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Existence of Nash equilibria with C-convexity
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Abstract

The purpose of this paper is to introduce general C-convex and C-concave conditions, and then to
prove two existence theorems of Nash equilibria in generalized games with C-concavity. Our results
generalize the corresponding results due to Nash, Forgó, Takahashi and Kim–Lee in several ways.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1951, Nash [19] established the well-known equilibrium existence theorem. Since then,
the classical results of Nash [19], Debreu [4,5], Nikaido–Isoda [20] and Friedman [11] have
served as basic references for the existence of Nash equilibrium for non-cooperative gener-
alized games. In all of them, convexity of strategy spaces, continuity and concavity/quasi-
concavity of the payoff functions were assumed.

On the other hand, the convexity and concavity are very essential natures in numerous
applications in nonlinear analysis, and in particular, those concepts have been extensively
studied and generalized by several authors in the last five decades, e.g., see [1,2,7–9,12–16].
Two important concepts for relaxing the convexity/quasi-convexity assumptions of func-
tions are marked by the seminal papers of Fan [8,9]. In fact, the concept of convex-like
condition due to Fan [8] does not require any linear structure on the strategy space and
using this concept he gave a new minimax theorem and its applications. Also, in a recent
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paper [16], Kim and Lee introduced the C-convexity which generalizes both convex con-
dition and CF-convexity without assuming the linear structure, and as applications, they
proved existence theorems of Nash equilibria and a minimax theorem.

In this paper, we will introduce more general C-convex and C-concave conditions. Using
these notions and the partition of unity argument, we prove two existence theorems of Nash
equilibria in generalized N-person games with C-concavity. The crucial step in proofs is to
use Cauty’s celebrated fixed point theorem [3] which resolved the long-standing Schauder
conjecture and its multi-valued modification due to Dobrowolski [6]. For these fixed point
theorems, readers can refer to a very useful survey paper by Park [22]. Our results extend
the corresponding results due to Nash, Forgó, Takahashi and Kim–Lee in several ways.

2. Preliminaries

Let I ={1, 2, . . . , n} be an index set. For each i ∈ I, Xi be a topological space and denote
X

î
:= ∏

j∈I\{i} Xj . Ifx=(x1, . . . , xn) ∈ X, we shall writex
î
=(x1, . . . , xi−1, xi+1, . . . , xn)

∈ X
î
. If xi ∈ Xi and x

î
∈ X

î
, we shall use the notation (xi, xî

) := (x1, . . . , xi−1, xi, xi+1,

. . . , xn) = x ∈ X. Denote by [0, 1]n the Cartesian product space of unit intervals
[0, 1] × · · · × [0, 1]︸ ︷︷ ︸

n times

. Denote the unit simplex in [0, 1]n by �n. Let X be a topological space

and for a correspondence T : X → 2X, denote the fixed point set F(T ) := {x ∈ X | x ∈
T (x)}. Let I ={1, . . . , n} be a set of players. A non-cooperative generalized N-person game
is an ordered 3n-tuple � := (X1, . . . , Xn; T1, . . . , Tn; f1, . . . , fn), where for each player
i ∈ I , the non-empty set Xi is the strategy set, Ti : X = ∏n

i=1 Xi → 2Xi is the player’s
constraint correspondence, and fi : X → R is the player’s payoff function. The set X, joint
strategy space, is the Cartesian product of the individual strategy sets, and an element of
X is called a strategy. A strategy (x̄1, . . . , x̄n) ∈ X is called a Nash equilibrium for the
generalized game � if for each i = 1, . . . , n, the following system of inequalities holds:

x̄i ∈ Ti(x̄) and fi(x̄i , x̄î
)�fi(xi, x̄î

) for all xi ∈ Ti(x̄).

A correspondence Ti : X → 2Xi satisfies the reflexivity when xi ∈ Ti(x) for each x ∈ X.
When Ti(x)=Xi for each x ∈ X and i ∈ I , then Ti clearly satisfies the reflexivity condition.
In this case, the non-cooperative generalized N-person game reduces to the normal form of
N-person game and the Nash equilibrium is exactly the same concept as in [16]. Here we
note that the model of a game in this paper is a non-cooperative game.

