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Abstra&-The purpose of this paper is to introduce the C-concavity condition, and next prove 
a new existence theorem of Nash ~uiIibrium in n-person games with C-concavity. And, aa an ap- 
plication, we shall prove a minimax theorem. Finally, we shall give some examples of a two-person 
game where the C-concavity can be applied, but the previous genera1 concavity conditions cannot 
be applied. Our results generalize the corresponding results due to Nash and ForgG in several ways. 
@ 2002 Elsevier Science Ltd. All rights reserved. 

Keywords-Nash equilibrium, C-concave, hlinimax, Fixed-point space. 

1. INTRODUCTION 

In mathematical economics, showing the existence of equilibrium is the main problem of investi- 

gating various kind of economic modeh, and till now, a number of equilibrium existence results in 

general economic models have been investigated by several authors, e.g., Debreu [1,2], Nash (31, 

Friedman [4], and others. 

In 1951, Nash established the following well-known theorem. 

THEOREM A. (See (31.) Let I be a finite set of players. Assume that for all i E 1, 

(a) the set X, C R”@ is nonempty compact and convex; 

(1)) the function fi : X := nj,, X, ---t IF8 is continuous on X; 

(c) the function yi c-) fi(51,. . . ,z,_l,Yi,zi+l.. . . ,zn) is concave on Xi. 

Then there exists an 2 = (Z~)~EI E X such that for every i E I, 

ft(&, . . ..Zjz*..*Zn) 2 fi(5f,...,Zi,...,S,), for all Zi f Xi. 

Next, in 1977, Friedman [4] established a gener~ization of Theorem A using the qu~iconcavity 

assumption on every payoff function. Since then, the classical results of Nash [3], Debreu [l], 
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Nikaido and Isoda [5], and Friedman [4] have served as basic references for the existence of Nash 

equilibrium for noncooperative generalized games. In all of them, convexity of strategy spaces, 

continuity, and concavity/quasiconcavity of the payoff functions were assumed. Till now, there 

have been a number of generalizations, and also many applications of those theorems have been 

found in several areas; e.g., see [4,6] and the references therein. 

Two important concepts for removing the concavity/quasiconcavity assumptions of payoff func- 

tions are marked by the seminal papers of Fan [7:8] for two-person zero-sum games, and the 

complete abandonment of concavity in [9]. In fact, the concept of concavelike payoffs due to 

Fan [8] does not require any linear structure on the strategy space. However, in [lo], Jo6 gave 

a general sum two-person game where the payoff functions are continuous and concavelike, but 

the game has no Nash equilibrium. Horv&th and Jo6 [ll] also show that higher smoothness of 

the payoff functions does not change the situation. On the other hand, Fan’s existence results 

have been extended to two-person games defined over certain convexity structures by Jo6 and 

Stach6 [12], Horv6th and SGvegj6rt6 [13], and Borgin& et al. [14]. Jo6 [lo] also proved that in a 

certain sense, partial concavity of the payoff functions is necessary for a two-person game to have 

an equilibrium. And there have been a number of generalized concepts of concavity by several 

authors, and using those concepts, there have been also many applications; e.g., see [15] and the 

references therein. 

In this paper, we first introduce the C-concavity which generalizes both concavity and CF- 

concavity without assuming the linear structure. Using the C-concavity and the partition of 

unity argument, we shall prove the Nash equilibrium for noncooperative n-person games. And, 

as an application, we shall prove a minimax theorem. Finally, we shall give some examples 

of two-person games where the C-concavity can be applied, but the quasiconcavity cannot be 

applied. 

2. PRELIMINARIES 

We begin with some notations and definitions. Let Xi be a nonempty topological space for 

each i E I, and denote X; := fljE1,ILl Xj. If x = (x1:. . . ,x,) E X, we shall write xc; = 

(x.1,... ,.z’&-l,Zi+l,. . . I xn) E Xi. If xi E X, and x:; E X;, we shall use the notation (x~,x;) := 

(Xl,..., x,-1,x1,x1+1,. . .: x,) = x E X. Denote by [O,l]” the Cartesian product space of unit 

intervals [0, l] x . . . x [0, 11. 
\ , 

n. times 
Throughout this paper, all topological spaces are assumed to be Hausdorff. 

