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JBW*-triples can be described (modulo W*-algebras, compare [13]) by those of type I. Among 
these the (complex) Caxtan factors are the building blocks. We determine for every complex 
Cartan factor U all conjugations of the underlying complex Banach space and hence all real 
forms (in the sense of [15]) of U, called reM Cartan factors. We also give a concrete list of 
all isomorphy classes of real Car tan  factors which generalizes the  classification of LOOS [23] 
to infinite dimensions. Furthermore,  we give an explicit description of the full au tomorphlsm 
group as well as the  group of all surjective JR-linear isometries for every non-exceptional 
real Cartan factor and decide which of the  real or complex Caf tan  factors are isometrically 
equivalent to each other as real Banach spaces. 

1. I n t r o d u c t i o n  

On a complex Banach space U a conjugation is a conjugate linear isometry 

r: U --+ U with ~-~ -- l u  and for every such r the real Banach space F: = 

Fix(r) C U is called a real form of U. Clearly r and F C U determine each 

other in a unique way. For instance, if U = H is a complex Hilbert space every 

orthonormal basis (e{)eI of H determines a conjugation by 
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192 K A U P  

and it is easily verified that every other conjugation a of H is equivalent to r in 

the following sense: There is a surjective (complex-linear) isometry g: H -~ H 

with a = g'rg -1, or equivalently, with g(Fix(r)) = Fix(a). In general, a given 

complex Banach space has many non-equivalent conjugations and also the case 

occurs that it has no conjugation at all (see [20] for an example). 

In this article we study conjugations in a special class of complex Ba- 

nach spaces, the so called JB*-triples. These form a fairly large class of Ba- 

nach spaces. For instance every Hilbert space, every Banach space carrying 

the structure of a C*-algebra or more generally every closed linear subspace 

A C £(H, K) with aa*a E A for every a E A is in the class, where £(H, K) 

is the space of all bounded linear operators from the Hilbert space H into the 

Hilbert space K.  These latter operator spaces were introduced by Harris [9] 

under the name J*-algebras. But there are also JB*-triples which cannot be 

given as operator spaces, for instance the exceptional JB*-algebras. 

Originally [19] the JB*-triples were introduced in connection with the 

study of bounded symmetric domains in infinite dimensions. These are precisely 

the complex Banach spaces for which the open unit ball is homogeneous with 

respect to the group of all biholomorphic automorphisms. A consequence of 

this is that  JB*-triples can also be uniquely characterized by the existence of a 

certain ternary product {xyz}, the Jordan triple product. On a C*-algebra for 

instance this product just is (xy*z + zy*x)/2. The important fact is that for 

every JB*-triple the geometry of the Banach space and the algebraic structure 

given by the triple product determine each other. In particular, on every JB*- 

triple U the conjugations in the Banach space sense and the triple conjugations 

(i.e. conjugate linear endomorphisms of period 2 that respect the triple product) 

are precisely the same. This makes it possible to deal with isometries and 

conjugations entirely in the algebraic context given by the triple product. 

Building blocks for JB*-triples are the Cartan factors. These come in six 

types, the rectangular operator spaces £(H, K), spaces of symmetric and of 

alternating operators, spin factors mad two exceptional spaces of dimensions 16 

and 27. On every non-exceptional Caftan factor U we determine explicitly all 

conjugations r of U and also the corresponding equivalence classes of them. 

Calling every real form F: = Fix(~-) C U a real Cartan factor this means the 

classification of all real Cartan factors up to isomorphy. This result extends 

the classification of all real bounded symmetric domains [23] to infinite dimen- 

sions. In contrast to the complex case the group lint(F) of all surjective linear 
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isometries of F may contain the triple automorphism group Aut(F) as a proper 

subgroup. Our main result states that real or complex Cartan factors of rank 

> 1 (thus essentially only excluding Hilbert spaces) are equivalent with respect 

to a surjective ]R-linear isometry if and only if they are isomorphic with respect 

to the triple product. Furthermore, we compute for every non-exceptional real 

Cartan factor F the groups lint(F) and Aut(F) explicitly. Among these F are 

the spaces of all bounded linear operators between and also the spaces of all 

skew-hermitian operators on real or quaternionic Hilbert spaces. 

N o t a t i o n s  and  Pre l imina r i e s  

For (left) Banach spaces E, F over the fixed base field IF = ]R, C or ]H (the 

quaternions), denote by L:(E, F) the ~-Banach space of all bounded F-linear 

operators E ~ F where ]K is the center of IF (that is ]K = C if IF = C 

and lK = ]R otherwise). The real Banach space underlying E will always be 

denoted by ER. In this sense the operator spaces £(E,  F) and £(ER, F•) axe 

completely different objects - for instance in case IF ¢ IR the natural inclusion 

£(E,F) ,--+ £(ER, F~) is proper in general. Denote by Irnt(E, F) C £(E, F) 

the subset of all surjective isometries (which is empty in general). In the Banach 

algebra £(E):  = L(E, E) the subgroup of all invertible operators is denoted by 

GL(E) and lint(E): = Imt(E,E)  is the subgroup of all surjective isometries. 

All operator spaces and groups are endowed with the norm topology in the 

following unless otherwise stated. The standard involution of IF is denoted by 

~-~ ~. The quaternion field will always be realized as ]H = C S jC where j 6 ]H 

satisfies j2 = - 1  and tj = jt  for all t e C. The standard involution on ]H then 

is (s  + jr) ~ (~ - jr).  

In case E,  F are Hilbert spaces over IF we always denote the corresponding 

inner product by (xl y). It  satisfies in particular the identity (ax] BY) = a(xl y)~ 

for all a,  B e F .  For every z e L(E, F) the adjoint z* e £(F, E) is defined as 

usual by (zxl y) = (xl z'y). In case IF = ]R we also write z ~ instead of z*. In case 

IF -- C the transposed operator z t depends on the choice of conjugations on 

E, F (compare section 3). With n = dim~(E) (the cardinality of an orthonor- 

real basis) we denote the group Imt (E) of all surjective IF-linear isometries of 

E also by 0(n),  U(n) and Sp(n) according to the three possibilities JR, ~D or 

]H for IF. These groups are real Banach Lie groups. U(n) and Sp(n) are always 

connected. O(n) has two connected components if n is finite and is connected 

otherwise. 
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Suppose U, V, W are complex Banach spaces. Then we call a map A: U 

V semi-linear if it is complex-linear or conjugate-linear. Denote by GLo(U) C 
GL(U~t) the group of all semi-linear operators on U. By a sesqui-linear mapping 

U x V ~ W we mean always an ]R-bilinear mapping that is complex-linear in 

the first and conjugate-linear in the second variable. The operator A E/:(U) is 

called hermitian if exp(itA) e GL(U) is isometric for every real t. 

For every space S we denote by ls the identity transformation on S. We 

also write simply 1 instead of Is if the corresponding space S is obvious. 

2.  J B * - t r i p l e s  a n d  r e a l  f o r m s  

2.1 D e f i n i t i o n  A JB*-triple is a complex Banach space U ~ 0 together with 

a sesqui-linear mapping  (a,b) ~ aob from U x U in to / ; (U)  such tha t  for all 

a, b, c, x, y e U the following holds 

(i) The triple product  {abc}:-- (aob)(c) is symmetr ic  in a, c 

(ii) [aob, xoy] .= {abx}oy - xo{yab} 

(iii) aoa is hermit ian on U and has spectrum > 0 

(iv) llaoa[l = l[all 2 

It is known that (iv) in the above definition is equivalent to Ha3H = Hall 3 for 

aa:---- {aaa} and that always Haobll < flail. HbH holds. For every JB*-triple the 
triple product can uniquely be recovered from the underlying Banach space. In 

this sense we may  say: A given Banach space U is a JB*-triple or not. 

The sesqui-linear mapping  (a, b) ~-~ a o b may  be considered as an operator- 

valued positive-definite hermitian form on U. Therefore we call two elements 

a, b E U orthogonal and write a ± b i f a o b  = 0 (or equivalently boa = 0) holds. 

A subset S C U is called complete if S±:  = {z E U : z ± S} = 0. For every 

a E U denote by Q(a) the conjugate-linear operator  z ~ {aza} on U. The 

Q-operator  satisfies the fundamental  formula: Q(Q(a)b) = Q(a)Q(b)Q(a) for 

all a, b E U. 

The JB*-triple U is called abelian if the set of operators  UoU C I:(U) 

is abelian. A real subtriple F C U is called fiat if aob = b:~a for all a,b E F. 

The smallest closed real (complex, respectively) subtriple of U containing a 

given element a is flat (abelian, respectively). A closed linear subspace I C U 

is called an ideal in U if {IUU} + {UIU} C I holds. Then U / I  is a JB*-triple 

in a natural  way and every ideal J in I is also an ideal in U, compare  [21]. 
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The JB*-triple U is called a JBW*-triple if U as a Banach space is the 

dual of another Banach space U. called a predual of U - it is well known 

that the predual of a JBW*-triple is unique. The corresponding weak topology 

a(U, U.) is denoted by w*. The JBW*-triple U is called a factor if there does 

not exist a decomposition U = V ~ W  into non-zero ideals V, W, or equivalently, 

if {0} and U are the only w*-closed ideals of U (for more details on JB*- and 

JSW*-triples compare [19], [12], [2], [7]). 

