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MINIMAX THEOREMS FOR INTERVAL SPACES 

J. KINDLER (Darmstadt) and R. TROST (Augsburg) 

1. Introduction 

In his fundamental paper "Zur Theorie der Gesellschaftsspiele" v. Neumann 
established the following minimax theorem. 

TrI~OREM A (v. Neumann [11]). Let X and Y be two simplexes in Euclidean 
spaces, and let a: XN Y R be a continuous function which is quasiconcave in the 
first and quasiconvex in the second variable. Then we have 

(*) sup inf a(x, y) = inf sup a(x, y). 
xEX ~EY yEYx~X 

This theorem was generalized by Sion as follows. 

THEOREM B (Sion [12]). Let X and Y be compact convex subsets of  topological 
vector spaces, and let a: X)< Y ~  R be upper semicontinuous and quasiconcave in 
the first and lower semicontinuous and quasiconvex in the second variable. Then ( , )  
holds. 

The standard proofs of such minimax theorems either use some form of separa- 
tion of disjoint convex sets by a hyperplane, or they rely on some version of Brower's 
fixed point theorem. It is the contribution of Wu [22] to have observed that the 
only property of convex sets which is actually needed in the proof of the minimax 
theorem is connectedness. So Wu could establish a purely topological minimax 
theorem which contains Theorem A as a special case. By a skilful modification of 
Wu's method, Tuy [17], [18] could even derive topological minimax theorems which 
generalize Theorem B. Up to now several papers written in the same spirit have ap- 
peared [2], [4], [10], [14], [15]. 

Independently, inspired by Jod's [5] proof of Theorem A, Stach6 [13] presented 
another generalization of Theorem B based on the concept of an interval space 
which generalizes the notion of a convex set. 

In the present paper we want to demonstrate that Stachd's concept, in a slightly 
generalized form, is an adequate frame for the formulation of a fairly general mini- 
max theorem which contains all the above mentioned minimax theorems as special 
cases. We hope that our exposition, which unifies ideas of Wu, Tuy, Jo6 and Stach6, 
can help to get a deeper insight into the nature of v. Neumann's minimax 
theorem. 
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2. Prdiminar~es 

2,1. Systems of sets. For nonvoid sets S we shall use the following notation. 
# ( S )  denotes the power set of S. 
8(S)={T~S:  T finite}. 

A subset . ~ c # ( S )  will be called 
chain, if {AUB, ANB}={A,B}  for all AE~, BE~, 
compact, if for every r N{R: RESe}#0 for all SeEN(N) implies 

n{R: RC } 0, 
convexity, if {0, S } c ~ ,  N{R: RE~}G~ for every ~c .~ ,  and U{R: RE~}E~ 

for every chain R c ~ ,  
topology, if {0, S}c~ ,  U{R: RC~}E~ for every ~ c ~ ,  and A{R: RC~)E~ 

for every ~E6~(~). In this case, the pair (S, ~) is called a topological space. 
Now let (S, J ' )  be a topological space. Then we write 

~(S) for the system ~- of open subsets of S, 
~r(S) for the system {S-G: GEY} of closed subsets of S, 
~Y'(S) for the system of all compact TEn-(S), i.e. 
J f (S)={TE~(S) :  TNo~(S) is compact}, 
~(S)  for the system of connected subsets of S, and 
% ( S ) = ~ ( S ) U  {0}. 

Subsets T will always be endowed with the relative topology Tf] ~--. In particular, 
a nonvoid T c S  is called connected if TcGUG, TNGNG=0, F ~ ( S )  
implies TcFI  or TcF~. 

A function f :  S ~ N  is called upper (lower) semicontinuous if every level set 
{f>=e}:={sES: f(s)-->-e} (every {f-<=~}), c~ER, is closed. Here ~ - - R U { - o ~ ,  ~} 
denotes the set of extended reals. 

Finally, a triplet (S, 9-, h) will be called a Wu space, if (S, ~ )  is a topological 
space and h: SXS•  1]~S is a map such that for all pairs (s, t)ES• we 
have that h(s, t, .) is continuous, h(s, t, 0)=s, and h(s, t, 1)=t. The map h 
will be called Wu map (compare Wu [22]). Topological spaces which admit a Wu 
map are called pathwise connected [21]. 