When X andY are any arbitrary sets, recall that f : X×Y → R is concave-like on X [9] if
for any x1, x2 ∈ X and � ∈ [0, 1], there exists an x0 ∈ X such that f (x0, y)��f (x1, y) +
(1 − �)f (x2, y) for every y ∈ Y . In [10], adding the continuity to concave-like functions,
Forgó introduced the CF-concavity as follows: Let X be a topological space, Y an arbitrary
set. Then f : X × Y → R is said to be CF-concave on X with respect to Y if there exists a
continuous function � : X × X × [0, 1] → X such that for any x1, x2 ∈ X and � ∈ [0, 1],

f (�(x1, x2, �), y)��f (x1, y) + (1 − �)f (x2, y) for all y ∈ Y .

Next, we will introduce the following general convexity.
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Definition 1. Let X be a topological space, T : X → 2X a correspondence. Let D be a
subset of X. Then f : X × X → R is called C-convex on D with respect to T if for every
n�2, whenever n points x1, . . . , xn ∈ X are arbitrarily given, there exists a continuous
function �n : �n → D such that

f (�n(�1, . . . , �n), y)��1f (x1, y) + · · · + �nf (xn, y) (1)

for all (�1, . . . , �n) ∈ �n and for all y ∈ T (�n(�1, . . . , �n)); and f is called C-concave on
D with respect to T if −f is C-convex on D with respect to T.

Remarks. (1) When T (x) = X for each x ∈ X, Definition 1 reduces to the definition in
Kim–Lee [16].

(2) Note that the continuous function �n need not be globally defined on X1 ×· · ·×Xn ×
[0, 1]n, but defined only on �n for each n�2 as in the Definition 1. In fact, by defining
�n(�1, . . . , �n) := �n(x1, . . . , xn; �1, . . . , �n), for any given n points x1, . . . , xn ∈ X, we
can see that the CF-convexity due to Forgó [10] implies the C-convexity.

3. Existence of Nash equilibria

By following the skew-symmetrization method of Nikaido–Isoda [20], let us define the
total sum of payoff functions H : X × X → R associated with the non-cooperative game
�, as follows:

H(x, y) :=
n∑

i=1

fi(y1, . . . , yi−1, xi, yi+1, . . . , yn) (2)

for each x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X =∏n
i=1 Xi .

Lemma 1. Let � be a generalized N-person game. If there exists a point x̄ ∈ X such that
for each i = 1, . . . , n,

x̄i ∈ Ti(x̄) and H(x̄, x̄)�H(x, x̄) for each x ∈
n∏

i=1

Ti(x̄),

then x̄ is a Nash equilibrium for the generalized game �.

Proof. For each i ∈ I , we take any x = (x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n) ∈ ∏n
i=1 Ti(x̄).

Then, by substitution, we can see that

H(x̄, x̄) =
∑

j∈I\{i}
fj (x̄1, . . . , x̄i , . . . x̄n) + fi(x̄1, . . . , x̄i , . . . x̄n)

�H(x, x̄) =
∑

j∈I\{i}
fj (x̄1, . . . , x̄i , . . . x̄n) + fi(x̄1, . . . , xi, . . . x̄n)

for all xi ∈ Ti(x̄). Therefore we have fi(x̄i , x̄î
)�fi(xi, x̄î

) for all xi ∈ Ti(x); hence x̄ is a
Nash equilibrium. �
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Using the general C-concavity, we now prove the following new existence theorem of
Nash equilibrium:

Theorem 1. Let I = {1, 2, . . . , n} be a finite set of players, and let � be a non-cooperative
generalized game satisfying the following:

(1) the strategy space X := ∏n
i=1 Xi is homeomorphic to a non-empty compact convex

subset of a Hausdorff topological vector space;
(2) the constraint correspondence Ti : X → 2Xi satisfies the reflexivity condition, i.e.,

xi ∈ Ti(x) for each x ∈ X and for each i ∈ I ;
(3) the function H(x, y) is continuous on X × X;
(4) the function x �→ H(x, y) is C-concave on X with respect to T := ∏n

i=1 Ti .

