment structureÔ

ν•(s, t, λ) = λs+ (1− λ)t, (s, t, λ) ∈ R• × R• × [0, 1],
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which is a noncancellative convexor. Here Aν• = R, i.e. every real-valued affine function
is constant. The nonconstant affine functions f : R• → R• are of the form

f(x) =

{

αx+ β : x ∈ R
∞ : x = ∞

with α, β ∈ R.
A nonvoid subset T of R• has nonvoid ν•−core iff ∞ ∈ T . In this case, corν•T =
cor(T \ {∞}) ∪ {∞}.

Example 1.8. (The circle) Let S1 := {eiξ : 0 ≤ ξ < 2π} be the unit circle in the complex
plane C. We define a segment structure on S1 according to

σ(eiξ, eiη, λ) =







ei(λξ+(1−λ)η) : |ξ − η| ≤ π
ei(λ(2π+ξ)+(1−λ)η) : η > ξ + π
ei(λξ+(1−λ)(2π+η)) : ξ > η + π

i.e., in case |ξ−η| 6= π, σ(eiξ, eiη, [0, 1]) is the shortest arc joining eiξ and eiη. This segment
structure is reflexive, symmetric, and cancellative, but not associative.
Indeed, for λ = τ = 1

2
we have λ+ (1− λ)τ = 3

4
, λ(λ+ (1− λ)τ)−1 = 2

3
, but

σ(ei
π
4 , σ(eiπ, ei

7π
4 ,

1

2
),
1

2
) = ei

29π
16 6= ei

5π
16 = σ(σ(ei

π
4 , eiπ,

2

3
), ei

7π
4 ,

3

4
).

Especially, for f ∈ Aσ we have f(ei
29π
16 ) = f(ei

5π
16 ) =: α and σ(ei

29π
16 , ei

5π
16 , 5

8
) = ei0 = 1

together with σ(ei0, ei2ξ, 1
2
) = eiξ, ξ ∈ [0, π

2
], implies f ≡ α = f(1), i.e., every affine

function f : S1 → R is constant.
It is easy to see, however, that the σ−affine functions f : S → R are point separating for
every nonvoid σ−convex proper subset S of S1.

Example 1.9. (Products of segment spaces) Let (Si, µi)i∈I be a family of structured
segment spaces, let S =

∏

i∈I Si be the cartesian product and πi : S → Si the projections.
Then (S, µ) with

µ(s, t, λ) = (µi(πi(s), πi(t), λ)i∈I), s, t ∈ S, λ ∈ [0, 1]

is the product space.
Here µ is reflexive/symmetric/associative/cancellative iff every µi has these properties.
Moreover, the projections are affine and fi ◦ πi ∈ Aµ for all fi ∈ Aµi

.

Example 1.10. (The cylinder) Let (S, µ) be the product of the circle (S1, σ) with (R, ν)
according to Example 1.9. Then µ(s, t, [0, 1]) is the geodesic segment joining s and t.
Let f ∈ Aµ. Then, by Example 1.8, we have f(eiξ, r) = f(1, r) for all ξ ∈ [0, 2π), r ∈ R.
On the other hand f(1, ·) : R → R is a ν−affine function. Therefore every f ∈ Aµ is of
the form

f(eiξ, r) = αr + β, α, β ∈ R.

Here two points can be separated by an affine function iff they do not lie on the same
circle.
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The following closely related example was given by Horvath to demonstrate that convex
sets need not be contractible.

Example 1.11. ([18] ) Let S = {reiξ : 0 ≤ ξ < 2π, r ≥ 1} be the complement of the
open unit disc in the plane, endowed with the segment structure

µ(r1e
iξ1 , r2e

iξ2 , λ) = (λr1 + (1− λ)r2)e
i(λξ1+(1−λ)ξ2)

Here the annuli
{reiξ : 0 ≤ ξ < 2π, a ≤ r ≤ b}, 1 ≤ a ≤ b

are convex sets.
The map ϕ : S → [0, 2π) × [1,∞) with ϕ(reiξ) = (ξ, r) is an affine bijection. Therefore
every f ∈ Aµ is of the form

f(reiξ) = αξ + βr + γ, (α, β, γ) ∈ R3.

Perhaps a more natural segment structure would be

µ′(r1e
iξ1 , r2e

iξ2 , λ) = (λr1 + (1− λ)r2)σ(e
iξ1 , eiξ2 , λ)

with σ defined as in Example 1.8. Here, similar to Example 1.10, every f ∈ Aµ′ is of the
form

f(reiξ) = βr + γ, (β, γ) ∈ R2.

Example 1.12. (Hyperspaces) Let (S,P, µ) be a paved structured segment space with
∅ /∈ P. Then P can be endowed with a segment structure µ̃ according to

µ̃(A,B, λ) = {µ(a, b, λ) : a ∈ A, b ∈ B}, A,B ∈ P, λ ∈ [0, 1].

It is easy to see that µ̃ is reflexive/symmetric/associative if µ has these properties, but
cancellativity does not carry over, in general, from µ to µ̃. For example, take S = R and
µ = ν the natural segment structure. If P is the paving of closed convex or of bounded
convex subsets, then ν̃ is easily seen to be noncancellative, but if one takes for P the
paving of compact convex subsets, then ν̃ is cancellative, which is a basic fact in interval
arithmetics.
A more general result is due to Urbański [40]:
Let S be a (Hausdorff) linear topological space and P the paving of bounded, closed,
convex subsets. Let µ̄(A,B, λ) be the closure of µ̃(A,B, λ). Then µ̄ is a cancellative
convexor.

The motivation for the study of abstract segment structures arose from the foundation
of a utility theory in game theory and mathematical economics [43] (compare also [14,
16, 23, 44]) but there are also other fields of application such as operational quantum
mechanics [13, 14] and color vision [14]. Later on, inspired by a paper of Rusin [32] on the
Ônonlinear“ blending behavior of the octane number of gasoline, Gudder and Schroeck [15]
pointed out that the classical theory is too special to describe certain blending situations
arising in color vision, threshold phenomena, and chemistry. They showed that these
examples can only be described in an adequate way by segment structures where certain
properties of a convexor are violated.
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2. Separation Theorems

It is well–known that von Neumann’s minimax theorem [42] can be derived from the clas-
sical separation theorem for Euclidean spaces. But there are also completely elementary
proofs using only basic linear algebra [24, 30, 45]. In this paper we go the reverse way.
We prove our separation theorems with the aid of the following lemma which is closely
related to Ky Fan’s minimax theorem [8]:

Lemma 2.1. Let (S, µ) be a structured segment space, T a nonvoid convex subset of S,
F = {f1, . . . , fn} a finite subset of Cµ, and {γ1, . . . , γn} ⊂ R.

a) If F ⊂ R•S, and if every fi that attains the value ∞ on T is bounded from below on
T , then the following are equivalent:
(α) ∃ε > 0 ∀t ∈ T ∃i ≤ n : fi(t) > γi + ε
(β) ∃(α1, . . . , αn) ∈ Pn : infT

∑n
i=1 αifi >

∑n
i=1 αiγi

b) If F ⊂ RS
• , then the following are equivalent:

(γ) ∀t ∈ T ∃i ≤ n : fi(t) ≥ γi
(δ) ∃(α1, . . . , αn) ∈ Pn : infT

∑n
i=1 αifi ≥

∑n
i=1 αiγi

Proof. W.l.g. we may assume γi = 0 and T = S.
a) Let (α) be satisfied. We set Z := {s ∈ S : fi(s) < ∞ ∀i ≤ n}, and we fix an
A = {s1, . . . sm} ∈ E(Z). By von Neumann’s minimax theorem there exist vectors
(α1, . . . , αn) ∈ Pn and (β1, . . . , βm) ∈ Pm with

min
k≤m

n
∑

i=1

αifi(sk) = max
i≤n

m
∑

k=1

βkfi(sk). (3)

From fi ∈ Cµ it follows by induction that there exists an s0 ∈ S with

fi(s0) ≤
m
∑

k=1

βkfi(sk) ∀i ≤ n. (4)

By (3) and (4) together with (α) there exists an ε > 0 with

⋂

s∈A

{

(α1, . . . , αn) ∈ Pn :
n

∑

i=1

αifi(s) ≥ ε

}

6= ∅ ∀A ∈ E(Z).