2.2. Interval spaces. An interval space is a triplet I=(S ,  ~-', ( . ,  �9 )) where 
(S, J )  is a topological space and ( . ,  �9 ): S• S-~-~f(S) is a map such that (s, t) 
D{s,t}  for all (s,t)ES• If  furthermore (s , t )=(t ,s)  for all (s, t)ESXS, 

then I is called symmetric. Symmetric interval spaces were introduced by Stach6 [13]. 
Subsets C ~ S  are called convex if {s, t }cC implies (s, t )cC.  We set cgI(S)= 
= {C c S: C convex}. 

R~MaRK 2.1. (Stach6 [13].) Let I=(S, J ,  ( . ,  �9 }) be an interval space. 
a) r is a convexity and ~r(S)c%(S).  
b) For f:  S ~  the following are equivalent. 

(1) {f<=e}Ec~z(S) for all aER. 
(2) {f<e}EC~x(S) for all c~ER. 
(3) f(s)<=max {f(s~),f(s2)} for all sE(sl, s~), (st, s2)ES• 
In this case, f i s  called quasiconvex. As usual, g: S ~ R  is called quasiconcave iff 
- g  is quasiconvex. 
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Sometimes we shall write S for a topological space (S, ~ or for an interval 
space (S, ~' ,  ( . ,  �9 )) if  there is no danger of  confusion. 

We now present examples of  interval spaces, some of  which will be used in 
the sequel. 

EXAMPLE 2.2. (Wu interval spaces.) Every Wu spaces (S, ~d-, h) gives rise to 
an interval space Ih==(S, ~-, ( . ,  .)h) with (s, t)h={h(s, t, ?): 0=<?=<1}. In a Wu 
interval space I h every interval is compact. 

EXa~n~LE 2.2.1. (Topological vector space . )Let  S be a topological vector 
space. Then the Wu map h(s, t, ?)=(1 - ? ) s + ? t  defines the usual intervals (s, t)  h= 
=[s,  t]:={(1-7)s+?t: 0-<-?~1}. Here our notions of  convexity and quasicon- 
vexity coincide with the usual ones. 

EXAMPLE 2.2.2. (R", f " ,  [ . ,  .1), where ~-" denotes the Euclidean topology, 
is the n-dimensional Euclidean interval space. Observe that in case n = 1 [a, b] stands 
for the convex hull of the points a and b and not for the order interval 
{xER: a<=x-~b}. 

EX~Ua'LE 2.2.3. For hEN we consider the Wu spaces (R", 9-", h,) where the 
Wu maps h, are defined inductively as follows. 

For sER, tCR let hl (s , t , y )=(1-y)s+yt .  I f  hi . . . . .  h, (n_~l) are defined, 
then for s=(sl  . . . . .  s ,+l )~R "+1, t=(tl, .... t,+I)CR "+1 we set 

h.+l(s ,  t, 7) = (sl . . . . .  s . ,  ( 1 - 2 ~ ) s . + l + 2 ~ t . + ~ ) .  l~o,~m(~)+ 

+(h,((sl, ..., s,), (q,  ..., t,), 2~-1) ,  t,+~). 1(1/2,~1(~). 

Then the P . ,  nCN, are interval spaces. Only P1 is symmetric. 

EX~pLE 2.2.4. (Jo6--Stach6 interval spaces.) Now we modify our definition 
in Example 2.2.3. We define h~ as above. I f  h~ . . . .  , h, are defined, then we define 
h,+~(s, t, ?) as in Example 2.2.3 for all s=(sl  . . . . .  s,+l) and t = ( q  . . . . .  t ,+0 with 
t ,+~s ,+l .  For s and t with t ,+ l<s ,+ l  we set h,+l(s, t, y)=hn+l(t, s, 1 - ? ) .  Here 
all P ,  are symmetric interval spaces, They coincide with the interval spaces introduced 
by Jo6 and Stach6 in [7; w 3]. 