The element e E U is called unitary if e o e = 1 holds. Then a o b: = {aeb} 

and a*: = {eae} define on U the structure of a JB*-algebra with unit e. The 

selfadjoint part  A: = {a E U : a" = a)  is a JB-algebra with U = A $ i A ,  compare 

[8]. Let us denote by b/(U) C U the subset of all unitary elements. Then/~(U) 

is a closed real-analytic submanifold of U (may be empty) invariant under 

the group Aut(U) C GL(U) of all triple automorphisms of U. Every connected 

component o f / l (U)  is a K-orbit  where K: = Aut(U) ° is the identity component 

of the Lie group Aut(U). The submanifold b/(U) C U is always connected in 

case dim U < oo, but not in general. Example 5.7 in [4] shows that  Aut(U) may 

not even be transitive on L/(U). 

Denote by Aut,(U) C GL,(U) the group of all semi-linear triple auto- 

morphisms of U. I t  is known that  Aut,(U) consists precisely of all surjective 

semi-linear isometries of U. A conjugation on U is a conjugate-linear isometry 

r: U --+ U with ~.2 = 1. Then U~: = {z E U: r(z) = z} is a closed real subtriple 

with U = U ~ (9 iU ~. We call U ~ a real form of U. Two real forms U r, V a are 

called equivalent if a = gvg -1 for some g E lint(U, V) (and then g(U r) = V ~ 

holds). A real Banach space F together with a trilinear map { }: F 3 --~ F is 

called a real JB*-triple if there exists an lR-linear isometry A from F into some 

(complex) JB*-triple U with {xyz} = {(Ax)(Ay)()~z)} for all x , y , z  E F. I t  is 

easy to see [15] tha t  every real JB*-triple F can be realized as real form F = V ~ 

with a JB*-triple V (the hermitification o fF)  and ~ uniquely determined up 

to isomorphy by F .  In particular, every complex JB*-triple U may be consid- 

ered in a natural way as a real JB*-triple U~, the realification of U. The real 

JB*-triple F is called complexifiable if F ~ UR for some complex JB*-triple 

U (see [15] for details). Q(e) is a conjugation on U for every e e U(U) and the 

corresponding real form U Q(e) coincides with the tangent space to/4(U) in the 

point ie E U(U). ~Ve call the conjugation r of U unitary if it is of the form Q(e) 

for some unitary e. The real form F of U comes from a unitary conjugation 

if and only if F has the structure of a unital JB-algebra or equivalently if the 

closed unit ball of  F has an isolated extreme point (compare [15]). 
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2.2 R e m a r k  Let U be a JB*-triple and let 7" = T(U) be the set of all conjuga- 

tions of U. Then the group Aut,(U) acts on T by 7" ~-~ grg -1 and the subgroup 

Aut(U) has the same orbits in T as Aut,(U). 

Proof For every r E T and every g E Aut,(U) we have g1"g - I  = g r r rg  -1 = 

(gr)r(gr) -1. C] 

2.3 C o n j e c t u r e  T is a real-analytic submanifold of the Lie group Auto(U) 

and the orbits of  Aut(U) ° in T are just the connected components of  7". 

In case dim U < oo the group G = Aut(U) is compact and 7" is a finite 

union of G-orbits (see section 4). From this it easily follows that  conjecture 2.3 

holds in this case. 

For the rest of the section denote by E a real or complex JB*-triple. The 

element e E E is called a tripotent if {eee} = e holds. Every tripotent e induces 

decompositions 

E = El $E1/2  S E o  = E 1 S E  - 1 5 E  ° 

into the corresponding Peirce spaces where Ek = Ek (e) is the k-eigenspace of 

eoe  and E k = Ek(e) is the k-eigenspace of the conjugate-linear operator Q(e) 

in E for every k E ]It. These satisfy 

EI = E I ~ E -1, E1/2 ~ Eo = E ° 

Eo 2. El,  {EiEjEk}  C Ei-i+k for all i , j , k  

{EIEJE k } C E  ijk if i j k ¢ O .  

In particular, E 1 is a JB-algebra with unit e and E -1 is a real subtriple of E. 

In case E is a complex JB*-triple obviously E -1 = iE 1 holds whereas in the 

real situation the dimensions of E 1 and E -1 are not correlated. 

We call a subset S C E orthogonal if 0 ~ S and x 2. y for every x ¢ y 

in S. Denote by r = r(E) the minimal cardinal number satisfying card(S) _< r 

for every orthogonal subset S C E and call it the rank of E.  The rank r(e) 

of the tr ipotent e then is defined as the rank of the Peirce space El(e).  The 

tripotent e is called complete if Eo(e) = 0 holds and e is called minima/ i f  

El(e)  = ]Re ¢ 0 (or equivalently r(e) = 1). In general, E does not contain a 

minimal nor a complete tripotent, for it is known that  the complete tripotents 

are precisely the extremal points of the unit ball in E,  compare [15]. In  case E is 

a real or complex JBW*-triple therefore there always exist complete tripotents. 

In case E is a JBW*-triple factor we call a complete tripotent e E E max/ran/ 
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if dim(E1/2(e)) <_ dim(E1/2(e-)) holds for every complete tripotent ~" E E.  In 

finite dimension every complete tripotent is maximal since in this case any two 

complete tripotents in a factor are equivalent by an automorphism, compare 

[23]. Denote by .hi = A4(E) C E the subset of all maximal tripotents in the 

JBW*-triple factor E.  This is a real analytic submanifold of E on which Aut(E) 

acts with open orbits [15]. Clearly/d(E) is open and closed in ,~4(E) and both 

coincide i f /4(E) ¢ 0. 

2.4 P r o p o s i t i o n  Let H be a complex Hiibert space of dimension n and let 

E C U: = L(H)  be a real or complex subtriple. Then 

(i) U(U) is precisely the group U(n) of all unitary operators on H, 

(ii) ld(E) = E N ld(U) if 1H e E, 

(iii) E can be realized as subtriple E C £(K)  for some complex Hilbert space 

K in such a way that 1K E E if and only i f /g(E)  ¢ 0, 

(iv) /A(E) is connected i rE  is a complex JBW*-triple. 

Proof ad (i) Follows for instance with Lemma 3.1. 

ad (ii) Suppose e E/4(E) .  Then 1H E U1(e) = pUq for the projections p = ee* 

and q = e*e implies p = q = 1H, that  is e E b/(U). 

ad (iii) Fix e E /4 (E) .  Then with p, q as before we have again E C pUq and 

z ~ e*ze*eiK defines an injective triple morphism qo: E -+ £:(K) with qo(e) = 

1K where K:  = q(H). 

ad (iv) By (ii) and (iii) we may assume e: = 1H E E and hence /A(E) = 

Enlg(U).  Fix c E/4(E) .  Since c is a unitary and hence also a normal operator 

on H by (i) there is an abelian subtriple A C E containing both e and c. We may 

assume that  A is maximal abelian in E. This implies that A is a commutative 

C*-subalgebra of £ ( H )  and also is w*-closed in E,  i.e. A is a commutative W*- 

algebra with unit e. But  then c = exp(ih) for some h = h* E A and t ~+ exp(ith) 

for 0 < t < 1 is a curve in (L/(U) N A) C/g(E)  connecting e with c. []  

3.  C o m p l e x  C a r t a n  f a c t o r s  

In the following let H be a complex Hilbert space of dimension n with 

fixed conjugation x ~-+ 5 and corresponding real form X: = {x E H : 5 = x). 

Then (x ly):= (xly)  defines a symmetric bilinear form H x H --+ C and the 

orthogonal group O(n) = lint (X) can be identified in a natural way with the 

subgroup of all g E U(n) = lint(H) satisfying (xly) = (gxlgy) for all x , y  E H. 

Now let K be a further complex Hilbert space with fixed conjugation 

also written as y ~-~ ~. Denote by m the dimension of K and assume for 
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easier nota t ion tha t  H = K in case n = m. For every z • £(H,  K)  we get 

operators  • • £ ( H ,  K )  and z ~ E / : (K,  H)  uniquely determined by ~(5) = ~-5 

and (zxty)  = (xlz~y) for all x • H and y • K .  Clearly z* = ~ holds and 

z ~-+ • defines a conjugat ion on the Banach space £ ( H ,  K) .  

We will frequently use the following elementary result  

3.1 L e m m a  Let H, K ~ 0 be arbitrary complex Banach spaces. Then 

(i) a E f.(K), b E £.(H) with az = zb for every rank-l-operator z E £(H, K)  

implies that a, b are multiples of the respective identity operators. 

In case H, K are complex Hilbert spaces with distinguished conjugation and 

e E {1, - 1 }  is fixed also the following hoIds 

(ii) a, b E L:(H, K) with a'z = z'b for a11 z E £.(H, K)  implies a = b = O, 

provided dim H > 1. 