Since Pn is compact, we obtain infs∈Z
∑n

i=1 αifi(s) ≥ ε for some (α1, . . . , αn) ∈ Pn and
some ε > 0.

If every fi is real-valued, we are done. Otherwise we proceed as in [29]:
Let J = {j ∈ {1, . . . , n} : fj(s) = ∞ for some s ∈ S}, and let r = card J ≥ 1. Choose
an M ∈ N with fj(s) ≥ −M for all j ∈ J, s ∈ S. Then for N > ε−1Mr we get

n
∑

i=1

αifi(s) +
1

N

∑

j∈J

fj(s) ≥ ε− Mr

N
> 0 ∀s ∈ S,

and for
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α′
i =

{

(αi +
1
N
)(1 + r

N
)−1 : i ∈ J

αi(1 +
r
N
)−1 : i ∈ {1, . . . , n} \ J

we have (α′
1, . . . , α

′
n) ∈ Pn and infs∈S

∑n
i=1 α

′
ifi(s) > 0.

The implication (β) =⇒ (α) is obvious.
b) Let (γ) be satisfied. By a) the sets

QN :=
⋂

s∈S

{

(α1, . . . αn) ∈ Pn :
n

∑

i=1

αi

(

fi(s) ∨ (−N) +
1

N

)

≥ 0

}

, N ∈ N

are nonvoid, and every (α1, . . . αn) ∈
⋂∞

N=1 QN satisfies (δ).

2.1. Separation of a point from a set

Theorem 2.2. Let (S, µ) be a structured segment space, T a nonvoid convex subset of S,
F = {f1, . . . , fn} a finite subset of Cµ, and s ∈ S.

a) If F ⊂ R•S and if every fi that attains the value ∞ on T is bounded from below on
T , then the following are equivalent:
(α) ∃ε > 0 ∀t ∈ T ∃i ≤ n : fi(t) > fi(s) + ε.
(β) ∃(α1, . . . , αn) ∈ Pn : infT

∑n
i=1 αifi >

∑n
i=1 αifi(s).

b) If F ⊂ RS
• , then the following are equivalent:

(γ) ∀t ∈ T ∃i ≤ n : fi(t) ≥ fi(s)
(δ) ∃(α1, . . . , αn) ∈ Pn : infT

∑n
i=1 αifi ≥

∑n
i=1 αifi(s)

Proof. a) Apply Lemma 2.1 a) to F′ := {fi : fi(s) ∈ R} and γi = fi(s).
b) Apply Lemma 2.1 b) with γi = fi(s). Note that condition (δ) is satisfied for αj =

1
n
if

fi(s) = −∞ for some i ≤ n.

Theorem 2.3. Let Σ = (S,P, µ) be a paved structured segment space, T a nonvoid convex
subset of S which is compact in C∗(Σ), let F be a nonvoid convex subset of LSC(S,P)∩ Cµ,
and let θ : F → R be convex. Assume that either

(i) F ⊂ RS
• and θ : F → R•, or

(ii) F ⊂ R•S, every f ∈ F that attains the value ∞ on T is bounded from below on T
and θ : F → R•.

Then the following are equivalent:

(a) ∀t ∈ T ∃f ∈ F : f(t) > θ(f).

(b) ∃f ∈ F : infT f > θ(f).

Especially, for s ∈ S \ T the following are equivalent:

(c) ∀t ∈ T ∃f ∈ F : f(t) > f(s).

(d) ∃f ∈ F : infT f > f(s).

Proof. (a) =⇒ (b): For t ∈ T choose ft ∈ F and βt, γt ∈ R with ft(t) > βt > γt > θ(ft).
By Remark 1.2 b) we have F ⊂ LSC(S, C∗(Σ)). Hence

⋂

t∈T{ft ≤ βt} ∩ T = ∅ implies
⋂n

i=1{fti ≤ βti}∩T = ∅ for some finite set {t1, . . . , tn} ⊂ T . In particular,
⋂n

i=1{fti ≤ γti+
ε}∩ T = ∅ for ε = mini≤n(βti − γti). By Lemma 2.1 there exists an α = (α1, . . . , αn) ∈ Pn
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such that for f =
∑n

i=1 αifti we have infT f ≥
∑n

i=1 αiγti >
∑n

i=1 αiθ(fti) ≥ θ(f).
(b) =⇒ (a) is obvious, and (c) ⇐⇒ (d) follows with θ(f) = f(s).

2.2. Separation of two sets

Let (Y, Z) be a pair of nonvoid subsets of a nonvoid set S and f ∈ RS
. Then (Y, Z) is

said to be

• f -separated iff there exists an α ∈ R such that f(y) ≥ α ≥ f(z), y ∈ Y, z ∈ Z, holds,

• properly f -separated iff (Y, Z) is f -separated and supY f > infZ f holds,

• strictly f -separated iff there exists an α ∈ R such that f(y) > α > f(z), y ∈ Y, z ∈ Z,
holds, and

• strongly f−separated iff infY f > supZ f holds.

For F ⊂ RS
a pair (Y, Z) of nonvoid subsets of S is called

• F-separated iff there exists a nonconstant function f ∈ F such that (Y, Z) is f−separa-
ted,

• properly/strictly/strongly F-separated iff there exists a function f ∈ F such that (Y, Z)
is properly/strictly/strongly f−separated, and

• pointwise F-separated iff for every pair (y, z) ∈ (Y, Z) there exists an f ∈ F with
f(y) 6= f(z).

and F is called point separating iff for every pair (y, z) ∈ S2 with y 6= z there exists an
f ∈ F with f(y) 6= f(z).

A paving P in S is called (properly,. . . ) F-separated iff every pair (Y, Z) of nonvoid disjoint
sets Y, Z ∈ P is (properly,. . . ) F-separated.

Theorem 2.4. Let Σ = (S,P, µ) be a paved structured segment space and Y, Z nonvoid
convex subsets of S which are compact in C∗(Σ). Let F be a nonvoid absolutely convex
subset of A∗(Σ). Then the following are equivalent:

(a) The pair (Y, Z) is pointwise F−separated.

(b) The pair (Y, Z) is strongly F−separated.

Proof. (b) =⇒ (a) is obvious.
(a) =⇒ (b): We fix a y ∈ Y . By (a) and F = −F, for every z ∈ Z there exists a g ∈ F
with g(z) > g(y). Hence, by Theorem 2.3 there exists an f ∈ F with f(y) > supZ f . Now
with Theorem 2.3 applied to T = Y and θ(f) = supZ f, f ∈ F, the assertion follows.

Corollary 2.5. Let a paved structured segment space Σ = (S,P, µ) and a nonvoid abso-
lutely convex family F ⊂ A∗(Σ) be given. Let K be a compact subpaving of Cµ with

C ∩K ∈ K ∪ {∅} ∀C ∈ C∗(Σ), K ∈ K.

Then a pair of nonvoid sets (Y, Z) ∈ K × K is strongly F−separated iff it is pointwise
F−separated.