Then there exists a Nash equilibrium x̄ ∈ X for the generalized game �.

Proof. Suppose the contrary. Then, by Lemma 1, for all x ∈ X, either of the following
holds:

(i) there exists i ∈ I such that xi /∈ Ti(x);
(ii) there exists an y ∈ T (x) := ∏

i∈I Ti(x) such that H(x, x) < H(y, x).

Since each Ti satisfies the reflexivity condition, case (i) cannot happen. For any z ∈ X,
we let U(z) := {x ∈ X |H(x, x) < H(z, x)}. Then, by assumptions (2) and (3), each U(z)

is (possibly empty) open in X; and also
⋃

z∈X U(z)=X. Since X is homeomorphic to a non-
empty compact set, X is also compact, and hence there exists a finite number of non-empty
open sets U(z1), . . . , U(zm) such that

⋃m
i=1 U(zi) = X. Note that m�2 because z /∈ U(z)

for all z ∈ X. Let {�i | 1� i�m} be the partition of unity subordinate to the open covering
{U(zi) | 1� i�m} of X, i.e., 0��i (x)�1,

∑m
i=1 �i (x) = 1 for all x ∈ X, i = 1, . . . , m,

and if x /∈ U(zj ), for some j, then �j (x) = 0. For such {z1, . . . , zm} ⊂ X, since H is
C-concave, there exists a continuous mapping �m : �m → X satisfying the condition
H(�m(�1, . . . , �m), y)��1H(z1, y) + · · · + �mH(zm, y), for all (�1, . . . , �m) ∈ �m and
y ∈ T (�m(�1, . . . , �m)).

Now consider a continuous mapping � : X → X, defined by

�(x) := �m(�1(x), . . . , �m(x)) for all x ∈ X.

Since �m and each �i are continuous, � is continuous on X. Moreover, � maps X, which
is homeomorphic to a non-empty compact convex subset of a Hausdorff topological vector
space, into itself. Therefore, by Cauty’s fixed point theorem [3], there exists an x̄ ∈ X such
that �(x̄) = x̄. On the while, by the C-concavity of H, we have

H(�(x), y)��1(x)H(z1, y) + · · · + �m(x)H(zm, y) for all y ∈ T (�(x));

and so by using �(x̄) = x̄, we have

H(x̄, y)��1(x̄)H(z1, y) + · · · + �m(x̄)H(zm, y) for all y ∈ T (x̄) ⊆ X.
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Since x̄ ∈ T (x̄) by assumption (2), we have

H(x̄, x̄)��1(x̄)H(z1, x̄) + · · · + �m(x̄)H(zm, x̄). (∗)

However, if x̄ ∈ U(zj ) for some 1�j �m, then we have H(x̄, x̄) < H(zj , x̄), and
�j (x̄) > 0; and if x̄ /∈ U(zk) for some 1�k�m, then �k(x̄) = 0. Thus we have

H(x̄, x̄) =
m∑

i=1

�i (x̄)H(x̄, x̄) <

m∑
i=1

�i (x̄)H(zi, x̄);

which contradicts to the fact (∗). This completes the proof. �

Remarks. (1) Theorem 1 generalizes the previous equilibrium existence theorems due to
Nash [19], Forgó [10] and Kim–Lee [16] in the following aspects:

(a) the strategy sets X1, . . . , Xn need not be convex but
∏n

i=1 Xi has the fixed point prop-
erty (in fact, if Xi is homeomorphic to a compact convex subset of finite dimensional
Euclidean space as in Forgó [10], then

∏n
i=1 Xi is clearly a fixed point space);

(b) all payoff functions f1, . . . , fn need not be continuous nor concave, and also H need
not be CF-concave on X with respect to T.

(2) When Ti(x) = Xi for each x ∈ X and i ∈ I , then Ti clearly satisfies assumption (2),
and in this case, Theorem 1 is reduced to Theorem 1 of Kim–Lee [16].