Let I = {l,..., n} be a set of players. A noncooperative n-person game of normal form is 

an ordered 2n-tuple (Xl,. . . ,X,; fl, . . , fn), w h ere for each player i E I, the nonempty set Xi 

is the player’s pure strategy space, and fi : X = ny=, X, + R is the player’s payoff function. 

The set X, joint strategy space, is the Cartesian product of the individual strategy sets, and an 

element of Xi is called a strategy. A strategy n-tuple (5~1, . . . , ?n) E X is called a Nash equilibrium 
for the game if the following system of inequalities holds: 

fl (3L.,,q) 2 fi (xi,?;), forallx,EXi and i=l,...,n. 

Here we note that the model of a game in this paper is a noncooperative game, i.e., there is 

no replay communicating between players, and so players act as free agents, and each player is 

trying to maximize his/her own payoff according to his/her strategy. 

Next, we recall some concepts which generalize the convexity/concavity as follows: let X be a 

nonempty convex subset of a vector space E and let f : X - R. We say that f is quasiconcave 
if for each t E R, {ZZ E X 1 f(z) 2 t} 1s convex, and that f is quasiconvex if -f is quasiconcave. 

It is easy to see that if f is quasiconcave, then 
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for every 21, x2 f X and every X E (0, I]. It should be noted that if f,g are quasiconcave, 

then f + g is not quasiconcave in general. 

When X and Y are any arbitrary sets, recall that f : X x Y - R is co~cuvel~~e [8] on X if for 

any ~1, ~‘2 E X and X E [O, If, there exists an 20 E X such that 

for every y E Y. 

We now prove the following, which is equivalent to the concavelike condition. 

LEhlhfA 1. Let X be a llon~mpty ~opo~o~ica~ space? Y an arbitrary set. Then p : X x Y --+ W 

is concaveiike on X? if and only if, for every 11 2 2, whenever 51, . . . , 5, E X are given alla’ for 

any A, E [O, 11, 2: = 1,. . . , ‘IL, with Cy+“=, Xi = 1, there exists a point x0 E X such that 

PROOF. The sufficiency is clear. For the necessity, we shall use the induction argument on n. 

When n = 2, condition (*) is exactly the same as the definition of a concavelike condition. 

Assume that condition (*) holds for all k I n - 1 (n > 3). Let (51,. . . ,xn} c X be given, and 

xi E [O, 11, i = 1,. .., ~2, with Cy=i Xi = 1 be arbitrarily given. Without loss of generality, we 

may assume Cyzil Xi > 0 by reindexing i. Then, for a given set (~1,. . . ,a~,+l}, the induction 

assumption assures that there exists a point f f X such that 

.ftm/)&- ffXl,Y) +--.-t n_I xrei ffG+ltY)t for all y E Y. 

c Xl I3 Ai 
i=l i=l 

Then, by the induction assumption on two points 2, z+,, there exists a point zo E X such that 

for all y E Y, 

Therefore, we finally have 

n-1 

2 xxi 

i=l 

i 

~fh~ll) +*.*+ nyl-l - fch-17Y) + W(Xrz,Y) 
c At 
i=l ,sj xL 1 

for al1 y E Y. Therefore, by the induction, for every n > 2, we can obtain the desired conclu- 

sion . I 

Lemma 1 is a convenient tool in proving the existence of ~uilibrium for generalized games 

with the concavelike condition. 