Theorem 2.6. Let Σ = (S,P, µ) be a paved structured segment space and F a nonvoid
∨f−closed convex subset of C(S,P) ∩ LSC(S, Cµ) with F = F + R. Let Y, Z ∈ P(S) be
subsets with Z convex and Y, Z compact in C∗(Σ). Assume that

∀(y, z) ∈ Y × Z ∃f ∈ F ∩ Aµ : f(y) > f(z).
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Then the pair (Y, Z) is strongly F−separated.

Proof. We first fix a y ∈ Y . By Theorem 2.3, applied to T = Z and F replaced by
−F ∩ Aµ, there exists an fy ∈ F ∩ Aµ and an αy ∈ R with supZ fy < αy < fy(y). W.l.g.
we may assume αy = 0 since Aµ = Aµ + R.
From

⋂

y∈Y {fy ≤ 0} ∩ Y = ∅ it follows that
⋂

y∈B{fy ≤ 0} ∩ Y = ∅ for some B ∈ E(Y ),
since {fy ≤ 0} ∈ C∗(Σ) and Y is compact in C∗(Σ). Now for f =

∨

t∈B ft we have
supZ f < 0 < f(y), y ∈ Y.

Corollary 2.7. Let Σ = (S,P, µ) be a paved structured segment space with ∪f−∩c−closed
P and {∅, S} ⊂ P. Let Y and Z be nonvoid subsets of S with Z convex and Y, Z
compact in C∗(Σ) such that (Y, Z) is pointwise A∗(Σ)−separated. Then (Y, Z) is strongly
C(S,P) ∩ Cµ−separated.

Proof. By Remarks 1.1 b) and 1.2 b), F = C(S,P) ∩ Cµ is a ∨f−closed convex subcone
of RS with R ⊂ F ⊂ LSC(S, Cµ). Hence Theorem 2.6 applies.

Theorem 2.8. Let (S, µ) be a structured segment space, and let two upward filtrating
pavings Y ,Z ⊂ P(S) be given such that every pair (Y, Z)∈ Y×Z is properly Aµ−separated.
Suppose that every nonnegative f ∈ Aµ is constant. Let Y0 =

⋃

{Y : Y ∈ Y} and
Z0 =

⋃

{Z : Z ∈ Z}. If corµY 6= ∅ for some Y ∈ Y, then there exists a µ−affine function
f ∈ R•S separating the pair (Y0, Z0) properly.

Proof. Let Y ′ ∈ Y with corµY
′ 6= ∅, and let y0 ∈ corµY

′. W.l.g. we may assume Y ′ ⊂
Y ∀ Y ∈ Y . For every s ∈ S \ {y0} we choose an αs ∈ (0, 1] with ys := µ(s, y0, αs) ∈ Y ′.
Since Aµ = Aµ + R, for every pair (Y, Z) ∈ Y × Z there exists a g = gY,Z ∈ Aµ with
infY g ≥ 0 ≥ supZ g and supY g > infZ g. Now αsg(s) + (1− αs)g(y0) = g(ys) ≥ 0 yields
g(y0) > 0, since otherwise g(s) ≥ 0, s ∈ S, would imply that g is constant. W.l.g we may
assume g(y0) = 1, and we arrive at g(s) ≥ 1−αs

−1. Now take a subnet of (gY,Z) converging

pointwise to some f ∈ RS
. Then f is R•−valued and µ−affine with infY0 f ≥ 0 ≥ supZ0

f
and f(y0) = 1.

Theorem 2.9. Let (S, µ) be a structured segment space, and let two upward filtrating
pavings Y ,Z ⊂ P(S) be given such that every pair (Y, Z) ∈ Y×Z is strictly Aµ−separated.
Let Y0 =

⋃

{Y : Y ∈ Y} and Z0 =
⋃

{Z : Z ∈ Z}.
a) For every y0 ∈ corµY0 and z0 ∈ Z0 there exists a µ−affine function f ∈ R•S with

infY0 f ≥ supZ0
f and f(y0) = 1 = −f(z0).

b) If corµY0 6= ∅ and corµZ0 6= ∅, then the pair (Y0, Z0) is properly separated by some
f ∈ Aµ, and every such f separates (corµY0, corµZ0) strictly.

Proof. a) W.l.g. we may assume y0 ∈
⋂

{Y : Y ∈ Y} and z0 ∈
⋂

{Z : Z ∈ Z}. For every
s ∈ S\{y0} we choose an αs ∈ (0, 1] with ys := µ(s, y0, αs) ∈ Y0. By assumption, for every
pair (Y, Z) ∈ Y×Z there exists a g = gY,Z ∈ Aµ with g(y) > g(z) ∀y ∈ Y, z ∈ Z. Since Aµ

is a linear space containing the constant functions, we may assume g(y0) = 1 = −g(z0).
Then we have αsg(s)+(1−αs)g(y0) = g(ys) ≥ g(z0), and therefore g(s) ≥ 1−2αs

−1 for all

g = gY,Z with ys ∈ Y . Now take a subnet of (gY,Z) converging pointwise to some f ∈ RS
.

Then f is R•−valued and µ−affine with infY0 f ≥ supZ0
f and f(y0) = 1 = −f(z0).

b) For y0 ∈ corµY0 and z0 ∈ corµZ0 choose f as in a). Then there exist numbers βs ∈
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(0, 1], s ∈ S \ {z0}, with µ(s, z0, βs) ∈ Z0, and as above it follows that f(s) ≤ 2βs
−1 − 1.

In particular, we have f ∈ RS and therefore f ∈ Aµ.
Now let f ∈ Aµ and α ∈ R with f |Y0 ≥ α ≥ f |Z0 and supY0

f > infZ0 f . Suppose that
f |Z0 ≡ α. Then Lemma 1.3 a) implies f |corµZ0 < α, a contradiction. But, by Lemma
1.3 a), infZ0 f < α ≤ f |Y0 implies f |corµY0 > α and similarly, supY0

f > α ≥ f |Z0 yields
f |corµZ0 < α.

3. Applications

We shall now present some applications of our abstract separation theorems. First we
shall show how the classical separation theorems for linear and linear topological spaces
fit in our concept. Then metric spaces are studied which are convex in the sense of Menger
or Takahashi.

3.1. Linear spaces and cancellative convexors

We first recall some facts concerning the finite topology:

Remark 3.1. Let E be a linear space equipped with the natural segment structure ν as
in Example 1.5. For v = (s1, . . . , sn) ∈ En and α = (α1, . . . , αn) ∈ Pn, n ∈ N, we put
σv(α) =

∑n
i=1 αisi. Let Pn be endowed with the Euclidean topology. Then the finite

topology on E is the finest topology for which the maps σv, v ∈
⋃∞

n=1 E
n, are continuous.

Here a map f from E into a topological space Z is continuous iff the maps f ◦ σv : Pn →
Z are continuous for all v ∈ En, n ∈ N (cf. [4], §2.4). In particular, every f ∈ Aν

is continuous, since f ◦ σ(s1,...,sn)(α) =
∑n

i=1 αif(si) is continuous, and every polytope
[A]ν := {

∑n
i=1 αisi : (α1, . . . , αn) ∈ Pn} = σ(s1,...,sn)(Pn), A = {s1, . . . , sn} ∈ E(E) is

compact.

Example 3.2. For a linear space E and its algebraic dual E ′ the following holds:

a) The paving Pν of polytopes is strongly E ′−separated.

b) Let Y and Z be nonvoid convex subsets of E with cor Y 6= ∅ and Z∩ cor Y = ∅.
Then there exists a non-zero f ∈ E ′ and an α ∈ R with f |Y ≥ α ≥ f |Z. For every
such f we have f |corY > α.

c) The paving of algebraically open convex subsets is strictly E ′−separated.