(3) Note that the constraint correspondenceTi does not assume any continuity assumption,
but each Ti should satisfy the reflexivity condition.

Next, without assuming the reflexivity assumption on Ti in Theorem 1, we can obtain the
following:

Theorem 2. Let I = {1, 2, . . . , n} be a finite set of players, and let � be a non-cooperative
generalized game satisfying the following:

(1) the strategy space X := ∏n
i=1 Xi is linearly homeomorphic to a non-empty compact

convex subset of a Hausdorff topological vector space;
(2) the constraint correspondence Ti : X → 2Xi is upper semicontinuous such that Ti(x)

is non-empty closed convex for each x ∈ X, and T := ∏n
i=1 Ti : X → 2X is a

correspondence;
(3) the function H(x, y) is continuous on X × X;
(4) the function x �→ H(x, y) is C-concave on F(T ) with respect to T;
(5) for each x ∈ F(T ), H(x, x)�H(y, x) for all y ∈ X\F(T ).

Then there exists a Nash equilibrium x̄ ∈ X for the generalized game �.

Proof. Since T : X → 2X is upper semicontinuous such that each T (x) is non-empty
closed convex and X is homeomorphic to a non-empty compact convex subset of a Hausdorff
topological vector space, by Dobrowolski’s fixed point theorem [6], there exists an x ∈ X

such that x ∈ T (x). Denote D := F(T )={x ∈ X | x ∈ T (x)}; then D is non-empty. Since
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T is upper semicontinuous, D is a non-empty compact subset of X. Suppose the conclusion
were false. Then, by Lemma 1, for each x ∈ X, either of the following holds:

(i) there exists i ∈ I such that xi /∈ Ti(x);
(ii) there exists an y ∈ T (x) := ∏

i∈I Ti(x) such that H(x, x) < H(y, x).

In fact, case (i) implies that x /∈ D. For each z ∈ X, we let

U(z) := {x ∈ X |H(x, x) < H(z, x)}.
Then, by assumption (3), each U(z) is (possibly empty) open in X; and also (

⋃
z∈X U(z))∪

(X\D) = X. By assumption (5), for each z ∈ X\D, we have that U(z) ⊂ X\D. Since

X =
(⋃

z∈D

U(z)

)
∪
⎛
⎝ ⋃

z∈X\D
U(z)

⎞
⎠ ∪ (X\D),

we obtain that D ⊂ ⋃
z∈D U(z). Since D is compact and each U(z) is open, there exists

a finite number of non-empty open sets U(z1), . . . , U(zm) such that D ⊂ ⋃m
i=1 U(zi),

where {z1, . . . , zm} ⊂ X. If
⋃m

i=1 U(zi)�X, we can choose zm+1 ∈ X\D satisfying
that zm+1 /∈ U(zi) for each i ∈ {1, . . . , m}. In this case, we denote a non-empty open
set U(zm+1) := X\D. Then {U(z1), . . . , U(zm+1)} is a finite open covering of X. Here
we note that if X = ⋃m

i=1 U(zi), we do not need an extra open set U(zm+1). Since X is
homeomorphic to a non-empty compact set, X is also compact, and hence there exists a
partition of unity {�1, . . . , �m+1} subordinate to the open covering {U(z1), . . . , U(zm+1)},
i.e., 0��i (x)�1,

∑m+1
i=1 �i (x) = 1 for all x ∈ X, i = 1, . . . , m + 1; and if x /∈ U(zj ) for

some j , then �j (x) = 0. For such {z1, . . . , zm+1} ⊂ X, since x �→ H(x, y) is C-concave
on D with respect to T, there exists a continuous mapping �m+1 : �m+1 → D satisfying
the condition

H(�m+1(�1, . . . , �m+1), y)��1H(z1, y) + · · · + �m+1H(zm+1, y)

for all (�1, . . . , �m+1) ∈ �m+1 and y ∈ T (�m+1(�1, . . . , �m+1)).
Next, we consider a continuous mapping � : X → D, defined by

�(z) := �m+1(�1(z), . . . , �m+1(z)) for all z ∈ X.