(iii) a, b E £(H)  with az = zb for all z = ez t E £(H)  implies that a, b are 

multiples of the identity, provided d i m H  > (1 - e). 

Proof ad(i) Easy consequence of the Hahn-Banach Theorem. 

ad (ii) By the assumption d im H > 1 there is an orthogonal decomposit ion 

H -- H1 fl~/-/2 into closed linear subspaces Hi of positive dimension tha t  are 

invariant under the conjugat ion of H.  For every z E £ ( H ,  K )  and i = 1, 2 put  

zi: = z[ Hi E £ ( H i ,  K ) .  Then a~zj = z~bj for all z E £(H, K)  implies the claim. 

ad(iii) Suppose e = - 1  (the case s = 1 is similar).  By assumption there is an 

orthogonal  decomposit ion H = H1 q) / /2  with Hi invariant under the conju- 

gation of H and d imH1 = 2. Fix j E GL(H1) with j '  = - j  and write every 

z E £(H)  as opera tor  ma t r ix  z = (zij) with zij • £(Hj ,  Hi). Applying the 

assumption of (iii) for 

z = ( J  0 ~ )  weder ive  a21=0 and b~2=O. 

Applying it again for all 

z = 0 we derive = 
\ a22x 0 ~, xb11 

for all x • £(Hz,H2).  From (ii) we get  ai2 = 0, b21 = 0 and the claim follows 

with (i). [] 

An impor tan t  class of JBW*-tr ip les  is given by the Cartan factors. These 

come in six types  as follows (always denoted by U) t 

t One has to distinguish the notions 'Caftan factor of type I, II,... or VI' and 'JBW*- 
triple of type I, II or III'. Every Caftan factor as a JBW*-triple is of type I. 
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I,~.,-,,: -- T.(H, K). 
The transposition z ~-+ z ~ defines a triple isomorphism £ ( H , K )  ~ £ ( K ,  H),  

i.e. we may assume n _< m. The group Aut(U) ° is given by all transformations 

z ~4 uzv  with u e U(m), v e U(n) (compare [17] p. 91). In case n = m > 1 

there is precisely a second connected component of Aut(U) given by all z ~-+ uz% 

with u, v e U(n) - in all other cases Aut(U) is connected. Abstractly, Aut(U) ° is 

just the Lie group (U(n) x U ( m ) ) / U ( 1 )  where the embedding of U(1) is given 

by A ~+ (A,~). This follows for instance from 3.1.i. Clearly A4(U) =/A(U) = 

Imt (H, K)  is connected and nonempty in case n = m. In all other cases/d(U) is 

empty and 2¢t (U) is the space of nil (necessarily not surjective) complex-linear 

isometrics H -+ K.  

II~: = {z E £ ( H )  : z ~ = - z }  for n _> 2 as subtriple of £(H) .  All transformations 

z ~ uzu' ,  u E U(n), form a connected subgroup G of Aut(U). Actually, G = 

Aut(U) holds for all n ¢ 4, compa2e f.i. [11] - the proof there works for all even 

cardinal numbers n > 6 and for all finite odd n an induction argument can be 

given (II3 is a complex Hilbert space). II4 is isomorphic to the spin factor IV8 

defined below and its automorphism group has two connected components (for 

an explicit isomorphism to IVs  compare [22] p. 200). In this case Aut(U) = 

G U GO with 

satisfying a + a '  = b + d = d + d' = 0. Abstractly, for all n we have Aut(U) ° ~- 

U(n)/O(1) where O(1) is identified with { + l }  C U(n). Finally, 

/g(U) = [mr(H) n U is empty if and only if n is finite and odd. 

I I I , :  = {z e £ ( g )  : z '  = z} as subtriple of £ (H) .  Always Aut(V) = {z ~-~ 

uzu' : u E U(n)} ~ U(n)/O(1) is connected (the proof in [11] works also in the 

finite dimensional case). Moreover b/(U) = l in t (H)N U is nonempty. 

I V ,  Denote by [[ " [[2 the Hilbert norm of H and define a triple product on H 

by 
{=yz} :  = (zl  y )~  + (zl y )=  - (xl ~ )y  

for all x, y, z E H.  Let U be the Banach space obtained from H with the 

equivalent norm defined by 

I1~11~: = (zt ~) + ~/(~J z)~ - I(~l z)l  ~ • 

Then U together with the above triple product is a JBW*-triple and iscalled 

the (complex) spin factor of dimension n if n > 2. On the real form X of H the 



200 K A U P  

norms [l' [[2 and II" [[ coincide, in particular/A(U) D X  = S: = {x E X :  [Ixll = 1} 

is the unit sphere in X.  Clearly, 

u(v) = e u(1), s e s} 

is nonempty. Aut(U) ~- (U(1) x O(n))/O(1) has 2 connected components for 

n E 2IN and is connected in all other cases. 

V: = M12(© c)  the 1 x 2-matrices over the complex Cayley numbers ©c.  Then 

/A(U) is empty. 

VI:  = 7-/3(~D C) the hermitian 3 x 3-matrices over ©c. Here / J (U)  is nonempty. 

The types V and V I  are the exceptional Cartan factors. They have di- 

mensions 16 and 27 - for details in the finite dimensional case compare [23], 

[10]. The Caf tan  factors of types I - I V  are called the classicaJ Caf tan  factors. 

I t  is known (compare f.i. [18] p. 475) that  every Caf tan  factor occurs (up to 

isomorphy) in the following list precisely once: 

I,~,m for m > n > 1, I In  for n > 5, I I I ,  for n >_ 2, IV~  for n >_ 5, V, VI .  

As a consequence we have in particular 

3.3 L e m m a  Let  U be a Caftan factor. Then the set A4(U) of all maximal 

tripotents in U is a non-void connected real-analytic submanifold of U on which 

the group Aut°(U) acts transitively. 

Proof In finite dimensions this follows from [23]. The remaining cases follow 

from the above considerations. [] 

The Car tan  factors are precisely the JBW*-tr iple factors U containing a 

minimal tr ipotent.  Every tripotent e 6 U has a representation 

iEl 

where (ei)iEz is an orthogonal family of minimal tr ipotents in U with card(I) = 

r(e) and the sum converges with respect to the w*-topology. Define the rank 

r(x) of an arbi t rary  element x E U as the minimum of all ranks r(e) where e 

runs through all t r ipotents  e with x E Ul(e). In case U is a Car tan  factor of 

type I - I I I  as defined above, every x E U may  be considered as an operator 

between complex Hilbert  spaces and r(x) is essentially the dimension of the 

range of this operator  (more precisely, the dimension of the closure of its range 

in the case of  types I and I I I  and half of this dimension in the case of type II) .  

Car tan factors of infinite rank only occur in the types I - I I L  
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I t  is well known that  every Cartan factor U of finite rank is simple, i.e. 

{0} and U are the only ideals in U. On the other hand, in every Cartan factor 

U of infinite rank the elements of finite rank form an ideal ~" that  is not closed 

but is contained in every non-zero ideal of U. Furthermore, the closure IC of 

~" (the space of all 'compact  operators') is a closed ideal with {0} ¢ IC ~ U. 

For every infinite cardinal number c denote by ~'c the set of all x E U with 

r(x) < c. It is easily verified that  ~'c is an ideal in U. The closure ICc of ~'c is 

the smallest closed ideal in U containing all tripotents of rank < c. 

3.4 P r o p o s i t i o n  For every Cartan factor U of type I the assignment c ~ ICe 

defines a 1-I-correspondence between all cardinal numbers c with R0 _< c _< r(U) 

and the set of all dosed ideals I of U with {0} ~ I ~ U. In particular, the set 

of all closed ideals of U is well ordered by inclusion. 

Proof By assumption we may assume that U = £(H, K)  for complex Hilbert 

spaces H, K of infinite dimensions. Let I be a closed ideal with {0} # I # U. 