Proof. a) Let E be endowed with the finite topology and the natural segment structure
ν. Let K denote the paving of all convex compact subsets of E. Then for Σ = (E,P, ν)
with P = {C ∈ Cν : C ∩K ∈ K ∪ {∅} ∀K ∈ K} we have C∗(Σ) = P. By Remark 3.1 we
have Pν ⊂ K and A∗(Σ) = Aν ∩ C(E,P) = Aν = E ′ + R is point separating. Now by
Corollary 2.5 the paving K is strongly E ′−separated.
b) Let Y and Z be the pavings of all polytopes contained in cor Y resp. in Z. Then Y and
Z are upward filtrating, since cor Y and Z are convex. By Theorem 2.9 a) together with
a) and Example 1.5 there exists an f ∈ E ′ \ {0} separating the pair (corY, Z). Finally let
f ∈ E ′ \ {0} and α ∈ R with f |Y ≥ α. Then infE f = −∞ yields f |corY > α according
to Lemma 1.3 a).
c) This follows from b).

The above separation theorem for linear spaces carries over to abstract cancellative con-
vexors by means of the following well-known characterization:
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Lemma 3.3. ([13, 14, 16, 23, 27, 37]) For a structured segment space (S, µ) the following
are equivalent:

(a) (S, µ) is isomorphic to a convex set, i.e., there exists a linear space E, a convex
subset C of E and an affine bijection ϕ : (S, µ) → (C, ν), where ν denotes the
natural segment structure.

(b) Aµ is point separating.

(c) µ is a cancellative convexor.

Example 3.4. (Flood [9]) Let (S, µ) be a structured segment space with a cancellative
convexor µ. Let Y, Z be two nonvoid convex subsets of S with corµY 6= ∅ and Z∩corµY =
∅. Then there exists an f ∈ Aµ and an α ∈ R with f |Y ≥ α ≥ f |Z and f |corµY > α.

Proof. By Lemma 3.3 there exists a linear space E, a convex subset C of E and an affine
bijection ϕ : (S, µ) → (C, ν). By Example 1.5 and Remark 1.4 the sets Y ′ = ϕ(Y ) and
Z ′ = ϕ(Z) are convex, cor Y ′ = ϕ(corµY ) 6= ∅ and Z ′ ∩ corY ′ = ∅. By Example 3.2 b)
there exists a g ∈ E ′ and an α ∈ R with g|Y ′ ≥ α ≥ g|Z ′ and g|corY ′ > α. Now, by
Remark 1.4 c), f = g ◦ ϕ has the desired properties.

3.2. Linear topological spaces

We now consider linear topological spaces E over the reals. We denote by E∗ the (topo-
logical) dual space of all linear continuous functionals f : E → R. Linear topological
spaces are always assumed to be Hausdorff.
Recall that int T = cor T for every convex subset T of E with nonvoid interior int T
([17], §11).

Lemma 3.5. Let E be a linear topological space, T a nonvoid open subset of E, and F a
nonvoid subset of E ′ such that α := sup{f(t − t0) : t ∈ T, f ∈ F} < ∞ for some t0 ∈ T .
Then F is equicontinuous [7]. In particular, every f ∈ E ′ with supT f < ∞ is continuous.

Proof. Choose a balanced 0−neighborhood V ⊂ T − t0. Then for U = (α + 1)−1εV we
have supf∈F supu∈U |f(s)− f(s+ u)| < ε, s ∈ S.

Example 3.6. Let E be a linear topological space, and let Y and Z be nonvoid convex
subsets such that the topological interior int Y is nonvoid and Z∩ int Y = ∅. Then there
exists a non-zero f ∈ E∗ and an α ∈ R with f |Y ≥ α ≥ f |Z. For every such f we have
f | intY > α. In particular, f |Y > α > f |Z if Y and Z are open.

Proof. By Example 3.2 b) there exists a non-zero f ∈ E ′ and an α ∈ R with f |Y ≥ α ≥
f |Z, and for every such f we have f |intY = f |corY > α. From Lemma 3.5 it follows that
f is continuous.

Example 3.7. Let E be a locally convex linear topological space, and let Y, Z ∈ P(E)
be two disjoint convex subsets with Y compact and Z closed. Then the pair (Y, Z) is
strongly E∗−separated. In particular, E∗ is point separating.

Proof. By [31], Theorem 1.10, there exists a convex 0−neigborhood V such that (Y +
V ) ∩ (Z + V ) = ∅. Since Y + V and Z + V are open and convex, there exists an
f ∈ E∗ and an α ∈ R with f |(Y + V ) > α > f |(Z + V ) according to Example 3.6
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and therefore f |Y > α > f |Z. Since f is continuous and Y is compact, we arrive at
minY f > α ≥ supZ f , so f strongly separates the pair (Y, Z).

Example 3.8. Let E be a Euclidean space. Then the following holds:

a) E ′ = E∗, i.e., every linear function f ∈ RE is continuous.

b) The paving of all compact convex subsets of E is strongly E ′−separated.

c) The paving of all convex subsets of E is E ′−separated.

Proof. a) This is obvious.
b) This follows from Example 3.7.
c) Let Y and Z be two nonvoid disjoint convex subsets of E. Then (Y, Z) is E ′−separated
iff (Y − Z, {0}) is E ′−separated, where Y − Z denotes the algebraic difference. Hence,
w.l.g. we may assume Z = {0}. If 0 is contained in the closure clY, then 0 ∈ H := lin Y ,
the linear hull of Y . In H we have cor Y 6= ∅ ([17], §2), and the assertion follows from
Example 3.2 b), since every g ∈ H ′ can be extended to an f ∈ E ′. Otherwise, by Example
3.7, the pair (clY, {0}) is even strongly separated.

Example 3.9. (Dragomirescu [6]). Let E be a linear topological space, and let Y and Z
be two upward filtrating subpavings of P(E) such that one of the sets Y ∈ Y or Z ∈ Z
has nonempty topological interior. Then the following are equivalent:

(a) Every pair of sets (Y, Z) ∈ Y × Z is E∗−separated.

(b) The sets Y0 :=
⋃

{Y : Y ∈ Y} and Z0 :=
⋃

{Z : Z ∈ Y} are E∗−separated.

Proof. (b) =⇒ (a) is obvious.
(a) =⇒ (b): W.l.g. we may assume that corνY = intY is nonvoid for every Y ∈ Y .
As in the proof of Example 3.2 b) it follows that every pair (Y, Z) ∈ Y × Z is properly
E∗−separated. By Theorem 2.8 there exists a non-zero f ∈ E ′ and an α ∈ R with
f |Y0 ≥ α ≥ f |Z0. By Lemma 3.5 f is continuous.

Lemma 3.10. Let S be a topological space and F a nonvoid equicontinuous subset of
C(S,F(S)). Then every real-valued function g =

∨

i∈I(fi − αi), fi ∈ F, αi ∈ R, i ∈ I,
I an index set, is continuous.

Proof. For s ∈ S and ε > 0 choose a neigborhood V of s such that

sup
f∈F

sup
v∈V

|f(s)− f(v)| ≤ ε.

For fixed v ∈ V (and for s) choose i, j ∈ I with g(s) ≤ fi(s)−αi+ε and g(v) ≤ fj(v)−αj+ε.
Then we have

|g(v)− g(s)| ≤ (fj(v)− fj(s)) ∨ (fi(s)− fi(v)) + ε ≤ 2ε.