In a recent paper [lS], adding the continuity to concavelike functions, For& introduced the 

CF-concavity as follows: let X be a nonempty topological space, Y an arbitrary set. Then 

f:XxY --+ R is said to be CF-concave on X with respect to Y if there exists a continuous 

function 9 : X X X X [0, l] ---) X such that for any 21,~ E X and X E [0, 11, 
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Moreover, Forgij 116, Lemma I] obtained the following, which is equi~lent to the CF-concavity: 

let X be a nonempty topological space, Y an arbitrary set. Then f : X x Y + R is CF-concave 

on X with respect to Y if and only if for each n 2 2, there exists a continuous function @, : 

,x x ‘,’ x Tx[O,l]” --+ X such that for any x1,. . . ,;c, E X, and for all Xi E [0, 11, i = 1,. . . (71, 

n times 
with Cy=:=, Xi = 1, 

for all Q E Y. 

Next, we will introduce the followin,, (r which generalizes the concavity condition. 

DEFINITION. Let X be a i~onempty topological space, Y an arbitrary set. Then f : X x Y --$ R 

is called C-co~cu~e 07t X if for every ?E 2 2, whenever 12 points xl,. . . ,x, f X are arbitrarily 

given, there exists a continuous function 4, : (0, 11” 3 X such that 

f(9ll(h, * ’ . , %I), 9,) L hfIz17 Y) + ’ ’ * + &J&2, YL (1) 

for all Xi E [0, 11, i = 1, . . , , n, with Cy__, & = 1, and for all y E Y. 

REMARK. As remarked in [16], CF-concavity is closely related to a concavelike condition. The 

concavity clearly implies the C-concavity by letting &(X1,. . . , A,) := X1x1 f.. ~+X,,Z,, whenever 

Xl,...? 5, E X are given. Note that the continuous function (b, need not be globally defined on 

x1 x ... x X, x [O, lln, but defined only on [0, llR for each n > 2 in the definition. In fact, by 

defining &(X1,. . . ,A,> := iFIfn(b~,. . . ,2,; XI,. . . , A,), for any given n points xl,. . . ,x,$ E X, we 

cm see that the CF-concavity impfies the C-concavity. However, we do not know the inlpl~cations 

between the qu~~iconcavity and the C-concavity. Therefore, the folfowing implication diagram 

holds: 

concave + CF-concave =+ C-concave. 

Finally, recall that a topological space X is said to have the fized-point property (or is a Jxed- 

point space) [l7] if every continuous mapping f : X -+ X has a fixed point in X. 

Clearly this property is topologically invariant, and note that the product of two fixed-point 

spaces need not be a fixed-point space. In contrast with finite products, an infinite product of 

nonempty compact fixed-point spaces will be a fixed-point space whenever every finite product 

of those spaces is a fixed-point space; e.g., see 117, p. 1741. 

3. EXISTENCE OF NASH EQUILIBRIUM 

By following the method in [5], let us define the total sum of payoff functions H : X x X --$ R 

associated with the noncooperative game l? as follows: 

H(x,Y) :=~~~(Yl,....Yi-l,zi,Yi~l,...,Yn), (2) 
1=1 

for every 2 = (~1,. . . ,xn), y = (yl,. . . ,yn) E X = jJy=, Xi. 
Then we shall need the following. 

LEMMA 2. [See [5].) Let r be a noncooperative n-persoil game of normal form. If there exists a 
point 2 E X for which 

H(%,?) 2 EI(x,z), for any x f X, 

tl2e22 3 is a Na.sh eq~j~ibriunl for I?. 

PROOF. For any x = (31,. . . ,Z;-l,xirZi+2,. . . ,T:,) E X, xi E Xi, by substitution, we can see 

that 2 is a Nash equilibrium. I 

Here we note that if for each i E I, the function yi cf fi(yi, 2;) is concave as in Theorem A, 

then the function 5 +-+ H(z, y) is concave, and so it is C-concave. 