Denote by c the smallest cardinal number such that  r(e) < c for every tripotent 

e 6 I .  Then .~" C I implies c _> Ro. For every a 6 £(K)  and b 6 £(H) the 

operator A 6 £(U) defined by A(x) = axb is a complex-linear combination of 

derivations of U and hence leaves the ideal I C U invariant by [14] Proposition 

1.8. From this the following property can be derived easily: For every tripotent 

e E I and every tripotent f 6 U with r(]) <_ r(e) also f E I holds. But then 

c <_ r(U) must hold - otherwise U would contain a tripotent e with r(e) = r(U) 

and hence also would contain a complete tripotent of U, i.e. I = U contrary to 

our assumption. Also Icc C I follows from the above property. For the proof 

of the opposite inclusion I C ICc fix an arbitrary element x E I and denote 

by V the smallest w*-closed complex subtriple of U containing x. It  is known 

that V has the structure of a commutative W*-algebra in such a way that  the 

triple product is given by {abc} -- abc on V. Representing V as L°°(~,  p) for 

some finite measure space (~, #) shows that  to every ~ > 0 there is a tripotent 

e E V together with elements y, z e V such that  y = {eex}, e = {yez} and 

][z - YI[ < e. But  this implies y ,e  E I and hence e,y E ICc, i.e. x E ICe and 

consequently I = ICc .  Now suppose that  also I = ICd holds for some infinite 

cardinal number d < c. Fix a tripotent e of rank d in I .  Then there is a sequence 

(xi) in "~d with e = limxl,  a contradiction since Rod = d < c. O 

Every spin factor can be realized as a closed ,-invariant subtriple of some 

£(H) containing the identity e: = I H  of ~:(H), compare [9]. Clearly, e has rank 

2 when considered as an element of U, but it has rank dim H when considered 
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as an element of  £ ( H ) .  The Cartan factor In,~n may be identified in a natural 

way with the Banach space £ 2 ( H  x K,  ~)  of all continuous bilinear forms 

~ : H  x K -+ C where I[A[I:= sup l~(h ,k ) l  with h E H and k E K running 

over all unit vectors. The  Car tan factor III,~ (IIn resp.) is isomorphic to the 

subspace of all symmetr ic  (alternating, resp.) forms in £2(H  x H,  C). 

4.  R e a l  C a r t a n  f a c t o r s  

As in section 3 let H, K be complex Hilbert spaces of dimensions n, m 

with fixed conjugations. In case o f n  = m we assume H = K for easier notation. 

Denote by X: = {x E H : • = x} and Y: = {y E K : ~ = y} the corresponding 

real forms. 

A real JB*-tr iple E is called a real Cartan factor if it is a real form of a 

(complex) Ca f t an  factor. Also, the real forms of (complex) spin factors (JBW*- 

triples respectively) are called rea/spin [actors (real JBW*-tr iples  respectively). 

The real Car tan  factors of  finite dimension have been completely classified by 

Loos (compare 11.4 in [23]) in terms of 12 different types (8 classical series and 

4 exceptional types) 

i,.~,m, ~ c I~v,2 q, I,~,,., . . . . .  V I  ° . 

The notation has the nice property that  erasing the superscripts gives the 

corresponding hermitification - for instance In,m in case of the real Cartan 

factor I~m.  In the  following we extend Loos' classification to infinite dimensions 

by determining all conjugations on classical Car tan factors and then finding the 

associated equivalence classes. This is done in the following way: Suppose for 

n ¢ m we have U = £ ( H ,  K) = In,m as an example. Then every conjugation r 

of U must  be of  the form r(z )  = u'2v for suitable v E U(n) and u E U(m) since 

z ~-~ ~ is a l ready known to be a conjugation of U. Now r2(z)  = u~z~v = z 

for all z E U implies az  = zb for a:= u~, b:= v*v t and all z E U. By 3.1.i 

the unitary operators  a,  b are real multiples of the identity, i.e. there are only 

two cases possible: (i) Either u, v are both symmetr ic  or (ii) they are both 

alternating. Case  (ii) can  only happen if n, m are even (i.e. not contained in 

2~q + 1) and then  H, K both can be made into quaternionic Hilbert spaces. 

Consider a second conjugation "~(z) = f i ~  on U. Then r, ~ are equivalent if 

and only if for some c E U(m), d E U(n) the relations fi = cuc ~ and ~) = dvd' 

hold. The  set {v E U(n) : v -- v'} = / 4 ( I I I n )  is connected and a U(n)-orbit 

under the act ion v ~ dvd' (compare section 3), i.e. all conjugations of case 

(i) form a complete equivalence class of conjugations of U and this class is 
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connected.  By  s imi la r  reasoning  in all o ther  cases we get  ( compare  also the  

proof  of  P ropos i t i on  5.1) 

4.1 T h e o r e m  Let U be a classical Cartan factor and let T be the set  o f  al l  

conjugations of U. Then the equivalence classes of T consist precisely of  a11 

conjugations r of the following form: 

I , .m for m > n > 1 

(i) v (z )  = u-Sv wi th  v = V E O(n), u = u '  • U(m) 

(ii) r ( z )  = u'~v wi th  v = - v '  • U(n),  u = - u '  • U(m) if n ,  m are even 

(iii) r ( z )  = uz 'u  with  u E U(n)  if n = m > 1 

I I ,  for n > 2, for n = 4 see R e m a r k  4.2 

(iv) r(z) = u~u wi th  u = u '  • U(n) 

(v) r(z) = u'eu wi th  u = - u '  • U(n) if n > 2 is even 

I I I , ,  for n >_ 1 

(vi) r(z)  = u~u with  u = u '  • U(n) 

(vii) r(z) = u-~u wi th  u = - u '  • U(n) if n is even 

IV, ,  for n > 3 and ca rd ina l  numbers  r > s wi th  r + s = n, for n = 2 

see R e m a r k  4.3, 

(viii) r ( z )  = Ag(~) with A e U(1) ,  g • O(n) such that g2 = 1 and such 

that the + l-eigenspace of g has dimension r and the -1-eigenspace 

has dimension s. 

The unitary conjugations are precisely those in (iii), (v), (vi) and  (viii) with 

s = 1. Each equivalence class (i) - (viii) can be represented by the following real 

Car tan  factors  E, where H is a complex Hilbert space of dimension n, X, Y are 

real Hilbert spaces of dimensions n, m and P, Q are Hilbert spaces of dimensions 

p, q over the quaternion field ]H. The triple product in cases (i) - (vii) is given 

by {xUz} = z y ' z  

(i) I,.,~rt = £ ( X ,  Y)  (ii) I~p,2 a ~ a  = £(p ,  Q) 

(iii) c {z e £ ( H ) :  z} (iv) I I ~ =  {x e l : ( X ) : x '  - x }  

(v) I I~ = {w e £(P): w" = w} (vi) I l l~  = {x E Z:(X): x' = x} 

(vii) I I I~ = {w E E ( P ) :  w* = - w }  

(viii) IV,~, s = E where the Banach space E is the l L s u m  E = X1 ~1  X2 o f  

closed linear subspaces X1,X2 C X o f  d imens ions  r,s with X2 = X ~ .  

Then with the  i nne r  product (xl y) from X and the involution x --+ 

on E defined by • = ( x l , - x 2 )  for every z = (xl, z2) the Jordan triple 
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product  on E is given by 

{zyz} = (zl y )z  + (zl y ) z  - (zt ~ ) y .  I7 

4.2 R e m a r k  Besides (iv) and (v) the factor U = II4 ~ IV6 has two additional 

equivalence classes represented by the two conjugations r(z)  = 8(~) and a(z)  = 

8(j'Sj) where j - (_e 0 ~), e is the unit 2 x 2-matrix and 0 is defined as in (3.2). 

The corresponding real forms satisfy U ~ .~ I V  4'2 and U ~ ~ I V s  s'°. 

4.3 R e m a r k  The spin spaces IV2 ~ C@C and IV~ '1 ~ ]R@lR are not factors 

and IV22'° ~ C ~  is a complexifiable factor in contrast to all real Car tan factors. 

For p,q  finite in Theorem 4.1 the real Cartan factor £(P,  Q) can be identified 

with the space ]I-I p x q of all quaternionic p x q-matrices a = (a O) where the triple 

product is given by {zaz}  = za*z with a* = (~-~), more precisely: Consider 

P ~ IH lx~ as space of row vectors z = (zl . . . . .  zv) with inner product given hy 

(zt w): = zw* and scalar multiplication given by Az -- (Azl . . . .  , Azp) for every 

A E ]H. Then every matr ix  a E ]Hpxq induces an ]H-linear map P --+ Q ~ ]Hlxq 

by matr ix  multiplication z ~-~ za from the right. 

Together with the classification of the exceptional types in [23] we get 

4.4 C o r o l l a r y  Every  real Caf tan  factor occurs up to isomorphy precisely once 

in the list: 

~ I I I ~ .  for >_ n _> 1, In . . ,  I,~,.~, I2~,2.~ , m c I I I ~  for n > 2, 

II2~,~ f o r n _ > 3 ,  I I ~  f o r n > 5 ,  

IVy, '~ for r _> s and r + s = n >_ 5, V ° ,  V °°, V I  ° ,  V I  °°.  

4.5 L e m m a  For every  real JBW*-tr iple  factor E the following two conditions 

ar equivalent 

(i) E is a real Caftan factor  or the realification o f  a complex Cartan factor, 

(ii) E contains a minimal  tripotent e. 

Proof  Suppose, E = U ~" for some complex JBW*-triple U with conjugation ~'. 

Case 1: U is a factor. Then the tripotent e has rank _< 2 with respect to U. In 

particular, U has a minimal  tr ipotent.  Therefore U is a complex Car tan factor 

and E is a real Car t an  factor. 

Case 2: U is not  a factor. Then  U = U1 ~B U2 is the direct sum of two w*-closed 

ideals Ui with U2 = r(U1). Then E is isomorphic to the realification of UI. 