EXAMPLE 2.3 (pointed spaces). Let S be a set and zES. Then (S, ~-~=) with 
~ = { G c S :  zC~G}U{S} is a compact topological space. I=(S,  3-=, ( . ,  .)) is an 
interval space for every map ( . ,  �9 ): S •  with (s, t )D{s ,  t, z} for all 
(s, t )ES• 

EXaM~'L~ 2.3.1. /==(S,  ~ ,  { ' ,  �9 )=) with (s, t)~={s, t, z} will be called the 
z-pointed interval space in S. 

1 i 
Here we have I==I h for the Wu map h(s, t ,?)=s,z,  t for ? < ~ - ,  ? = ~ - ,  

1 
7 > ~ - .  A nonvoid C c S  is convex iff zEC, i.e. a set is convex iff it is closed. 

A function f :  S ~ R  is qnasiconvex iff f(z)=~nfssf(S). 
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EXAMPLE2.3.2 (starlike sets). Let zER z. Then I=(R2,~--~,( ., .)) with 
(s, t )= [ s ,  z]U[z, t] is an interval space. We have I=I  ~ for the Wu map h(s, t, 7)= 
--[s+27(z-s)]. lto, l /2 ] (~)+[2z(1-7)+(2~-1) t ] .  1(1/z,1](7). Here, a nonvoid C c R  z 
is convex iff C is starlike with respect to z. 

EXAMPLE 2.4 (chain spaces). Let (S, J ' )  be a topological space such that 
is a chain. Then,we have ~o (S )=N(S) .  So (S, 3", ( . ,  .)) is an interval space 
for every map ( . ,  �9 ): S •  S ~ N ( S )  with ( . ,  . )  D{ . ,  �9 }. Especially, (S, ~-, {. ,  �9 }) 
is an interval space with cgx(S)=N(S ). 

EXAMPs 2.4.1. I : ( S ,  {0, S}, {. ,  �9 }) is the indiscrete interval space in S. 

E ~ L E  2.4.2. I= (N,  J ' ,  ( . ,  ' )) with ~ - =  {{1, ..., n}: hEN} U {0, N} and 
(n, m)={kEN:  rain {n, m}<=k<=max {n, m}} is a symmetric interval space. 

3. Construction and game theoretic interpretation of minimax theorems 

In the following let a triplet F=(X, Y, a) be given. Here X a n d  Y denote non- 
void sets and a will be a function on the cartesian product XX Y into the extended 
reals. Sometimes it is helpful to interpret such a triplet as a game. Player 1 and 
Player 2 independently choose a strategy xEX and yEY, respectively. Afterwards 
Player 1 receives the (possibly negative) amount a(x, y) from Player 2. 

a, = a,(X, Y) := sup inf a(x, y) and a* = a*(X, Y) := infsup a(x, y) 
xEX yEY yEY xEX 

are called the lower and upper value of the game. I f  

2 : =  {2EX: inf a(2, y) = a,} and 17:= {~EY: supa(x,)3) = a*} 
YEY xEX 

are nonvoid, then Player 1 can assure himself an amount of  at least a .  by choosing 
a minimax strategy 2E2, whereas Player 2 can avoid to pay more than a* by 
choosing a fie 17. I f  the game is strictly determined which means that a , = a * ( = :  v) 
holds, then we have 

a(2, y) _>- v ~ a(x, ~) for all xEX, YEY, 

i.e. every pair (2,)3)EJ~• 17 is a saddle point of  a. Hence in strictly determined 
games it is optimal for both players to choose minimax strategies 2E 2 and fie 17. 

It is the aim of the present paper to give conditions which ensure the strict 
determinateness of a game F =(X, Y, a). A standard method for proving such 
minimax theorems proceeds as follows. Suppose that Player 2 has to announce in 
advance a set BEg(Y). Afterwards both players simultaneously choose strategies 
xEX and yEB, respectively. In this case the guarantee value a ,  of  Player 1 
improves to 

a,  = a ,  (X, Y) := inf a,  (X, B). 
E ~(Y) 
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We obviously have 

REMARK 3.1. a,~--5,<----a *. 
So, as usual, a ,=a*  will be proved in two steps: a , = 5 ,  is shown by a stand- 

ard compactness argument, whereas in the proof of 5 , : a * ,  in this paper the more 
difficult part, some convexity and connectedness properties are exploited. 