Example 3.11. (Nehse [28]). Let E be a linear topological space and Y, Z ∈ P(E) such
that Y is convex with nonvoid interior and Z∩ int Y = ∅. Then there exists a continuous
convex function f : E → R with f |Z ≥ 0 ≥ f |Y and f | int Y < 0. For every such f we
have f |intZ > 0.
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Proof. Choose y0 ∈ int Y . By Example 3.6 there exist fz ∈ E∗ with fz(z) ≥ supY fz and
fz(z) > fz(y), y ∈ int Y, z ∈ Z, and w.l.g. we may assume fz(z) − fz(y0) = 1, z ∈ Z.
Then we have fz(y − y0) = fz(y) − fz(z) + 1 < 1, y ∈ int Y, z ∈ Z. By Lemma
3.5 the family F = {fz : z ∈ Z} is equicontinuous. Now take f =

∨

z∈Z(fz − fz(z)).
For arbitrary s ∈ S there exists a λ ∈ (0, 1] with λs + (1 − λ)y0 =: y ∈ Y , and from
λfz(s) + (1 − λ)fz(y0) = fz(y) ≤ fz(z) we infer f(s) ≤ 1

λ
− 1 < ∞. By Lemma 3.10, f

is continuous (and convex) and satisfies f |Z ≥ 0 ≥ f |Y and f(y0) = −1. Now let y1 ∈
intY \ {y0}. Then there exists a λ ∈ (0, 1) and a y2 ∈ Y with y1 = λy0 + (1 − λ)y2,
which implies fz(y1) − fz(z) = −λ + (1 − λ)(fz(y2) − fz(z)) ≤ −λ, z ∈ Z, and therefore
f(y1) ≤ −λ < 0 by Lemma 1.3 a).

Example 3.12. (Bălaj [2]). Let E be a linear topological space and Y, Z ∈ P(E) such
that Y is open and convex and clY ∩ Z = ∅. Then there exists a continuous convex
function f : E → R with f |Z > 0 > f |Y . If Z is compact, then infZ f > 0 > supY f can
be acheived.

Proof. By Example 3.11 there exists a continuous convex function f ∈ RE with f |Y <
0 < f |(E \ clY). If Z is compact, take g = f − 1

2
minZ f instead.

Example 3.13. (Bălaj [2]). Let E be a locally convex linear topological space and Y, Z
two nonvoid disjoint subsets of E such that Y is closed and convex and Z is compact.
Then there exists a continuous convex function f : E → R with infZ f > 0 > supY f .

Proof. As in the proof of Example 3.7 there exist disjoint open sets G,H with G convex,
G ⊃ Y andH ⊃ Z. By Example 3.12 there exists a continuous convex function f : E → R
with infZ f > 0 > supG f (≥ supY f).

3.3. Metric segment spaces

A triplet (S, d, 〈·, ·〉), where (S, d) is a metric space and 〈·, ·〉 is a segment function for S,
will be called a metric segment space.

A triplet (S, d, µ), where (S, d) is a metric space and µ is a segment structure for S, will
be called a structured metric segment space. Here (S, d, 〈·, ·〉µ) is a metric segment space.
We set A∗

µ = Aµ ∩ C(S,F(S)) for the linear space of all µ−affine continuous functions
f : S → R.

Example 3.14. In a structured metric segment space (S, d, µ) a pair (Y, Z) of nonvoid
convex compact sets is strongly A∗

µ−separated iff it is pointwise A∗
µ−separated.

Proof. Apply Corollary 2.5 to P = F(S),K = K(S) ∩ Cµ, and F = A∗
µ.

Remark 3.15. For a structured metric segment space (S, d, µ) the following are equiva-
lent:

(i) The open balls B◦(s, ρ) := {t ∈ S : d(s, t) < ρ}, s ∈ S, ρ > 0 are convex.

(ii) The closed balls B(s, ρ) := {t ∈ S : d(s, t) ≤ ρ}, s ∈ S, ρ > 0 are convex.

(iii) The metric d is separately quasiconvex, i.e., d(s, ·) ∈ LSC(S, Cµ), s ∈ S.

(iv) d(z, µ(s, t, λ)) ≤ max{d(z, s), d(z, t)} ∀(s, t, z) ∈ S3, λ ∈ [0, 1].

In this case, we say that (S, d, µ) has convex balls.



J. Kindler / Separation Theorems for Abstract Convex Structures 87

A structured metric segment space (S, d, µ) will be said to have Property UC iff for any
z ∈ S and all sequences (sn), (tn) in S with

lim
n→∞

d(z, µ(sn, tn,
1

2
)) = lim

n→∞
d(z, sn) = lim

n→∞
d(z, tn)

it follows that limn→∞ d(sn, tn) = 0.

The following lemma generalizes a result from [11], where it was proved for uniformly
convex Banach spaces. (Cf. Example 3.29 below.)

Lemma 3.16. Let (S, d, µ) be a complete structured metric segment space with convex
balls and with Property UC. Then for the paving K of all closed, bounded and convex
subsets of S the following holds.

a) For each decreasing sequence (Cn) in K \ {∅} and for each z ∈ S with γ :=
supn∈N d(z, Cn) < ∞ there exists a unique point Ýx ∈

⋂

n∈N Cn with d(z, Ýx) = γ.

b) K is compact.

Proof. We adapt the proof from [11]:
a) Let Pn := Cn ∩ B(z, γ + 1

n
). Then (Pn) is a decreasing sequence of nonempty closed

sets. We show that limn→∞ δ(Pn) = 0, where δ(Pn) denotes the diameter of Pn. Let
sn, tn ∈ Pn with d(sn, tn) ≥ δ(Pn) − 1

n
. Then µ(sn, tn,

1
2
) ∈ Pn, since Pn is convex.

Hence, {d(z, sn), d(z, tn), d(z, µ(sn, tn, 12)} ⊂ [d(z, Cn), γ + 1
n
] implies limn→∞ d(sn, tn) =

0, because (S, d) has Property UC. By Cantor’s theorem there exists a point Ýx with
⋂

n∈N Pn = {Ýx}, and from d(z, Cn) ≤ d(z, Ýx) ≤ γ, n ∈ N, we infer d(z, Ýx) = γ. Conversely,
for x̃ ∈

⋂

n∈N Cn with d(z, x̃) = γ we have x̃ ∈
⋂

n∈N Pn = {Ýx}.
b) Let C be a subpaving of K with the finite intersection property. We fix a C0 ∈ C and
a z ∈ C0, and we set CR :=

⋂

R∈RR, R ∈ E0 := {Q ∈ E(C) : C0 ∈ Q}. Since z ∈ C0

and C0 is bounded we have γ := supR∈E0 d(z, CR) ≤ sups∈C0
d(z, s) < ∞. We choose an

increasing sequence Rn in E0 with d(z, CRn) +
1
n
≥ γ, n ∈ N. By a) there is a unique

point Ýx ∈
⋂

n∈N CRn with d(z, Ýx) = γ.

Now let R ∈ E0 be arbitrary, and let Cn := CR ∩ CRn . Then again (Cn) is a decreasing
sequence in K \ {∅} with supn∈N d(z, Cn) = γ, and by a) there exits an x̃ ∈

⋂

n∈N Cn =
CR ∩

⋂

n∈N CRn with d(z, x̃) = γ. Hence, Ýx = x̃ ∈
⋂

{CR : R ∈ E0} =
⋂

{C : C ∈ C}.

Example 3.17. Let (S, d, µ) be a complete structured metric segment space with convex
balls and Property UC. Then a pair (Y, Z) of closed, bounded, and convex subsets of S
is strongly A∗

µ−separated iff it is pointwise A∗
µ− separated.

Proof. Apply Corollary 2.5 together with Lemma 3.16.

In [12] various examples in hyperbolic geometry can be found satisfying the assumptions
of the above example. Classical examples are the Poincaré disc and the uniformly convex
Banach spaces (cf. Examples 3.24 and 3.29 below).

3.3.1. Metrically convex metric spaces

Every metric space (S, d) can be endowed with the geodesic segments

〈x, y〉d = {s ∈ S : d(x, s) + d(s, y) = d(x, y)}, x, y ∈ S.