Also, U1 must  be a factor and writing e = el + e2 gives a minimal tripotent 

el E U1, tha t  is, 0"1 is a complex Car tan  factor. 
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With Theorem 4.1 also all real forms of an arbitrary ~¢¢-sum of Car- 

tan factors could easily be determined. Instead of doing this let us discuss the 

case of certain continuous products of Cartan factors. Let S be a locally com- 

pact topological space and let V be a Cartan factor. Then the Banach space 

U: = ¢0(S, V) of all continuous V-valued functions 3' on S vanishing at infinity 

is a JB*-triple i t s e l f -  put  Ilflt: = sup(]lf(s)ll : s E S} and define the triple 

product pointwise. By [20] the conjugations of U = Co(S, V) can be described 

in terms of the conjugations of V and the topology of S in the following way: 

Denote by G the group Aut(V) endowed with the topology of pointwise conver- 

gence on V. Fix a conjugation ~- on V. Then g ~ g~: = ~'gv defines a group au- 

tomorphism of G and {rc : c E C} with C: = {c E G : c~c = l v  E G} is the set 

of all conjugations of V. Now suppose that a is a conjugation of U = C0(S, V). 

Then, by [20] proposition 5.1 there is a homeomorphism ¢:  S -+ S and a con- 

tinuous map c: S --+ G such that for every s E S and every f E U 

(4.6) (tr/)( s) = "r(c(s)(/ o ¢(s)))  . 

Clearly, ¢ and c satisfy 

(4.7) ¢2 = I s  and c(s)~ c(¢(s)) -- l v  E 6 ,  

and every pair of continuous maps ¢:  S --+ S, c: S --+ G satisfying (4.7) defines 

a conjugation a of U via (4.6). Denote by E:  = U a the real form of U with 

respect to the conjugation a. For every s E S define the triple homomorphism 

es: E ---r Vrt by es( f )  = f ( s ) .  Then 

~" V ~( ' )  if ¢(s)  = s 
~s(E) 

l V~t otherwise.  

In general, the fixed point set Fix(C) o f ¢  is not open in S and even if Fix(C) = S 

and all real forms V ~c(s), s E S, are equivalent to the real form F of V the real 

form E = U ° may not be equivalent to C0(S, F)  (see [20] for examples). On the 

other hand, as an example the following is clear. For I: = {s E IR : 0 < s < 1} 

every real form of  C0(I, V) (the space of all continuous curves in V starting at 

the origin) is equivalent to Co(I, F)  for some real form F of  V. 

For the rest of the section assume that the space S is compact.  Then 

U = C0(S, V) is the same as the space C(S, V) of all continuous V-valued 

functions on S. For convenience we put C(0, V): = {0} for the empty space. 

By definition, S is called stonean if the closure of every open subset again is 

open in S. In particular, every hyperstonean space f~ (compare [24] for details) 
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is stonean, that  is precisely the case when C(£t) has a predual (i.e. is a W*- 

algebra or in our setting is a JBW*-triple) and hence is of the form L~(~.,/J). 

For every JB*-triple V of finite dimension then also C(~, V) ~_ L°°(E, #, V) 

is a JBW*-triple. 

4.8 P r o p o s i t i o n  Let V be a Cartan factor of finite dimension and let S be 

a stonean space. Then to every real form E of  U = C(S, V) there is a finite 

system So, $1 . . . .  , S,~ of  open closed subsets o r S  such that 

(i) S is the disjoint union of  So, S l , . . . , S , ,  

(ii) So and $1 are homeomorphic, 

(iii) E is isomorphic to the t°°-sum 

(~= c(s~, F~) 
1<_4<_. 

where F 1 = VR and F= . . . .  , F .  are mutually inequivaIen¢ real forms of 

V. 

Proof Fix a conjugation a of U and choose v, ¢, c as above. Let S1 C S be 

a subset which is maximal with respect to the property: $1 is open in S and 

disjoint from So: = ¢($1). Then S is the disjoint union S = P U Q of open ¢- 

invariant subsets, where P is the closure of So u $1 in S. From the maximality 

of $1 the inclusion Q c Fix(C) easily follows. For the proof of the opposite 

inclusion define h: So U $1 -~ ]R by h(s) = - h ( ¢ s )  = 1 for all s 6 So. Since 

the domain of h is open and dense in the stonean space P and h is bounded 

and continuous this function has a continuous extension h to all of P, compare 

[24] p. 105. But h takes only the values {:El} and satisfies h = - h  o ¢, i.e. ¢ 

cannot have a fixed point in P.  Therefore Q --- Fix(C) is open in S and via 

] ~ (fiSt,  f IQ)  the real form E is the iCe-sum of C(S1, V~) and the real form 

of C(Q, V) induced by a, i.e. for the rest of the proof we may assume without 

loss of generality that  S = Q = Fix(C). Denote again by T C Aut,(V) the 

space of all conjugations of V. Then T = 7~ u . . .  u Tn is a finite disjoint union 

of G-orbits for the compact group G = Aut(V). Every Tk is open and closed 

in T,  i.e. Sk: = {s e S : ~-c(s) e 7~} is also open and closed in S. Without 

loss of generality we may therefore assume that n = 2 - or equivalently - that 

all conjugations 7-c(s) are equivalent to a single conjugation 10. Consider the 

set 7~ of all pairs (R, a)  where R is an open subset of S and a: R --+ G is a 

continuous mapping with 

TC(S) = ~(8)rOa(s)  -~  for all s ~ R .  
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7~ is partially ordered with respect to (R, a) _< (/~, &): ¢==> ( R C/~  and a = 

&JR). Fix a maximal element (R, a)  of T~. Since the action of G on T admits 

local continuous cross sections the open set R is dense in S. Again, a extends to 

a continuous map a:  S -+ L:(V) taking values in G, i.e. R = S by the maximality 

of R. Consider the conjugation ao of U defined by (ao f ) ( s )  = Vo(f (s) ) .  The 

corresponding real form of U then is just C(S, V ~°). But then a = gaog - x  where 

g E Aut(V) is defined by ( g f ) ( s )  = ~ ( s ) f ( s ) a ( s )  -x  for all s E S. []  

5.  A u t o m o r p h i s m  g r o u p s  a n d  i s o m e t r i c  e q u i v a l e n c e  

5.1 P r o p o s i t i o n  With  the notat ions o f  Theorem 4.1 let E be one o f  the real 

Caftan factors ( i ) -  (viii). Then the following transformations form an open 

subgroup G C Aut(E) of  index <_ 2. 

(i) x ~ u xv  with u E O(m), v E O(n) 

(ii) w ~-+ u w v  with u E Sp(q), v E Sp(p) 

(iii) z ~-+ :kuzu* with u E U(n) 

(iv),(vi) x F+ :kuxu'  with u E O(n) 

(v),(vii) w ~-> :i:uwu* with u E Sp(p) 

(viii) (xl, x2) ~+ (ux l ,  vx2) with u E O(r), v E O(s) 

G coincides with Aut(E) except  in the following cases where Aut(E) = G U Gg 

(i) for = m > 1 a n d  g ( x )  = x' 

(ii) for p -- q and g(w) = w ° 

(iii) for n > 1 and g(z)  = z '  

(iv) for n -- 4 and g = 8 on {x E IR 4x4 : x '  = - x } ,  compare (3.2) 

(v) for p - -  2 and g(z)  = z' on {z E ]H2X2: z* = z} 

(viii) for r = s and g(x l ,  x~) = (x2, xl) if X1 and X2 are identified. 

Proof We choose the case (ii) for n = m = 2p as an example. Then we may 

take E = U ~ for U = In,n with conjugation r(z)  = - j - ~ j  where j = _ j r  E U(n) 

satisfies j2 = - 1 .  This j makes H to an IH-Hilbert space P of dimension p in 

the following way: We may assume that  H = X ~9 X is the orthogonal sum of 

two identical copies of a complex Hilbert space X with involution x ~-4 • such 

that the conjugation on H is given by (x, y) ~+ (~, ~). Realizing every z E £ ( H )  
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by a 2 x 2-matrix with entries in ~:(X) we may assume that  

Defining the conjugate-unitary operator a ~-~ j(~) on H as left multiplication by 

j E ]H the C-vector space H becomes a left H-vector  space and actually a left 

]H-Hilbert space P with respect to the unique ]H-valued extension of the inner 

product from H. Clearly, an ]R-linear map z: P ~ P is ]H-linear if and only 

if z is C-linear and satisfies j z  = -Sj, i.e. E = L(P) .  Also, for every z E £:(P) 

the adjoints z* with respect to H and P coincide. The group Aut(E) can be 

identified with the group {g e Aut(U) : ~-gr = g}. Suppose that  g e Aut(E) is 

of the form g(z) = uzv with u ,v  e U(n). Then ~ = j implies j ~ j z j ~ j  = uzv 

and hence "~z = zb for a: = u ' j u j ,  b: = v j v ' j  and all z E U. Lemma 3.1 gives 

a A E U(1) with b = -A21.  Replacing u ,v  by Au, Av we do not change g but 

may assume that  a = b = - 1  or equivalently u j  = j ~  and v j  = j ~  which 

implies u ,v  e Sp(p). This shows that  G = {w ~ uwv : u , v  e Sp(p)} is the 

group of all g E Aut(E) that  extend to an automorphism in Aut°(U) of U. Since 

Aut(U) has 2 connected components the group G has index < 2 in Aut(E). The 

automorphism z ~ - j z ' j  of U commutes with r and induces on E = ~:(P) the 

automorphism w ~+ w" which is not in G. This settles the special case (ii) for 

p = q. All other cases are similar. [] 

5.2 C o r o l l a r y  For every non-exceptional real Cartan factor E the Banach 

Lie group Aut(E) has at most  8 connected components. 