In our theorems and proofs the following level sets play a crucial role. For 
c~E R we set 

X~(y) = {xEX: a(x, y) -~ ~}, yEY, X*(y) = {xEX: a(x, y) > o~}, yEY, 

Y~(x)={yEY:a(x,y)<=c,}, xEX, Y * ( x ) = { y E Y : a ( x , y ) < ~ } ,  xEX. 

Furthermore, for O ~ B c Y  we use the abbreviations 

X~.(B)=n{X~(y): y~B}, X*(B)=n{X*(y) :  yEB}. 

Our further investigations rely on the following observation. 

REMARK 3.2. Let tiER. 
a) The following are equivalent. 

(1) 
(2) X~(Y)r for all real ~<fl. 
(3) X~*(Y)r for all real c~<fl. 

b) The following are equivalent. 
(1) 5 ,~B.  
(2) X~(B)~O for all real a<fi  and all BEg(Y). 
(3) X*(B)~O for allreal ~<]~ and all BEg(Y). 

This is well-known (compare [6; Theorem 2] and [9; Satz 5]) and easily estab- 
lished. 

Now we state the announced "compactness arguments". 

PROt'OSlTION 3.3. a) In case 5 ,=- -oo  we have a , = 5 ,  and f(=x.  
b) In case t?,> - ~ ,  for it;~= (X~(y): yC Y }, :~C R and Y,= {X~(y) : YE Y, ~<5,} 

the following are equivalent. 
(1) a,=~?, and f(#O. 
(2) 
(3) ~ is compact. 
(4) There is a topology on X and a sequence of reals ~ < ~ ,  with lira ~,,=5, such 

11~oo 

that 3~, c ~ - ( X )  and ~,~(qJY'(X)r 
(5) There is a topology on X such that 3~cY(X) and i~,Ad(X)r 
(6) There is a compact topology on X such that iEc~*(X). 

The implication (5)=~(1) is Lemma 2a) in [8]. 

PROOF. a) is obvious. 
b) (1)=~(6): Choose ~ for some xEX (cf. Example 2.3). 
(6)=~(5)=,(4) and (2)=~(1) are obvious. 
(4)=~(2): W.l.g. we may assume 0Cl<gn ,  hEN. Let zCY with X~(z)E~f(X). 

From g , < 5 ,  we infer X,,(B)flX~(z)DX~,(BU{z})~O for all BEg(Y), nEN. 
So (4) yields Xn,(Y)= (q {X~,(y)(qX~(z): hEN, yEY}#O. 

(2)~,(3) follows from Xn,(Y)=O{T: TE~} and (q{T: TESf}#O for all 
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4. Quasieonvex games 

In this chapter we consider games F =  (X, Y, a) where Y is an interval space 
and where the level sets Y~* (x) are convex. 

In the proofs of  the following lemma and the subsequent theorem we use a 
concept due to Wu [22; Lemmas 1 and 2] and developed further by Tuy [ 17; Lemmas 2 
and 3], combined with ideas of Jo6 [5] and Stach6 [13]. 

L~MMA 4.1. Let X be a topological space, (Y, J-, ( . ,  .)) an interval space, 
CcX,  aER, and (yl, y~)EYXY such that 

(al) CAX*(z) # 0 for all zE@l,y~). 

(a2) C f'q X~(z)ECg (X) fq o~ (X) for all zE(y~, y~). 

(b) Y*(x)E~x(Y) for all xEC. 

(c) Y~(x)N(y~,y2)E~(@~,y2)) for all xEC. 

Then CNX~({yl, y2} ) is nonvoid. 

PROOF. Suppose that CNX~({ya, y~})---O. Then for 

M, : {zE(y~, Y2): CGX~(z) c X~(y3} 

we have y~EM~, iE { 1, 2}, and M1 0  M~ = 0. From condition (b) we infer C 0 X~(z) c 
c(C~X~(y~))U(CNX~(y2)), zE(y~,y~). Together with (a2) we get M~UM2= 
=(Y~,Y2). Now we show M~E~((y~,y2)), iE{1, 2}, which is in contrast to the 
connectedness of  (yl, Y2). To this end, consider a net (zi) in M~, say, which con- 
verges to a z*E(ya, y~). ziEM~ implies CNX~(z~)OX:(y~)=O. So for xEC~X~(y~) 
we have z~EY~(x)O(y~,y~), and with ( c )we  get z*E~(x),  hence C~X~(y~)~ 
NX2(z*)=O. In combination with (al) we conclude z*E(y~, y~)-M~=M~. 