Using the C-concavity and the partition of unity argument, we now prove the following new 

existence theorem of Nash equilibrium. 
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THEOREM 1. Let I be a finite set of slayers, and Iet lJ be a noncooperatjve game satjs~jllg the 

following: 

(i) the strategy space X := If:=‘=, Xi is nonempty compact and has the fixed-point property; 

(ii) the function H(z, y) is continuous on X x X; 

(iii) the function x +-+ Ei(;c, y) is C-concave on X; 

then l7 has at least one Nash equilibrium. 

PROOF. Suppose the contrary. Then, by Lemma 2: for all z E X, there exists an y E X such 

that H(z, X) < H(y, X). 

For any x E X, we let 

U(Z) := {x E x j H(s3z) < H(z,z)). 

Then, by Assumption (ii), H is continuous, so that each U(L) is open in X, and also UteS 

U(Z) = X. Since X is compact, there exists a finite number of nonempty open sets U(rr), . . . , 

U(z,,) such that tJ:=, V(t,) = X. Let {oi 1 i = 1.. . ,?I} be the partition of unity subordinate to 

the open covering {U(,-i) 1 i = 1, . . . ,?I} of X; i.e., 

O<oj(X)sl, goi(X)=lforallXEX, i=l,...,n: 
i=l 

and if x 4 U(Zj), for some j, then Ok = 0. 

For such (zr,...,~~} c X, since H is C-concave, there exists a continuous mapping & : 

[O, 117’ -, X satisfying the condition 

ff(djrx(Xl7~~~ ,A,),y) 2 XlH(zl:y) + ... tkJf(,-,,I/), 

for all Xi E [0, 11, i = 1,. . . , n, with Cy=r X, = 1, and for all y E X. 

Now consider a continuous mapping Q : X + X, defined by 

for all x E X. 

Since Q, and every oi are continuous, 1I1 is continuous on X. Moreover, II1 maps X, which is a 

fixed-point space: into itself. Therefore, there exists a fixed point Z E X such that Q(Z) = 5. 

Next, by the C-concavity of H, we have 

H(‘l’(z),x) 2 ct~(~)H(q,x) + ... + an(z)H(zn,x), for all x E X, 

and so we have 

(3) 
i=l 

However, if Z E U(Z,) for some 1 5 J’ 5 n, then we have li(Z,f) < H(zj,Z) and oj(?) > 0; and 
if % # U(z,) for some 1 < k < ‘n, then &k(Z) = 0. Thus5 we have 

-&ri(E)H(z,,z) >~a,(2)H(f,f) =H@,~), 
i=l i=l 

which contradicts the fact (3). This completes the proof. 

REMARKS. 

I 

(1) Theorem 1 generalizes the previous equilibrium existence theorems due to Nash [3] and 

Forgo [16] in the following aspects: 
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0)) 

(2) 
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the strategy sets X2, . . . i X, need not be convex, but ny==, Xi has the fixed-point 

property (in fact, if Xi is homeomorphic to a compact convex subset of finite- 

dimensional Euclidean space as in [16], then nbl Xi is clearly a fixed-point space); 

all payoff functions f2, . . . , fn need not be continuous nor concave, and also H need 

not be CF-concave on X. 

It is well known that the Nash-equilibrium problem has only one family of players and the 

payoff functions are single-valued functions. Note that by following the method in (181, 

the payoff functions might be families of multimaps. So we can improve the equilibrium 

existence theorems in more general settings. 

Our proof is different from those of Nikaido and Isoda [5] and For@ [16] where they used 

a kind of symmetrization procedure. 

Therefore, we can obtain the following immediate consequences of Theorem 1. 

COROLLARY 1. (See 131.) Let I be a finite index set, a22d I’ be a noncooperative game. Assume 

that 

(a) for all i E I. the set Xi c lRk8 is nonempty con2pact a22d convex; 

(b) for all i E I, the functio22 fi is continuous: 

(c) the ftmctio22 yi t-+ fi(yi, IC;) is concave. 

Tl2en there exists at least one Nash equilibrium for r. 