5.3 R e m a r k  We will see later (Theorem 5.18) that  the group Aut(E) for 

all cases (i) - (viii) in Proposition 5.1 coincides with the group lint(E) of all 

]R-linear surjective isometrics of E if E is not a real Hilbert space. 

As a consequence of a result in [1] every derivation of a real JB*-triple 

is automatically continuous. Therefore, Proposition 5.1 immediately gives an 

explicit description of the Lie algebra Der(E) of all triple derivations of the 

classical Car tan factor E. 

Suppose, E is a real JB*-triple and e E E is a unit vector. Then x o y: --- 

{xey} defines on E the structure of a real Banach Jordan algebra E (e) with 

]ix o yll < [lxll. Ily[I and the following conditions are known to be equivalent [15] 

(i) E (~) /s a JB-algebra with unit e, 

(ii) e is an isolated point in the extreme boundary of  the unit ball in E, 

(iii) e is a complete tripotent with ~(e) = 0 for all ~ E Der(E). 
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On the other hand, every unital JB-algebra occurs as E (~) for some real JB*- 

triple E and Aut(E (e)) = {g E Aut(E) : g(e) = e} for the algebra automorphism 

group. In the special case of a JB-algebra E (~) with E a real JB*-triple factor 

the two points 4-e are the only isolated extreme boundary points of the unit 

ball in E,  i.e. g(e) = :he for all g e Aut(E) and hence Aut(E (~)) has index 2 in 

Aut(E). The groups Aut(E (e)) and hence Aut(E) for E = {z 6/:(H) : z = z*} 

and H an ]F-Hilbert space of dimension >_ 3, have also been determined in [16] 

using another method as the group of all transformations z ~-~ uzu  -1 where 

u: H -+ H is a surjective T-linear isometry and ~- 6 Aut(]F) is an ]l%-linear field 

automorphism. Comparing this result with Proposition 5.1 shows that  in case 

E = ]H every transformation in Aut(E (e)) can already be given as z ~-~ uzu -1 

with u an ]H-linear isometry, i.e. r = 1N suffices for the description of Aut(E (e)) 

in the case IF = ]H. 

In contrast  to the complex case for every real JB*-triple E the group 

Aut(E) may be a proper subgroup of the group lint(E) of all linear sur- 

jective isometries. For instance, the underlying Banach space of W -- I2, ~ 

is Hilbert with group lint(W) ~ 0(8) of dimension 28 whereas the group 

Aut(W) ~ (Sp(1) x 5p(2))/O(1) has only dimension 13 (compare the more 

general s ta tement  in Lemma 5.12). I t  is known tha t  Aut(E) = l int(E) holds 

for every JB-algebra as wen a s  for every real C*-algebra (compare [25], [5], 

[16]). I t  might be interesting to determine lint(E) for all real Car tan  factors E 

or more generally lint(E, F)  for any such pair of spaces. For complex Car tan 

factors U, V of rank > 1 Dang [6] proved: Every surjective IR-1inear isometry 

U ~ V is semi-linear and hence respects the triple product. In particular, 

]mt(U~) = Auts(U) if r(U) > 1. It  is clear that  this last s ta tement  does not 

hold for any complex Hilbert space U of dimension > 1 and it is to be expected 

that  also the case of rank 1 plays a special r61e in the real situation. 

5.4 P r o p o s i t i o n  The real JB*-triples E with r(E) = 1 are precisely those 

whose underlying Banach space is a real Hilbert space. These are precisely the 

following real and (realifications of) complex Cartan factors: I ~ , ~  Tv . ,o  

V ° and I1, . .  

Proof E is the real form of a Cartan factor of rank _< 2 or the realification of a 

Cartan factor of rank 1. Inspecting the list in [23] together with Theorem 4.1 

gives the result. []  

As a consequence, real JB*-triples E with r(E) = 1 are isometrically 



210 KAUP 

isomorphic if and only if they have the same dimension d. We may therefore 

assume r: = r(E) > 1 in the following. 

d r a z 

]R I.,m n m  n {1} 1 

I21"Ip,2q 4pq p {4) 4 

I~,. n,~ ,, {o, 2} 1 

I I ~  n ( n  - 1)/2 In/2] {2} 1 

II~ p(2p - 1) p {0, 4} 1 

I I I~  n ( n  + 1)/2 n {0, 1} 1 

III~ p(2p + I) p {4} 3 

IVy," n 2 {r - 1, s - 1} 1 

v °° 16 2 {3} 1 

VI °° 27 3 {4} 1 

v 1  ° 2v 3 {o,8} 1 

I , , m  2 n m  n {2} 2 

II,~ n(n - 1) [n/2] {4} 2 

III. n(n + 1) n {I} 2 

I V ,  2n 2 {n - 2} 2 

v 32 2 {6} 2 

VI  54 3 {8} 2 

m > n > 2  

q > p > 2  

n > 2  

n ~ 4  

p ~ 2  

n > 2  

p ~ 2  

n>_3, r > s > l  

m > n > 2  

n > 4  

n ~ 2  

n > 3  

TABLE I: Isometric invariants of real and complex Caftan factors of rank r > I 

For the rest of the section let E be a real or complex Caftan factor 

and F an arbitrary real JB*-triple. We are interested in finding invariants 

that are respected by IR-linear surjective isometries. An obvious one is the 

real dimension d = d(E) which by definition is the minimal cardinality of a 

total subset of E over ]Ft. Denote by a = a(E) the set of all cardinal numbers 

(d imEl(e)  - 2) where e runs over all tripotents e e E with r(e) = 2. Clearly, 

a(E) = 0 in case E has rank 1. The following result (that actually holds for 

arbitrary real JB*-triples E)  immediately shows that a(E) as well as the rank 

r(E) are isometric invariants. 
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5.5 P ropos i t i on  Let A: E --4 F be a surjective ]R-linear isometry. Then 

(i) A commutes with the cube mappings x ~, x3: = {xxx}  and in particular 

respects the orthogonality relation. 

(ii) For every tripotent e e E the spaces El(e), E- l (e )  ~ E1/s(e) and Eo(e) 

are mapped under A into the corresponding spaces with respect to the 

tripotent A(e) 6 F. 

Proof Lemma 4.3, Proposition 3.8 and Corollary 4.10 in [15]. [] 

5.6 L e m m a  Eo(e) ± = El (e)  for every non-complete tripotent e 6 E.  

Proof  We may assume that e ~ 0 and also that E is a complex Cartan factor, 

otherwise pass to the hermitification. V: = Eo(e) l is a closed subtriple of E 

with V = El(e)  @ V1/2(e). Fix z 6 V1/s(e). We have to show z = 0. To begin 

with, assume that E = £(H,  K)  where H, K are complex Hilbert spaces. The 

projections e*e and ee" give orthogonal decompositions H = H1 • / ' / 2  and 

K = K, $ K2 such that the corresponding operator matrices for e and z have 

the form o) o) 
e =  0 0 0 

with u E [mr(Hi,K1). Then z E V implies ub*x = 0 and xa*u = 0 for all 

x E E(H2, Ks) and hence z = 0 since H2 :fi 0 :/: Ks by assumption. In the 

same way the exceptional type VI  as well as the Caftan factors of type I I  and 

I I I  are settled using for instance Lemma 3.1. For the remaining cases e is a 

minimal tripotent, a case covered by Lemma 2.1 in [6]. [] 

With Lemma 5.6 we get the following improvement of Proposition 5.5, see also 

Corollary 5.11. 

5.7 P ropos i t ion  Suppose that E,  F are real or complex Cartan factors of  rank 

> 1. Then every surjective ]R-linear isometry A: E -+ F also maps the spaces 

E-l(e)  and El (e )  into the corresponding subspaces o f  F for every tripotent 

e E E .  

Proof Because of Proposition 5.5 and Lemma 5.6 we may assume that the 

tripotent e is complete. By assumption E has rank > 1, therefore there exists 

a representation e = el + e2 with e~ .L e2 non-complete tripotents. By Lemma 

5.6 both El(e{) are respected by A, hence also E-l(e/) ,  

E-iCe) = E-l(el) e Z-iCes) • A • E1/sCe )) and 
i=1,2 

El(e) = El(e)  $ E - l ( e )  . [] 
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For every orthogonal family (ei)iEI of minimal tripotents in E the w*- 

convergent sum e: = ~ i  ei is a tripotent and we call (el)iet a frame in E if e 

is a maximal tripotent in E.  Every frame is a maximal orthogonal family of 

minimal tripotents, the opposite is not true in general. 