Now we are in the position to present our main result. 

THEOREM 4.2. Let X be a topological space, Y an interval space, and (~,) a sequence 
of real numbers such that 

(a) ~z,, < a* (nEN) and lira ~z,, = a*. 

(b) X~,(B)E~o(X)fq~(X) for all n6N, BCg(Y). 

(c) Y~(x)E~x(Y) for all hEN, xEX. 

(d) Y~,(x)N(yl, y~)E ~((yl ,  y~)) for all (n, x, y~, y2)r215 

Then we have ~7,= a*. 
If, moreover, at least one of the sets X~(y), e<a*, yEY is compact, then we 

have a,=a* and ~#0.  

PROOF. 1. We first show that for all kEN we have 

(k) Xa,,(B) # 0 for all nCN, BCe(Y), iBI = k. 

The proof  proceeds by induction on k. For B={y},  yEY, hEN we have X~,(B)D 
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D X~,(y)#O in view of a*>cz n. (2) holds according to Lemma 4.1 (take C=X).  
Suppose that (k) is true for some k~2 .  For an arbitrary DE~(Y) with [D] = k +  1 
choose E c D  with [ D - E l = 2 .  By (k)we have C,f~X~(y)#O for C~=X~.(E), 
yE Y, hEN. For every nEN there exists an mEN with am>a n, hence CnNX*(y )D 
~ C m N X ~ m ( y ) # O .  

Now Lemma 4.1 yields X~.(D)=C,f-)X~,,(D-E)#O. 
2. From 1 and Remark 3.2b) we obtain a,=>lin~ ~,=a*. So we have shown 

t~.=a*. 
3. An application of Proposition 3.3 completes the proof. 

COROLLARY 4.3. (Tuy [17], Theorem 1.) Let X be a compact topological space, 
(Y, ~'-, h) a Wu space, and (~) a sequence o f  reals such that 

(a) an<a*, nEN, and Jim 
(bl) X,,(B)EC~o(X) for all hEN, BCg(Y).  
(b2) a ( . ,  y) is upper semicontinuous for every yE Y. 
(c) {a(x, h(y~, yz, �9 ))<c~,} is convex for all (n, x, Yt, y2)EN;<X• Y• Y. 
(d) dr(x, �9 ) is lower semicontinuous for every xE X. 

Then we have a .=a*  and 2 # 0 .  

PROOF. Condition 4.3 (c) implies condition 4.2 (c) with respect to the interval 
space lh=(Y,  J-, ( . ,  .)h) (compare Example2.2). Hence, Theorem4.2 can be 
applied. 

REMARK 4.4. It has been shown by Tuy [17] that Corollary 4.3 remains true, if 
condition 4.3 (d) is replaced by 

(d)* a(x, �9 ) is upper semicontinuous for every xE X. 
Related results have been obtained by Cudng [2], Geraghty--Lin [4], Komornik [10], 
and by the second author in his unpublished master thesis [16]. 

QUESTION 4.5. Does Theorem 4.2 remain true if Condition 4.2 (d) is replaced by 

(d)* YL(x)fq (y~, y~)Efg((y~, Y2)) for all (n, x, y~, y2)EN • 

COROLLARY 4.6. Let X be a compact Hausdo~ff space and Y an interval space. 
For d = ( - o o ,  a*) let the followitTg assumptions be satisfied. 

(a) X~(y)E:(X)  for all c~EJ, YEY. 

(b) X*(B)EC~o(X) for all o~EJ, BEg(Y). 

(c) r : (x)~%(r)  for all ~ . : ,  x~X. 

(d) Y~(x)N (y~, y~)C:((y~, y~)) for all (~, x, y~, y~)CJ•215215 

Then we have a .=a*  and f(#O. 