Since �m+1 and each �i are continuous, � is continuous on X. Moreover, � maps X, which
is homeomorphic to a non-empty compact convex subset of a Hausdorff topological vector
space, into a compact subset C of X. Therefore, by Cauty’s theorem [3], there exists an
x̄ ∈ D such that �(x̄) = x̄. Furthermore, we have

H(�(x̄), y)��1(x̄)H(z1, y) + · · · + �m(x̄)H(zm, y) + �m+1(x̄)H(zm+1, y),

for all y ∈ T (�m+1(�1(x̄), . . . , �m+1(x̄))) = T (�(x̄)) = T (x̄). Since x̄ ∈ D, x̄ ∈ T (x̄);
and so by putting y := x̄, we have

H(x̄, x̄)��1(x̄)H(z1, x̄) + · · · + �m(x̄)H(zm, x̄) + �m+1(x̄)H(zm+1, x̄). (∗∗)
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However, if x̄ ∈ U(zj ) for some 1�j �m, then H(x̄, x̄) < H(zj , x̄) and �j (x̄) > 0; and if
x̄ /∈ U(zk) for some 1�k�m, �k(x̄)=0. Also note that since x̄ ∈ D, x̄ /∈ X\D=U(zm+1);
and so �m+1(x̄) = 0. Therefore, we have

m+1∑
i=1

�i (x̄)H(zi, x̄) >

m+1∑
i=1

�i (x̄)H(x̄, x̄) = H(x̄, x̄);

which contradicts (∗∗). This completes the proof. �

Remark. When Ti(x)=Xi for each x ∈ X and i ∈ I , then Ti clearly satisfies assumptions
(2) and (5), and in this case, assumption (4) implies that x �→ H(x, y) is C-concave on X;
hence Theorem 2 is reduced to Theorem 1 of Kim–Lee [16]. Therefore, Theorem 2 also
generalizes the previous equilibrium existence theorems due to Nash [19], Forgó [10] and
Kim–Lee [16] in several aspects.

4. Examples of generalized game

First we give an example where Theorem 1 can be applied but the previous results due
to Nash [19], Nikaido–Isoda [20], Friedman [11], Kim–Lee [16] and Theorem 2 are not
available.

Example 1. Let �={X1, X2; T1, T2; f1, f2} be a generalized 2-person game where X1 :=
{(x, y) ∈ R2 | x2 + y2 = 1, −1�x�1, 0�y�1}, X2 := {(x, y) ∈ R2 | x2 + y2 =
1, 0�x, y�1}, respectively. Let Ti : X=X1×X2 → 2Xi and payoff functions fi : X → R

be given as follows:

T1((x, y), (u, v)) := X1 ∩ {(x, z) | z�y} for each ((x, y), (u, v)) ∈ X;

T2((x, y), (u, v)) := X2 ∩ {(u, w) |w�v} for each ((x, y), (u, v)) ∈ X;

f1((x, y), (u, v)) := x2u + v2 for each ((x, y), (u, v)) ∈ X = X1 × X2;

f2((x, y), (u, v)) := −xv2 + y for each ((x, y), (u, v)) ∈ X = X1 × X2.

Then T1 and T2 clearly satisfy the reflexive condition, and note that each Ti is upper semi-
continuous and closed valued but not convex valued; hence Theorem 2 cannot be applied.
Also note that f1((x, y), (u, v)) is not quasi-concave for any fixed (u, v) ∈ X2. Thus The-
orems due to Nash [19] and Friedman [11] cannot be applied. The strategy sets X1 and
X2 are not convex but homeomorphic to a compact convex set {(x, 0) | 0�x�1}. The total
sum of payoff function H : X × X → R is given by

H(((x, y), (u, v)), ((t1, t2), (t
′
1, t

′
2))) = f1((x, y), (t ′1, t ′2)) + f2((t1, t2), (u, v))

= x2t ′1 + t ′2
2 − t1v

2 + t2 for each (((x, y), (u, v)), ((t1, t2), (t
′
1, t

′
2))) ∈ X × X.