5.8 P r o p o s i t i o n  Let E be a real or complex Car!an factor. Then 

(i) Every finite orthogonal family of  minimal tripotents in E can be extended 

to a frame. 

(ii) Every frame in E has cardinality r(E). 

(iii) For every pair of  frames (el)iel,  ('(i)ie! in E there exists an automorphism 

g E Aut(E) with 9(ei) = 4-'ei for a11 i E I.  

Proof  The finite dimensional case is contained in [23] and the spin factor case 

is almost trivial. So only Caftan factors of types I - I I I  and their real forms 

have to be considered. Fix IF-Hitbert spaces H, K with n: = dimF H _< m: = 

dim~. K.  In case n = m we assume H = K and in case IF = ~E the spaces H, K 

are endowed with a conjugation. 

Case 1: E = £ (H,  K).  Suppose e E E is a minimal tripotent. Then there are 

unit vectors h E H and k = e(h) E K such that  the projections e*e E £(H),  

ee* E £ ( K )  have images IFh, IFk. Therefore, if (ei)ie! is an orthogonal family 

of minimal tripotents in E we get for every i E I unit vectors hi, kl with the 

above properties and it is easily verified that  (hi)ie! and (ki)ie! are orthonormal 

families in H and K. Furthermore, (ei)i~! is a frame in E if and only if: (hl)ieI 

is an orthonormal basis o f  H and in case n = m a/so (ki)ie! is an orthonormal 

basis o f  K .  Therefore (i) and (ii) are obvious in this case. Furthermore, if the 

unit vectors hi, ki belong to the frame (~'i) there exist operators u E lint(K) 

and v E Imt(H) with v(hi) = h~ and u(ki) = "ki for all i E I .  Then g(ei) = "ei 

for all i E I with g E Aut(E) defined by g(z) = uzv.  

Case 2: E = {z E L ( H )  : z* = ez} with e = 4-1 a square in IF. Every frame 

(ei)iet  in E is also a frame in £ ( H )  and hence has cardinality n. Therefore, 

if (~) ie!  is another frame in E we get with the notations of the first case the 

same as before but with the additional conditions ki = +hi and ~ = 4-~ for 

all L Define again u E l int(H) and g E Aut(E) by u(ki)  = kl  and g(z) = uzu*. 

Case 3: E = {z E L ( H )  : z ~ = z} and IF = ~ .  Same as case 2 with the 

conditions kl = Aihi, Ai E U(1), for the first frame and the same for the second 

frame. 

Case 4: E = (z  E I : (H)  : z '  = - z }  with n even and IF ~ ]H. As tripotent in 

L ( H )  every ei has rank 2 and there is a minimal tripotent f l  E L (H)  such that 

f l  .L 1~ and ei = f i  - ]~. Since n is even by assumption (which covers the case 



On real Cartan factors 213 

n infinite) the union of the families (fl) and (f~) is a frame in L(H) and the 

proof proceeds as above. [] 

Proposition 5.8 in particular implies that Aut(E) acts transitively on the 

minimal tripotents of E since z ~-+ - z  always is in Aut(E). Therefore, if we 

fix a minimal tripotent e E E the real dimension z(E): = d(E0(e) j-) does not 

depend on e and is an isometric invariant of E by proposition 5.5. A case- 

by-case computation gives TABLE 1 where elementary arithmetic of cardinal 

numbers is used - so that for instance n(n - 1)/2 = [n/2] -- n for every infinite 

cardinal n. Inspecting the table gives immediately the following result. 

5.9 T h e o r e m  Let g~" be the class of all real and (realifications of) complex 

Cartan factors. Then the invariants d, r, a, z form a complete system of  invari- 

ants in C ~  with respect to isometric equivalence, more precisely, two triples 

E, F in CJ r allow a surjective IR-linear isometry i f  and only if  both have the 

same invariants. For the subclass of  all triples of rank > I isometric equivalence 

is the same as equivalence with respect to triple isomorphisms. 

To get a complete system of invariants for C~" with respect to triple 

isomorphy one may take for instance r, a, z, b, h where b(E): = dim E -1 (e) and 

h(E): = dimE1/2(e) for e E E a minimal tripotent. 

The result of Theorem 5.9 can be extended to other real JB*-triples. As 

an example, suppose E is a JB*-triple in the class C~. Denote by I the closed 

linear span of all minimal tripotents in E (the subtriple of all compact operators 

in case of the types I - I I I ) .  Then I is the unique minimal closed ideal of E 

and the bidual of I can be identified with E. Therefore every A E lint(I) has 

a unique extension to an isometry of E and hence lint(I) = lint(E) as well as 

Aut(I) = Aut(E) in this sense. Suppose furthermore that F C E is a closed real 

subtriple containing the ideal I .  For instance, if H, K are F-Hilbert spaces and 

L C H is a closed linear subspace then {z E £(H,  K)  : z[L compact} is such 

a subtriple which in general is not an ideal of E. Now suppose,/~ is another 

object in C~" and I C F C E are closed subtriples with I" the minimal closed 

ideal of/~. Then every surjective linear isometry A: F -~ .~ maps I onto I and 

hence induces a surjective linear isometry E -~ E. 

TABLE 1 reveals that E in CJ r has the structure of a JB-algebra of di- 

mension > 1 if and only if 0 E a (E). Also, the following can be seen: The 

automorphism group Aut(E) acts transitively on frames in E i f  and only i f  

a(E) contains at most  one element. 

5.10 L e m m a  Let E be a real or complex JB*-triple of  rank > 1 and let 
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e E E be a minimal tripotent. Then every element in the unit sphere S: = {c 6 

E l ( e )  : Hc[[ = 1} of  the Peirce space El (e )  also is a minimal tripotent in E and 

satisfies eoe = c o c .  In addition Noes E - l ( c )  = 0 holds. 

Proof  Fix c E S. Then c is a minimal tripotent in E since E1 (e) has rank 1. 

In case a(E) = 1 we have E - l ( e )  = 0 and nothing more has to be shown. For 

the remaining cases, see TABLE 1, eoe = coc is easily checked and c ~ E - l ( c )  

gives the last statement. [] 

5.11 C o r o l l a r y  Let  E be a real or complex Caftan factor of  rank > 1. 

Then A(E1/2(e)) -- E1/2(Ae) for every minimal tripotent e E E and every 

A E lint(E). 

Proof  Follows from Propositions 5.5 and 5.7 as well as from Ek(e) = Ek(c) for 

k = 1,1/2 and all c E S together with 

E1/~(e) = A (E-'(c) ~Zl/~(c)). n 
cES 

Corollary 5.11 implies that surjective ]R-linear isometrics in case of rank 

> I respect the collinearity relation between minimal tripotents. By definition, 

two tripotents e, c E E are called collinear and we write eTc if e E Ei12(c) and 

c E Ezl~(e). From Lemma 5.10 it is easily derived that  the triple product of 

any three palrwise collinear minimal tripotents in E vanishes. 

The question arises whether in C~" isometric equivalence and triple iso- 

morphy are the same - or equivalently as a consequence of Theorem 5.9 - 

whether lint(E) = Aut(E) holds for every real Cartan factor E.  Therefore de- 

note by Z`9 the class of  all real JB*-triples E with lint (E) = Aut(E). As already 

has been pointed out (compare [25], [5], [6]) every JB-algebra, every real C*- 

algebra and every complex JB*-triple is in Z S  - more precisely the underlying 

structure of a real JB*-triple for every such object. On the other hand, not ev- 

ery real Cartan factor is in the class 2,9, as the following characterization in the 

rank-l-case shows - compare also Proposition 5.4 and notice tha t  I~2 ~ IV4 4'° 

and C~t ~ IV~ '°. 

5.12 L e m m a  Let  E be a real JB*-triple of  rank I. Then E is in the class Z$  

if  and only i f  E - l ( e )  -- 0 or Et/2(e) = 0 for some (and hence every) minimal 

tripotent e E E,  that is, i f  and only i r E  is isomorphic to I R for some m > 1 1,rr~ 
TVn, 0 or to ---n for some n > 2. 

Proof  E is a real Hilbert space. Therefore, if E - l ( e )  ~ 0 and E1/2(e) ~ 0 there 

is a A E lint(E) and a vector a E Ezl2(e) with A(e) = e and A(a) ~ E1/2(e). 

But such a A cannot be in Aut(E). Therefore only those factors of rank 1 can 
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be in ZS  that are listed in the Lemma. That  actually Ii~,m lies in 27S is obvious 

and the spin case is covered by the next Lemma. 1"1 

5.13 L e m m a  Every real spin/'actor E is in the class ZS.  

Proof Write E = IVy'" as in Theorem 4.1. Then Irnt(E) = O(n) = Aut(E) in 

case s = 0. In case s > 0 the extreme boundary of the unit ball in E has two 

connected components - the two unit spheres in Xl and X2. Since surjective 

isometries respect the extreme boundary the statement follows easily from the 

description of Aut(E) in Proposition 5.1. [] 

As a generalization of Theorem 5.1 in [5] we have 

5.14 P r o p o s i t i o n  Let H, K be IF-Hilbert spaces of dimension > 1 over the 

field IF which is either lit or ]H. Then E: --- £(H, K)  is in the class ZS. 