PROOF. W.l.g. we may assume a * > - o o .  For BEg(Y),  eEJ, ~>vER let F~ 
denote the closure of X~(B). If  X~(B)#O, then the chain {F,: V<c~} is a collec- 
tion of continua, hence X~(B)= (] Fr is connected [21; 28.2]. So q-heorem 4.2 

can be applied. 
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COROLLARY 4.7. Let X be a compact Hausdorff space and (Y, Y-, h) a Wu 
space. Let the following assumptions be satisfied. 

(a) a(.  , y) is upper semicontinuous for every yE Y. 
(b) X*~(B)EC~o(X) for all aER, BEg(Y). 
(c) a(x, h(yl,  Y2, �9 )) is quasiconvex for all (x, Yl, yz)E X X  Y•  Y. 
(d) a(x, �9 ) is lower semicontinuous for every xE X. 

Then we have a ,=a* and f~#O. 

This is Tuy's [17] generalization of Wu's minimax theorem [22]. 

PROOF. Endow Y with the Wu interval structure I h and apply Corollary 4.6. 

5. Quasiconeave - -  quasieonvex games 

Now we study games F = (X, Y, a) where both X and Y are interval spaces. 
We shall show that Sion's minimax theorem carries over to this more general sit- 
uation. 

THEOREM 5.1. Let X and Y be interval spaces, and let the following conditions be 
satisfied. 

(a) X~(y)E~I (X)N~(X)  for all a*>aER, YEY. 

(b Ya(x)E ~I(Y ) and Yp(x) N (Yl, Y~)E~((Yl, Y~)) for all a,<flER, 

(x, Yl, y2)E X X Y  XY. 

Then we have a,--a*. 
I f  in addition 
(c) X~(z) is compact for some real a<a* and some zEY, then wehave a,-=a* 

and f[ # O. 

" a*. Choose a sequence of reals ~n with ~ ,<  an< a* PROOF. 1. Suppose that a . <  
and lim~n--a*, q-hen we have Y~(x)=U{Yp(x): 6,<fl<an}E~1(Y ), because 

c~i(Y ) is a convexity. But now 6,<a* is in contradiction to Theorem 4.2. Hence 
we have 6, = a*. 

2. If the additional compactness property holds, then we can apply Proposi- 
tion 3.3. 

COROLLARY 5.2. Let X and Y be interval spaces such that 
(a) For each yE Y, a ( . , y )  is quasiconcave and upper semicontinuous on X. 
(b) For each xE X, a(x, .) is quasiconvex on Y and lower semicontinuous on 

any interval o f  i7. 
Then we have ~, =a*. 

I f  in addition 
(c) X~(z) is compact for some real a<a* and some zEY, then we have a ,=a* 

and f(~O. 
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Special cases are Stachd's Theorem 2 in [13] and Proposition 1 of Brrzis-- 
Nirenberg--Stampacchia [1] which generalizes Sions minimax theorem. 

The following example is classical [20; p. 32]. 

EXAM2LE 5. 3. We consider the game F=(X,Y,a)  with X = Y = N  and 
a(x, y)=  1, 0, - 1 for x>y,  x=y, x<y. If X and Y are endowed with the interval 
structure as defined in Example 2.4.2, then Conditions 5.2 (a) and (b) are satis- 
fied, hence a*=6. .  Of course we have a , = - l # l = a * :  Condition5.2 (c) is 
violated. 

But if instead of (N, ~d-) we take the Alexandroff compactification 
(NU{oo}, JU{NU{~}})  and extend a and ( . , . )  in the obvions manner, then 
the new game satisfies (5.2) (a), (b), (c) and we have a.=a*.  Certainly now (0% oo) 
is a saddle point. 

The following observation shows that Corollary 5.2 is quite general. 

COROLLAI~Y 5.4. For a game F=(X, Y, a) the following are equivalent. 
(1) F has a saddle point. 
(2) X and Y can be endowed with interval structures such that 

(a) X is compact and X,(y)EC~x(X)O~(X) for all a*_->eCR, yCY. 
(b) Y is compact and Yp(x)ECgx(Y)OY(Y) for all a,<_-flrR, xCX. 

The implication (2)=.(1) generalizes Stachd's Theorem 1 in [13]. 