88 J. Kindler / Separation Theorems for Abstract Convex Structures

Here (S, d, 〈·, ·〉d) is a metric segment space. A subset T ⊂ S is called d−convex iff
〈x, y〉d ⊂ T for all {x, y} ⊂ T .

Let Cd denote the paving of all d−convex subsets of S and Cd the ∨a−closed convex cone
of all functions f : S → R• which are d–convex, i.e., with

f(s0)d(s1, s2) ≤ f(s1)d(s0, s2) + f(s2)d(s0, s1)

for all s0, s1, s2 ∈ S with s0 ∈ 〈s1, s2〉d. (5)

We set Ad for the linear space of all functions f : S → R which are d–affine, i.e. where
relation (5) holds with equality, and A∗

d := Ad ∩ C(S,F(S)) for the linear space of all
continuous d−affine functions f : S → R.

A metric space (S, d) is called

• Menger–convex iff 〈x, y〉d \ {x, y} 6= ∅ for all x, y ∈ S with x 6= y.

• (strictly) metrically convex iff it can be endowed with a (unique) segment structure
µ such that

d(s, µ(s, t, λ)) = (1− λ)d(s, t) and d(t, µ(s, t, λ)) = λd(s, t)

for all (s, t, λ) ∈ S × S × [0, 1]. (6)

• strongly metrically convex iff it can be endowed with a segment structure µ such that

d(µ(s, t, α), µ(s, t, β)) = |α− β|d(s, t), s, t ∈ S, α, β ∈ [0, 1]. (7)

A (strictly) convex structured metric segment space is a structured metric segment space
(S, d, µ) such that µ (and no other segment structure) satisfies relation (6).

A strongly convex structured metric segment space is a structured metric segment space
(S, d, µ) such that µ satisfies relation (7).

Remark 3.18. Let (S, d, µ) be a convex structured metric segment space. Then

a) µ is reflexive, and µ is symmetric if (S, d) is strictly metrically convex,

b) (i) 〈s, t〉µ ⊂ 〈s, t〉d, (s, t) ∈ S2, hence Cd ⊂ Cµ,
and
(ii) 〈s, t〉µ = 〈s, t〉d, (s, t) ∈ S2, iff (S, d) is strictly metrically convex. Especially,

Cd = Cµ in this case.

c) (i) Every d−convex function f : S → R• is µ−convex,
and
(ii) Cd = Cµ ∩ R•S if (S, d) is strictly metrically convex.

d) If Ad is point separating, then (S, d) is strictly metrically convex.

Proof. a), b) (i), and c) (i) are obvious.
b) (ii): Let (S, d) be strictly metrically convex. For (s, t) ∈ S2 with s 6= t and x ∈ 〈s, t〉d \
{s, t} set λ = d(t, x)/d(s, t). Then, by (6), we have d(t, µ(s, t, λ)) = λd(s, t) = d(t, x) and
d(s, µ(s, t, λ)) = (1 − λ)d(s, t) = d(s, x), which implies x = µ(s, t, λ) ∈ 〈s, t〉µ. Together
with b (i) we obtain 〈·, ·〉µ = 〈·, ·〉d.
Conversely, let 〈·, ·〉µ = 〈·, ·〉d be satisfied, and let µ̃ be another segment structure satisfying
relation (6). Let s, t ∈ S, λ ∈ [0, 1] and x̃ = µ̃(s, t, λ). Then x̃ ∈ 〈s, t〉µ̃ ⊂ 〈s, t〉d = 〈s, t〉µ
implies x̃ = µ(s, t, Ýλ) for some Ýλ ∈ [0, 1]. Now d(t, x̃) = λd(s, t) = Ýλd(s, t) implies Ýλ = λ,
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i.e. µ(s, t, λ) = µ̃(s, t, λ) in case s 6= t. Together with a) we obtain µ̃ = µ.
c) (ii): Let f be µ−convex. For s, t, x and λ as in the proof of b) (ii) we have f(x)d(s, t) =
f(µ(s, t, λ))d(s, t) ≤ (λf(s) + (1 − λ)f(t))d(s, t) = f(s)d(t, x) + f(t)d(s, x), i.e., f is
d−convex.
d) Let µ′ and µ′′ be segment structures satisfying relation (6). Then for f ∈ Ad and
(s, t, λ) ∈ S × S × [0, 1] with s 6= t we have

f(µ′(s, t, λ))d(s, t) = f(s)d(µ′(s, t, λ), t) + f(t)d(µ′(s, t, λ), s) =

f(s)λd(s, t) + f(t)(1− λ)d(s, t) = f(µ′′(s, t, λ))d(s, t).

Since Ad separates points, we obtain µ′(s, t, λ) = µ′′(s, t, λ). Hence, µ′ = µ′′ by a).

Lemma 3.19. For a metric space (S, d) we have (a) =⇒ (b) =⇒ (c) for the conditions:

(a) (S, d) is strongly metrically convex.

(b) (S, d) is metrically convex.

(c) (S, d) is Menger–convex.

If (S, d) is complete, then the three conditions are equivalent.

Proof. (a) =⇒ (b): Apply (7) with α ∈ {0, 1} and β = λ.
(b) =⇒ (c) is obvious.
(c) =⇒ (a): Now let (S, d) be complete. By a theorem of Menger ([26], p. 89) for every
pair (s, t) ∈ S2 with s 6= t there exists a map ϕ = ϕs,t : [0, d(s, t)] → S with ϕ(0) = t,
ϕ(d(s, t)) = s and

d(ϕ(αd(s, t)), ϕ(βd(s, t))) = |α− β|d(s, t), (α, β) ∈ [0, 1]2.

Hence, µ(s, t, λ) = ϕs,t(λd(s, t)) has property (7).

Example 3.20. In a complete Menger–convex metric space (S, d) a pair (Y, Z) of nonvoid
d−convex compact subsets of S is strongly A∗

d−separated iff it is pointwise A∗
d−separated.

Proof. According to Lemma 3.19 (S, d) can be endowed with a metric segment structure
µ satisfying relation (7). By Remark 3.18 we have Cd ⊂ Cµ and A∗

d ⊂ A∗
µ. Now the

assertion follows from Corollary 2.5 applied to P = F(S),K = Cµ∩K(S) and F = A∗
d.

3.3.2. Takahashi–convex metric spaces

A metric space (S, d) is called (strictly) Takahashi–convex iff there exists a (unique) func-
tion µ : S × S × [0, 1] → S such that

d(z, µ(x, y, λ)) ≤ λd(z, x) + (1− λ)d(z, y), (x, y, z) ∈ S3, λ ∈ [0, 1]. (8)

In this case, µ is called a Takahashi convex structure [38, 39].

A (strictly) Takahashi-convex structured metric segment space is a structured metric seg-
ment space (S, d, µ) such that µ (and no other Takahashi convex structure) satisfies rela-
tion (8).

Remark 3.21. Every Takahashi convex structure is a reflexive segment structure. Hence,
a metric space (S, d) is (strictly) Takahashi–convex iff it can be endowed with a (unique)
segment structure µ such that the metric d is separately µ−convex in both variables. In
particular, every Takahashi-convex structured metric segment space has convex balls.
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Example 3.22. Let (S, d, µ) be a complete Takahashi–convex structured metric segment
space with Property UC. Then a pair (Y, Z) of closed, bounded and convex subsets of S is
strongly A∗

µ−separated (A∗
d−separated) iff it is pointwise A∗

µ−separated (A∗
d−separated).

Proof. Apply Corollary 2.5 together with Lemma 3.16 and Remarks 3.18 c) and 3.21.