COROLLARY 2. (See [IS/.) Let I be a finite iadex set, and I? be a 22oncooperatj~re game. Assume 

that 

(a) for all i E 1: tile set Xi C R”t is 22onen2pty compact and convex; 

(1,) for all i E I, tl2e function fi is continuous: 

(c) for all y E X! tfie function H(z, y) is CF-co22calre on X. 

The22 there exists at least o22e Nash equilibrium for I?. 

As an application of Theorem 1, we shall prove the following minimax theorem. 

THEOREM 2. Let X and Y be 22onempty compact sets ar2d X x Y be a fixed-point space. Assume 

that 

(a) the function f : X x Y + lR is continuous 012 X x Y; 
(I)) for each y f Y, the fnnctjon -f(m: y) is C-concave on X; 

(c) for eaclt z E X, the function f(s, .) is C-co22cave 022 Y. 

The12 we have 

PROOF. Let fl(z, y) := -f(x, y) and f2(z, Y) := f(a,Y). In order to apply Theorem 1, we first 
define the mapping H : (X x Y) x (X x Y) + IR by 

~((~l,Yl),(mrYz)) := JcItQ,Yz) +fZ(~2,Yl)t for every (21,~1),(52,Y2) E X x Y. 

Then H is clearly continuous, so it suffices to show that Assumption (iii) of Theorem 1 is sat- 

isfied. Let two points (z2,y2), (~2~~2) E X x Y be given arbitrarily. Then for {z2,z2), by 

Assuxnption (b), there exists a co~itinuous function $2 : 10. 1]2 --+ X such that 

fl(&(A. 1 - Xl, VI 2 Afl(zl* uf + (1 - 4fl(Z217J), 

for every X E [O, 1) and every v E Y. Also. for {yl, yz}, by Assumption (c), there exists a 

continuous function 42 : [0, 112 - Y such that 

f2(& c32(A 1 - 8) > U2(% Yl) + (1 - Nf2(% Y2), 

for every X E [O! l] and every u E X. 
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Now we define a continuous function @2 : [0, 112 ---* X x Y by 

@2(A 1 - A) := (4l(A 1 - A), 42(A 1 - A)), for every X E [0, 11. 

Then it is easy to see that @2 is a continuous function on [01 112. Also, for every X E (0, 11, we 

have 
J+ H((Xl, Yl), (UT u)) + (1 - A) H((Z2r Y2)r (u, 27)) 

= q.fl(zll tv) + f2(% Yl)) + (1 - X)(f1(52, tv) + f2(u, Y2)) 

= [kf1(a, u) + (1 - A)f 1 52, u)] + [kf2(7J! Yl) + (1 - X).f2(% Y2)l ( 

I fl(@l(k 1 - A), p) + f2(u, 42(X! 1 - A)) 

= H(@2(A 1 - A), (.u, v)), for all (21, u) E X x Y. 

For arbitrarily given n points (~1, yl), . . . , (x,, yn) E X x Y, we can similarly define a continuous 

function Qn : [0, l]” -+ X x Y by 

%(X1,. . . ,A,) := ($Q(Xl,“‘,L)? 432(Xlr...,L)). 

for every X, E [0, 11, i = 1,. . . n. with Cz, X, = 1. where $1 : [0, 11” + X is a continuous 

function suitable for fl with respect to (~1~. . . , xn}, and 142 : [0, 112 --t Y is a continuous function 
suitable for f2 with respect to (~1,. . . , yn} in the C-concavity condition (1). Thus, we can also 
show condition (l), and hence, H is C-concave on X x Y. 

Therefore, by Theorem 1, there exists a Nash equilibrium (20, ya) E X x Y such that 

fl(zolYo) = ~Eyfl(&YO) and f2b0, Yo) = l$5f2(20? Y). 