PgooF. (1)=.(2): If (2,33) is a saddle point of F, then the pointed interval 
structures (X, ~ ,  ( . ,  �9 )e) and (Y, ~ ,  (- ,  �9 )~) satisfy (2). 

(2)=.(1): From Theorem5.1 we infer a ,=a*  and 2 # 0 .  In case a*=oo 
we have Y=Y; otherwise for each real sequence /3,r we have Ya,(X)#O 
and Yt~,,(X)I,Y, hence 9 # 0  by (2) b). 

REMARK 5.5. In almost all papers on minimax theorems cited in this text the 
underlying topological spaces are assumed to be Hausdorff. As we have seen, this 
is not necessary in general. (Our only exceptions are Corollaries 4.6 and 4.7.) The 
Hausdorff axiom is a serious restriction in this context. Neither pointed spaces 
(Example 2.3) nor chain spaces (Example 2.4) with more than one element are 
Hausdorff. The following simple example shows that Corollary 5.4 turns wrong if 
the underlying spaces are required to be Hausdorff. 

EXAMPLE5.6. Let F=(X,Y,a)  and X=Y=--{1,2}. If (X,~--,( . ,  .)) is an 
interval space, then the topology J-  must be a chain, hence cannot be Hausdorff. 

(a(i,j))=[2 3). Then ( 1 , 1 ) i s  the only saddle point EXAMI'LZ 5.6.1. Let 

ofF. If J(and Y are endowed with the interval structure ({1,2}, {0, {2}, {1, 2}}, {., �9 }), 
then the assumptions (a), (b), (c) of Corollary 5.2 are satisfied. 

Let (a (i, j))  = [12 3) .  Again, (1, 1)is the only saddle point EXnlWeLE 5.6.2. 

of F, and Condition 5.4 (2) is satisfied if we take the same interval structures as in 
Example5.6.1. However here there exists no interval structure on X such that 
condition (a) in Corollary 5.2 is satisfied. 
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EX~'Vn'LE 5.7. (Wald[19].) Let F=(X,Y,a)  be a game, X or Y a finite set, 
and a real valued. Let Px(Pr) denote the set of all probability measures on X(Y) 
with finite support. We extend a on PxX Pr according to 

a(p, q) = f f a(x, y)q(dy)p(dx). 
X Y 

Then for the discrete mixed extension F=(Px, Pr, a) we have a ,=a*.  

PROOF.Px and Pr  are convex subsets of  the dual of R x and R r, respectively. 
Finiteness of  X, say, implies compactness of Px. Hence we can apply Corollary 5.2 
to F. 

EXAMa'L~ 5.8.(Fan [3].) Let X be a compact topological space such that every 
a ( . ,  y), yE Y is upper semicontinuous. Assume that 

(a) V(xl, x~, ~)EX•215 3x0EX VyEY: a(xo, y)>=~a(xl, y)+(1 - ~) a(x~, y). 

(b) V(yl, y~, ~)EYXYX [0, 1] ~YoEYVxEX: a(x, yo)<=o~a(x, y l ) + ( 1 - ~ ) a ( x ,  Y2) 

Then we have a .--a* and ~ # 0 .  
As Sion mentioned in [12; w 4], the above result is an easy consequence of Theo- 

rem A or B. Let us carry out the details. 

PROOF. From (a) one easily obtains by induction 

VPEPx 3x0EX VyEY: a(xo,y) >= a(p,y).  

This implies a,(Px, PB)=a,(X,B) for all BEg(Y). Similarly (b) implies 
a*(Px, Pr)=a*(X, Y), and from Example 5.7 we infer a . (Px,  PB)=a*(Px, PB). 
Hence we have a*(X, Y)=a*(Px, Py)<= a*(Px, PB)=a,(Px, PB)=a,(X, B) for all 
BEg(Y) which yields a*=6 . .  But 6 , = a .  and ~ # 0  follows from Proposi- 
tion 3.3. 

R~MARK 5.9. It would be interesting to know whether Fan's minimax theorem 
can be derived directly from CoroUary 5.2 by endowing X and Y with appropriate 
"intrinsiC' interval structures. 
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