Remark 3.23. a) (Takahashi [38]) Every Takahashi–convex structured metric seg-
ment space (S, d, µ) is a convex structured metric segment space, i.e., µ satisfies
relation (6).

b) (Talman [39]) Every strictly Takahashi–convex structured metric segment space
(S, d, µ) is a strongly convex structured metric segment space i.e., µ satisfies relation
(7).

c) A structured metric segment space (S, d, µ) is strictly Takahashi–convex if it is Taka-
hashi–convex and (S, d) is strictly metrically convex. The converse is not true, in
general. (Compare Example 3.31 below).

Example 3.24. (The Poincaré disc) The open disc D = {z ∈ C : |z| < 1} in the complex
plane with the Poincaré metric

d(z, w) = tanh−1
∣

∣

∣

z − w

1− zw̄

∣

∣

∣

is a complete, strictly metrically convex ([12]; 2.4), and Takahashi convex ([12]; Lemma
6.8) metric space with Property UC ([12]; 2.5).

Example 3.25. A metric space (S, d) is said to be Ptolemaic provided that for each
quadruple (w, x, y, z) ∈ S4 the inequality

d(z, w)d(x, y) ≤ d(z, x)d(y, w) + d(z, y)d(x,w) (9)

holds.

In a Ptolemaic metric space the metric d is separately d−convex in both variables, hence
the family C∗

d of continuous d−convex functions f : S → R is point separating, and the
converse of Remark 3.23 a) is also true:

If a Ptolemaic metric space (S, d) is endowed with a segment structure µ, then µ is a
Takahashi convex structure if (and only if) (S, d, µ) is a convex structured metric segment
space. (Set w = µ(x, y, λ) in (9)).

Examples of Ptolemaic metric spaces are Hilbert spaces (cf. Example 3.28 below) and
hyperbolic spaces [21].

3.4. Normed linear spaces

In the sequel, (E, ‖ · ‖) will be be a normed linear space endowed with the induced metric
d(s, t) = ‖s− t‖ and the natural segment structure ν(s, t, λ) = λs+ (1− λ)t.

Remark 3.26. (Bilyeu ([3]) In a normed linear space (E, ‖ · ‖) the natural segment
structure ν is the unique Takahashi convex structure.

Example 3.27. For a normed linear space (E, ‖ · ‖) the following are equivalent:
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(a) (E, ‖ · ‖) is strictly normed, i.e.,

‖s+ t‖ = ‖s‖+ ‖t‖ and t 6= 0 implies s = αt for some α ≥ 0.

(b) (E, d) is strictly metrically convex.

(c) (E, ‖ · ‖) is tense, i.e., 〈·, ·〉ν = 〈·, ·〉d.
(d) A subset of E is convex iff it is d−convex.

(e) A function f : E → R• is convex iff it is d−convex.

(f) Ad = E ′ + R.
(g) Ad is point separating.

(h) A∗
d = E∗ + R.

(i) A∗
d is point separating.

(j) The paving of all compact convex subsets of E is strongly A∗
d−separated.

The equivalence (a) ⇐⇒ (c) ⇐⇒ (d) is Theorem 11.2 in [36]. Compare also [10],
Theorem 1.

Proof. (a) =⇒ (b): Of course, µ = ν satisfies condition (6). Conversely, let s, t ∈ S with
s 6= t and let µ satisfy (6). Then for x = µ(s, t, λ), λ ∈ (0, 1) with x 6= t, say, we have
‖s − x‖ + ‖x − t‖ = ‖(s − x) + (x − t)‖, hence s − x = α(x − t) for some α ≥ 0. In
case λ = 1 we have x = s = ν(s, t, 1). Otherwise, from ‖s − t‖ = (1 − λ)−1‖s − x‖ =
(1− λ)−1α‖x− t‖ = (1− λ)−1αλ‖s− t‖ we obtain x = ν(s, t, λ), i.e., µ = ν.
(b) =⇒ (c), (e) and (g) =⇒ (b) follows from Remark 3.18.
(e) =⇒ (f) =⇒ (g) follows with Example 1.5.
(d) =⇒ (c): 〈s, t〉ν is ν−convex and therefore d−convex. Hence {s, t} ⊂ 〈s, t〉ν implies
〈s, t〉d ⊂ 〈s, t〉ν . The converse inclusion holds by Remark 3.18.
(c) =⇒ (a): From ‖s+ t‖ = ‖s‖+ ‖t‖ we infer s ∈ 〈0, s+ t〉d. Hence, by (c) there exists
a λ ∈ [0, 1] with s = λ · 0 + (1− λ)(s+ t).
(h) =⇒ (i) follows with Example 3.7.
(i) =⇒ (j): Apply Corollary 2.5 to P = F(S),K = K(S) ∩ Cν , and F = A∗

d.
(c) =⇒ (d), (f) =⇒ (h) and (j) =⇒ (i) =⇒ (g) are obvious.

Example 3.28. ([20, 21, 33]) For a normed linear space (E, ‖ ·‖) the following are equiv-
alent:

(a) (E, d) is Ptolemaic.

(b) (E, ‖ · ‖) is symmetric, i.e., ‖λx−y‖ = ‖x−λy‖ for all x, y ∈ E with ‖x‖ = ‖y‖ = 1
and all λ ∈ R.

(c) (E, ‖ · ‖) satisfies the parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

(d) There exists an inner product 〈·, ·〉 on E with ‖x‖ =
√

〈x, x〉, x ∈ E.

The implication “(b) =⇒ (d)Ô in the following example was proved by Granas and Las-
sonde [11]:

Example 3.29. Let (E, ‖·‖) be a Banach space and K the paving of all bounded, closed,
convex subsets of E. Then the implications (a) =⇒ (b) ⇐⇒ (c) =⇒ (d) =⇒ (e) hold
for the conditions:
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(a) (E, ‖ · ‖) satisfies the parallelogram law.

(b) (E, ‖ · ‖) is uniformly convex, i.e., for all sequences (xn), (yn) in E with ‖xn‖ →
1, ‖yn‖ → 1 and ‖xn + yn‖ → 2 one has ‖xn − yn‖ → 0.

(c) (E, d, ν) has Property UC.

(d) K is compact.

(e) K is strongly E∗−separated.

Proof. (a) =⇒ (b) ⇐⇒ (c) is obvious.
(c) =⇒ (d): This follows from Lemma 3.16.
(d) =⇒ (e): By Example 3.7, E∗ is point separating. Now apply Corollary 2.5 with
P = F(S) and F = E∗.

As a consequence we obtain the following well-known result.

Example 3.30. Let H be a Hilbert space. Then the paving of all bounded, closed,
convex subsets of H is strongly H∗−separated.

Example 3.31. We endowRn with the metric dn induced by the sum-norm ‖(s1, . . . , sn)‖n
=

∑n
i=1 |si|. Let νn denote the natural segment structure on Rn. Here the metric segments

are the boxes

〈s, t〉dn = 〈s1, t1〉ν1 × . . .× 〈sn, tn〉ν1 , s = (s1, . . . , sn), t = (t1, . . . .tn).

By Remark 3.26, (Rn, dn) is strictly Takahashi convex with (unique) Takahashi convex
structure µ = νn, and therefore strongly metrically convex according to Remark 3.23 b).

Joó and Stachó proposed in [19] to endow Rn with the segment function 〈·, ·〉n, inductively
defined as follows:
For n = 1 and s1, t1 ∈ R let 〈s1, t1〉1 = 〈s1, t1〉ν1 .
Let 〈·, ·〉n be defined. For s = (s1, . . . , sn, sn+1) and t = (t1, . . . , tn, tn+1) ∈ Rn+1 we set
sn = (s1, . . . , sn) and tn = (t1, . . . , tn), and we define

〈s, t〉n+1 = ({sn} × 〈sn+1, tn+1〉1) ∪ (〈sn, tn〉n × {tn+1})

in case sn+1 ≤ tn+1. In case sn+1 > tn+1 we set 〈s, t〉n+1 = 〈t, s〉n+1 defined as above.