Therefore, we have 

-f(xo: Yo) = fl(XOl Yo) L fib, Yo) = -f(T Yo), for all 5 E X, 

and 

Hence, 

f(zo, Yo) = f2(20, Yo) > f2bo1 Y) = f(xo, Y), for all y E Y. 

which implies 

is trivial, and so we have the conclusion. I 

Using any (possibly uncountable) set of players and typical strategy spaces, Theorem 1 can be 
reformulated as follows. 

THEOREM 3. Let I be a (possibly uncountable) set of players, and let r be a noncooperative 
generalized game satisfying the following: 

(i) the strategy space X := &, Xi is nonempty and homeomorphic to a compact convex 
subset of a locally convex Hausdorff topological vector space; 

(ii) the total suni of all pa>*off functions H(z, y) := CjGI fi(x,, y;) is continuous on X x X; 
(iii) the function H(z, y) is C-concave on X; 

then r has at least one Nash equilibrium. 
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PROOF. Since X is compact, we can repeat the same proof of Theorem 1 except for finding 

a fixed point of \k. But X is homeomorphic to a compact convex subset of a locally convex 
Hausdorff topological vector space, and we can apply the Tychonoff fixed-point theorem in this 

case, so that we can obtain the conclusion. I 

As we mentioned before, the game described previously has an equilibrium if the payoff func- 

tion fi satisfies either CF-concavity or quasiconcavity. Indeed, many of the assumptions made in 

the preceding theorems have been weakened and the existence of equilibrium has been proved; 

however, it is hard to improve the equilibrium theorem by relaxing quasiconcavity assumption of 

the payoff functions and the convexity assumption on the strategy space. In fact, the Nash equi- 

librium is applied in many areas of mathematical economics including oligopoly theory, general 

equilibrium, and social choice theory; hence, the C-concavity should be helpful in developing the 

theory of Nash equilibrium. 

Finally, note that Theorem 3 can be improved to more general spaces by using general fixed- 

point theorems, e.g., Eilenberg-~Iont~omery’s fixed-point theorem or Himmelberg’s fixed-point 

theorem without assuming finit~dimensional Euclidean spaces or compact strate,qy spaces. Also, 

by using Berge’s maximum theorem or its generalizations, it is possible to improve the existence 

theorem of social equilibrium for generalized games with the C-concavity. 

4. EXAMPLES OF TWO-PERSON 
GAMES WITHOUT ~UASICONCAVITY 

Next, we shall give two examples of a two-person game where Theorem 1 can be applied but 

the previous theorems due to Nash [3] and Friedman [4] cannot be applied. They also show that 

Theorem I generalizes the corresponding results due to Nash [3] and Forgo [16] in several ways. 

EXAMPLE 1. Let I = {XltX2:firf2} b e a two-person game where Xr = i-1, l], Xs = [0, l], 

and 

fl(Q,zz) := Xl27 for every (51,52) E X = Xr x X2; 

f2(!bl,Y2) := &2* for every (yi , ~2) E X = Xi x X2. 

Clearly ~~;(*,Lcz) is not quasiconcave for any 22 E [O, I], and thus, theorems of Nash [3] and 

Friedman 141 cannot be applied. For this game, the related total sum of payoff functions Ei : 

X x X -+ !R is given by 

for every ((zi,~), (yr, ys)) E X x X. For arbitrarily given two points (z~,Q), (23,~~) E X, we 

now define a continuous function q52 : [0, 112 -+ X by 

4J2P, 1 - 8 := (Jh2 + (1 - X)232, [A@ f (1 - X)&$) ) for all X E [0, 11. 

Then it is easy to see that 42 is a continuous function on [O, 112. Also, for every X E [0, I] and 

($1, ~2) f X, we have 
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For arbitrarily given n points (xi, x2), . . . , (~1, ~2) E X, we can similarly define a continuous 

function & by 

&l(Xl,~. ., Lx) := V x1x1* +. . . + x .q*, [A,& + . . . + X”Jz12) . 

for all X, E [0, 11, i = 1,. . . , n, with CL1 Xi = 1. Thus, we can show that H is C-concave on X. 