For arbitrarily given two points ((x1, y1), (u1, v1)), ((x2, y2), (u2, v2)) ∈ X, we now
define a continuous function �2 : [0, 1]2 → X by

�2(�, �)=
((√

�x2
1 + �x2

2 ,

√
1−�x2

1 −�x2
2

)
,

(√
1−�v2

1 −�v2
2,

√
�v2

1 + �v2
2

))
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for each (�, �) ∈ [0, 1]2, where � + � = 1. Then �2 is a continuous function depend-
ing on the given points ((x1, y1), (u1, v1)), ((x2, y2), (u2, v2)) ∈ X. Moreover, for any
((t1, t2), (t

′
1, t

′
2)) ∈ X and (�, �) ∈ [0, 1]2 with � + � = 1, we have

H(�2(�, �), ((t1, t2), (t
′
1, t

′
2)))

= H

(((√
�x2

1 +�x2
2 ,

√
1−�x2

1 −�x2
2

)
,

(√
1−�v2

1 −�v2
2

)
,

√
�v2

1 +�v2
2

))
,

((t1, t2), (t
′
1, t

′
2))

�(�x2
1 + �x2

2 )t ′1 + t ′2
2 − t1(�v2

1 + �v2
2) + t2

= �(x2
1 t ′1 + t ′2

2 − t1v
2
1 + t2) + �(x2

2 t ′1 + t ′2
2 − t1v

2
2 + t2)

= �H(((x1, y1), (u1, v1)), ((t1, t2), (t
′
1, t

′
2)))

+ �H(((x2, y2), (u2, v2)), ((t1, t2), (t
′
1, t

′
2))).

For arbitrarily given n points ((x1, y1), (u1, v1)), . . . , ((xn, yn), (un, vn)) ∈ X, we can
similarly define a continuous function �n, and hence H is C-concave on X. Therefore, we
can apply Theorem 1 to the game �; and we can easily check that ((1, 0), (1, 0)) is a Nash
equilibrium for �.

Even in 1-person game, the following simple example shows that Theorem 2 can be
applied but Theorem 1 is not applicable.

Example 2. Let � = (X, T , f ) be a generalized 1-person game where X = [−1, 1], and
the constraint correspondence T : X → 2X and the payoff function f : X → R be given
as follows:

T (x) :=
{ [x, 1], if 0�x�1;

{0}, if − 1�x < 0;
f (x) := x3 for each x ∈ [−1, 1].

Then T satisfies the assumptions in Theorem 2. Clearly, the fixed point set F(T ) is [0, 1],
and note that x /∈ T (x) for each x ∈ [−1, 0] so that the reflexivity assumption (2) of Theorem
1 is not satisfied. For each x ∈ F(T ) ≡ [0, 1], H(x, x)=f (x)=x3 �H(y, x)=f (y)=y3

for all y ∈ [−1, 0] ≡ X\F(T ), so that assumption (5) of Theorem 2 is satisfied.
For any given two points x1, x2 ∈ F(T ) ≡ [0, 1], we define a continuous function

�2 : �2 → X × X by

�2(�, 1 − �) := 3
√

�x1 + (1 − �)x2 for all � ∈ [0, 1].
Then it is easy to see that �2 is a continuous function on �2. Also, for every � ∈ [0, 1]

and y ∈ T (�2(�, 1 − �)), we have

H(�2(�, 1 − �), y) = H
(

3
√

�x1 + (1 − �)x2, y
)

= �x1 + (1 − �)x2

��H(x1, y) + (1 − �)H(x2, y) = �x3
1 + (1 − �)x3

2 ,



W.K. Kim, S. Kum / Nonlinear Analysis 63 (2005) e1857–e1865 e1865

so that the related total sum of payoff function H : X × X → R satisfies assumption (4) of
Theorem 2. Also, note that if x1, x2 ∈ [−1, 0], then assumption (4) of Theorem 2 cannot
be satisfied. Therefore, we can apply Theorem 2 to the 1-person game �; and clearly, 1 is
an equilibrium for �. In fact, we have 1 ∈ T (1), and

1 = f (1)�f (x) = x3 for every x ∈ T (1) = [0, 1].
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