Similarly we define a segment structure µn for Rn, n ∈ N, as follows:
For n = 1 we set µ1 = ν1, hence 〈·, ·〉1 = 〈·, ·〉ν1 = 〈·, ·〉µ1 .
Let µn be defined. Let s = (s1, . . . , sn, sn+1), t = (t1, . . . , tn, tn+1) ∈ Rn+1 and λ ∈ [0, 1].
In case s 6= t and tn+1 ≥ sn+1 we put α = ‖s − t‖n+1 and β = ‖sn − tn‖n, and we

set µn+1(s, t, λ) =

{

(sn, sn+1 + (1− λ)α) : λ ≥ βα−1

(µn(s
n, tn, λαβ−1), tn+1) : λ < βα−1.

In case tn+1 < sn+1 we set

µn+1(s, t, λ) = µn+1(t, s, 1− λ).

Suppose that 〈·, ·〉n = 〈·, ·〉µn holds.

Then in case tn+1 ≥ sn+1 we have

µn+1(s, t, [0, βα
−1]) = 〈sn, tn〉µn × {tn+1},

and
µn+1(s, t, [βα

−1, 1]) = {sn} × 〈sn+1, tn+1〉1
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which implies 〈s, t〉n+1 = 〈s, t〉µn+1 .

In case tn+1 < sn+1 we have 〈s, t〉n+1 = 〈t, s〉n+1 = 〈t, s〉µn+1 = 〈s, t〉µn+1 .

Hence, 〈·, ·〉n = 〈·, ·〉µn , n ∈ N.

A short calculation shows that relation (7) and therefore relation (6) is satisfied for µ = µn.
Thus, (Rn, dn) is not strictly metrically convex for n ≥ 2.

Of course, µn is a reflexive and symmetric segment structure, but, for n ≥ 2, µn is neither
cancellative nor associative.

To see this, take x = 0, y = e1 + e2 and z = −e1 + e2, where ei denotes the i−th unit
vector in Rn. Then we have

µn(x, y,
1

2
) = (µ2((0, 0), (1, 1),

1

2
), 0, . . . , 0) = e2 = µn(x, z,

1

2
),

and for λ = 1
3
and τ = 1

2
, say, we obtain

µn(µn(x, y, λ[λ+ (1− λ)τ ]−1), z, λ+ (1− λ)τ) = µn(e
2, z,

2

3
) =

−1

3
e1 + e2 6= 2

3
e2 = µn(x, e

2,
1

3
) = µn(x, µn(y, z, τ), λ).

Moreover, µn(x, µn(y, z,
1
2
), τ1) = µn(y, µn(x, z,

1
2
), τ2) implies τ1 = τ2 = 0, i.e., the Pasch

Property is violated.

Now we show that every real-valued µn−affine function is constant.
First let f ∈ Aµ2 . Then f is separately (ν1−)affine in both variables, i.e.,

f(s1, s2) = as1s2 + bs1 + cs2 + d

with (a, b, c, d) ∈ S4. From

2f(0, ξ) = 2f(µ2((ξ, ξ), (0, 0)
1

2
)) = f(ξ, ξ) + f(0, 0), ξ > 0

and
2f(1, 2) = f(1, 1) + f(1,−1)

we infer a = b = c = 0, i.e., Aµ2 = R.
Now Aµn = R follows easily by induction. In particular, by Remark 3.18 c), every
dn−affine function f : Rn → R is constant.
On the other hand, there are µn−convex subsets S of Rn admitting nontrivial µn−affine
functions f : S → R.

Similar to Lemma 3.3 above, there exists an imbedding theorem for structured metric
segment spaces into normed spaces.

A structured metric segment space (S, d, µ) will be said to satisfy the Theorem of Pro-
portional Segments iff

d(µ(x, z, α), µ(y, z, α)) = αd(x, y), x, y, z ∈ S, α ∈ [0, 1] (10)

holds. Obviously, (10) implies that µ is cancellative.
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Lemma 3.32. (Machado [25], cf. also Andalafte and Blumenthal [1]) For a structured
metric segment space (S, d, µ) the following are equivalent:

(a) There exists a normed linear space (E, ‖ · ‖), a convex subset C of E and an affine
isometry ϕ : (S, µ) → (C, ν), where ν denotes the natural segment structure.

(b) The segment structure µ is a symmetric and associative Takahashi convex structure,
and (S, d, µ) satisfies the Theorem of Proportional Segments.

(c) The segment structure µ is symmetric and associative, and (S, d, µ) has convex balls
and satisfies the Theorem of Proportional Segments.

(d) The segment structure µ is a convexor, and (S, d, µ) satisfies the Theorem of Pro-
portional Segments.

(e) Aµ is point separating, and (S, d, µ) satisfies the Theorem of Proportional Segments.

(f ) A∗
µ is point separating, and (S, d, µ) satisfies the Theorem of Proportional Segments.

Proof. (a) =⇒ (f): Obviously (C, ‖·‖, ν) satisfies the Theorem of Proportional Segments.
This carries over to (S, d, µ). By Example 3.7, E∗ and therefore {g ◦ ϕ : g ∈ E∗} ⊂ A∗

µ

are point separating.
(f) =⇒ (e) is obvious.
(e) =⇒ (d) follows from Lemma 3.3.
(b) =⇒ (c) follows from Remark 3.21.
(c) =⇒ (d): From condition (iv) in Remark 3.15 it follows that µ is reflexive.
(d) =⇒ (b) =⇒ (a): This follows from [25] (Theorem 1 and p. 319 f), since every
symmetric associative segment function satisfies Machado’s Property (B) [25].

Example 3.33. Let (S, d, µ) be a structured metric segment space satisfying the The-
orem of Proportional Segments, and let µ be a convexor. Let Y, Z be disjoint non-
void convex and closed subsets of S with Y compact. Then the pair (Y, Z) is strongly
A∗

µ−separated.

Proof. Choose an affine isometry ϕ : (S, µ) → (C, ν) according to Lemma 3.32 (a). Then
the sets ϕ(Y ) and ϕ(Z) are convex by Remark 1.4 b), ϕ(Y ) is compact and ϕ(Z) is closed.
By Example 1.9 there exists a g ∈ E∗ separating (ϕ(Y ), ϕ(Z)) strongly, and therefore,
f = g ◦ ϕ ∈ A∗

µ (by Remark 1.4 c)) separates (Y, Z) strongly

Example 3.34. Let (S, d, µ) be a structured metric segment space satisfying the The-
orem of Proportional Segments. Let µ be a convexor, and let (S, d) be complete with
Property UC. Then the paving of all convex, closed, and bounded subsets of S is strongly
A∗

µ−separated.

Proof. Apply Lemma 3.32 Ô(d) =⇒ (c), (f)“ together with Example 3.17.

Example 3.35. Let (S, d, µ) be a strictly convex structured metric segment space satis-
fying the Theorem of Proportional Segments. If µ is associative, then the paving of all
convex compact subsets of S is strongly A∗

d−separated. If, moreover, (S, d) is complete
and has Property UC, then the paving of all closed, bounded, and convex subsets of S is
strongly A∗

d−separated.

Proof. By Remark 3.18 a) and c) µ is a convexor and A∗
d = A∗

µ. Hence the assertion
follows with Examples 3.33 and 3.34, respectively.
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4. Concluding remark

As in the classical case our abstract separation theorems have a broad range of applicabil-
ity. They can be used to derive hull theorems such as bipolar theorems or Krein–Milman
type theorems, abstract versions of Bauer’s minimum principle, Helly and Klee type in-
tersection theorems, minimax theorems and many other results. It is intended to treat
these topics elsewhere.
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