Therefore, we can apply Theorem 1 to the game l?; and clearly, (1,1) is a Nash equilibrium for r‘. 

In fact, we have 

1 = fl(l, 1) 2 fl@l, 1) = a*, for every 21 E Xi: 

1 = f*(l, 1) > f*(l, 92) = &E. for every y2 E X2. 

The next example demonstrates that the strategy sets Xi, X2 need not be convex but homeo- 

morphic to compact convex sets, so that Xi x X2 is a fixed-point space. 

EXAMPLE 2. Let I’= {Xi, X2; fi, f2) be a two-person game where Xi := {(x, y) l R” 1 x*+y* = 1, 

-1 5 z 2 z: 0 < y 5 l}, X2 := ((5,~) E R* 1 x2 + y* = 1. 0 5 x, y 5 l}, and let 

fl((T YL (21, VI) := x*u + u*, for every ((x, y), (u,v)) E X = Xi x X2; 

f*((x, 9). (21, u)) := -m* + Y, for every ((z,y),(u,v)) E X = Xi x X2. 

Then clearly fi((x, y), (u, v)) is not quasiconcave for any fixed (u, V) E X2, but f~((x, y), (u, v)) 

is clearly quasiconcave for any fixed (x, y) E Xi; thus, theorems due to Nash [3] and Friedman [4] 

cannot be applied. Also note that the strategy sets XI and X2 are not convex, but homeomorphic 

to a compact convex set { (5: 0) 1 0 5 c-c I 1) using the projection mapping. 

For this game, the related total sum of payoff function H : X x X -+ R is given by 

H (((x7 Y), (% VI), ((t1, f2), ct;, g))) = fl (CT Y)? ct’,: &N + f*((tl, t*), (.1L, fJ)) 

= &’ + t;* 1 - t1v* + t*: for every (((GY), (u,v)), ((t1,t2), (t\,th))) E X x X. 

For arbitrarily given two points ((~l,yl),(ul,~~l)),((x2,~2),(~2,~2)) E X, we now define a 

continuous function 42 : [0, l]* + X by 

&(A, P) := ((d_, Jl - Xx12 - px**) , (Jl - xv12 - /.a**, Jxv1* + pu**)) , 

for all (X, cl) E [0, l]*, where X + p = 1. 

Then it is easy to see that 49 is a continuous function which depends on the given two points 

((Xl:Yl)r (~1,~1))~((~2,Y2),( ~2, ~2)) E X. Also, for every ((ti?t~), (tilt:)) E X andevery (X,p) E 

[0, l]* with X + p = 1, we have 

H (42(&P), ((tl,t*), @‘l,W 

=H (((Jxx1*+~2**,J1-~x512-~x** ( ) (+xv+_I1~u**),~wqq) 

((tl, t*), ct’,v G))) 

2 (xx12 + /Lx**) t’l + t;* - tl (xv12 + pg) + t* 

= x 
( 
51% + t’* 

12 
1 2 -tp1*+t* 

> ( 
+p &‘,+t* -t1v**+t* 

) 

= XH(((xl,Yl), (zll,vl)),((tl,t*).(t:rt;))) +~H(((22,Y2),(212,~2)),((tlrt2):(t;rta)>). 

For arbitrarily given 11 points ((xl, yl), (~1, VI)), . . . , ((x,, yn), (un. v,)) E X, as in Example 1, we 

can similarly define a continuous function $,,> and hence, H is C-concave on X. Therefore, we 

can apply Theorem 1 to the game l?; and clearly, ((l,O), (1,O)) is a Nash equilibrium for r. In 

fact. we have 

1 = fl((l,O), (1:O)) 2 fl((GY), (LO)) = x2, for every (2, y ) E Xi, 

0 = f*((LO), (130)) > f*((LO)r (.LL,2’)) = -tJ2. for every (u, u) E X2. 
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