Proof Choose orthonormal bases {h~ : f~ 6 B} of H and {ks : a e A} of K. 

Define the tripotent ea~ E E by ea~(h) = (hi hz)ka for all h E H and put 

Ea~: -- EI(e~z). Then emil(k ) = (kl ka)hz implies 

and every other associative triple product of the E ~ ' s  vanishes that is not of 

this form. The ]R-linear span D of R: = [.J~,~ E~Z is a (not necessarily closed) 

subtriple orE.  Fix A E lint (E) and assume that there are unit vectors a, b, c E R 

with A(abc} ~ {(Aa)(Ab)(Ac)}. But  a, b, c are minimal tripotents in E and the 

three cases 'a _L b' or 'b 2_ c' or 'a ,  b, c pairwise collinear' cannot happen since 

then both sides of the above inequality would vanish. Therefore there exist 

orthogonal tripotents ea~, e~  in R with a,b,c E El(e) for e : =  ea~ -I-e~6. 

By Proposition 5.7 A is an isometry from El(e) onto EI(Ae). But both Peirce 

spaces are in the class 27S by [5] (in the real case they are even real spin 

factors), hence the restriction AIEI(e ) is a triple homomorphism by Lemma 

5.13, a contradiction. Therefore the restriction AID is a triple homomorphism. 

Since A is w*-continuous, the triple product is separately w*-continuous and D 

is w*-dense in E the statement follows. [] 

As a consequence of Proposition 5.1 we may reformulate Proposition 5.14 

also as: 

5.15 P r o p o s i t i o n  Let H,  K , X ,  Y be real Hilbert spaces. Then 

Imt( f~(H,g) ,£ . (X,y) )  = {z ~ uzv : u e Im t (K ,Y ) , v  6 Imt(X,H)} 

U {z ~ uz'v :u e Imt (H,Y) ,v  6 Imt (X ,K)} .  
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The same is true for quaternionic Hilbert spaces provided H, K have dimension 

> 1 over II-I (notice that in this case lint on the left hand side of  the equation 

means ]R-linear isometrics in contrast to Ill-linear isometrics on the other side). 

5.16 P r o p o s i t i o n  E = {z E £ ( H )  : z '  = - z }  is in the class Z S  for every real 

Hilbert space H of dimension > 1. 

Proof  Fix A E lint(E) and choose an orthonormal basis (ha : a E ,4} of H. 

Define for every a ~ fl the minimal tripotent e ~  E E by ea~(h) -- (hf ha)h~ - 

(hi h~)ha for all h E H and put  Ea~: = E l ( e ~ ) .  Then  Ea/~ = E/~a and as 

above the ]R-linear span D of  R: = ~ a , :  E ~  is a w'-dense subtriple of E. 

Therefore we only have to show that  A: D --~ E is a triple morphism. Now 

(Ec,~E.r,~E~, } ~ 0 implies that  there are at most  4 different indices involved, 

that  is, as a consequence of Proposition 5.5 we may assume without loss of 

generality tha t  H has dimension < 4. But this implies that  E is isomorphic to 

IV~ '~ in ZS. U] one of the triples Ii,1, I~3 or 

5.17 P r o p o s i t i o n  E = {z E F(H)  : z* = - z }  is in Z £  for every ]H-Hilbert 

space H.  

Proof  Fix A E lint(E) and choose an orthonormal basis (ha)ae,4 of H.  Since 

I I I p  ~ IVa a'° is in Z S  we may assume dimra H > 1. For every a E A define 

ea E £:(H) by eo(h) = (hi ha)ha. Then tea is a minimal tr ipotent of  E for 

every r E ]H wi th  r 2 = - 1  and the Peirce spaces 

Eaa: = Ez(rea)  = {sea : s E ]I-I with W = - s }  

EaZ: = E1n(rea) n ~I/2(re~) for e # 

do not depend on r. Clearly, (ie~)~e~ is a frame in E and because of Proposition 

5.8.iii we may assume that A(Eaz) = Ea# for all a, ~ E A. The restriction of 

A to the real Hilbert space ERa is an orthogonal transformation, denote by 

Sa = q-1 its determinant. We may assume without loss of generality that not 

all ~a are negative (otherwise replace A by -A). For every family (ga)aeA of 

isometries ga E Imt(Eaa) with positive determinant there is a g E Aut(E) with 

ga --- glEaa - therefore we may assume furthermore that for all a E ,4 

A(iea) ---- leo, A0ea) =jeo, ~0ie~) = 6ajiea • 

C l a i m  1: For every c~, ~ there exists ~ap = -4-1 such that  ca~A Js the identity 

on Eap.  In particular, 6a = 1 for all c~ E .4. 

For the proof of this claim we may assume that .4 = {I, 2} and we may identify 
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E with the matrix space {z E ]H 2x2 : z* = - z }  in such a way tha t  61 = 1 and 

(0 °0) 0) t e l  = , r e 2  - -  ? 

for all r. Then A leaves invariant the subtriple 

E - I ( c )  = E n j C  2x2 ~, V : =  {z e C 2×2 : Z' = Z} 

and hence induces an ]R-linear isometry a of the complex Carton factor V by 

A(jv) = ja(v) for all v 6 V. By [6] a is either complex-linear or conjugate- 

linear. The latter case cannot occur since a is complex-linear on the complex 

line generated by el,  i.e. 62 = 1. More generally, for every u 6 IH with u~ = 1 

one has 

o 0 __(:0 
E - l ( c ~ ) = ( O  - ) E - l ( c ) (  0 0i> ~-, V for c~: i >  

and hence 

But then II-I = ]Hj proves the claim. 

Cla im 2: ea~e~  = eaZ holds for a11 a, ~, 7 6 A. 
For the proof of this claim only the case dim~ H = 3 and A = {a,/~, q,} has to 

be considered. Then for c: -- iea + ie~ + ie,~ 6 E again 

E-l(c) ~ W : = { z 6 C  s x 3 : z ' = z }  

and the claim follows from the explicit description of Aut(W) in section 3. 

We now proceed the main proof with H arbitrary. Fix 7 6 . 4  and define u 6 

£(H)  by 

u(ha) = ea-~ha 

for all a 6 J[. Then g(w) = uwu* defines an element g 6 Aut(E) tha t  coincides 

with e a ~ e ~  id on every Ea~. As a consequence of claim 2 A and g coincide on 

every E ~ .  Since A and g are w*-continuous and the linear span of all Eo~ is 

w'-dense in E we conclude that  A = g 6 AutE). []  

We leave open the question whether the two exceptional factors V v° and 

VI  °° belong to the class I S .  But we know that  all other real or complex Ca-tan 

factors of rank > 1 do. This allows us to state our main result: 
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5.18 T h e o r e m  Let E be a non-exceptional real or complex Cartan •actor of 

rank > 1. Let furthermore F be a real JBW*-triple. Then a bijective IR-tinear 

map A: E -+ F is an isometry i f  and only if it respects the triple products. 

Proof Suppose tha t  A is a triple isomorphism. Then A is isometric by [15]. 

Conversely, suppose that  A is an isometry. By assumption, F -- U ~ for a 

JBW*-triple U. Since A respects the orthogonality relation (see Proposition 

5.5) U cannot contain any non-trivial r-invariant w*-closed ideal. Also, for ev- 

ery minimal tr ipotent e E E the image A(e) is a minimal tripotent in F and 

hence the sum of at most 2 orthogonal minimal tripotents in U. Therefore only 

the following two cases can occur: (i) U is a Cartan factor and hence F is a real 

Caf tan factor, or (ii) U = V $ V for a Caftan factor V and hence F = VFt. We 

may therefore assume E = F .  The proof then follows by combining Theorem 

5.9, Lemma 4.5 and Propositions 5.14 - 5.17 together with the known fact that 

every JB-algebra and also every complex Cartan factor of rank > 1 is in the 

class ZS. [] 

6 .  S o m e  r e m a r k s  

6.1 R e m a r k  Suppose E is a real (or complex) JB*-triple and I ,  J, K C E are 

closed ideals. Then 

(i) I N J = { I J E }  = { IEJ} ,  

(ii) I A _ J  ~=~ I n  J = 0 ,  

(iii) K = ( K n I ) $ ( K N J )  if E = I e J .  

Proof Use that  to every a e E there is an element c e E with {ccc} = a. [] 

Consider JB*-triples of the form U = C(S, E) where S is a compact 

topological space. Then every closed subset A C S determines the closed ideal 

I: = ( f  E U : f [A = 0} of U. Clearly, / . is  complemented by another ideal in 

U if and only if A is also open in S. Hence the following statement may be 

considered as a first step in generalizing Proposition 4.8 to arbitrary JBW*- 

triples. 

6.2 L e m m a  Suppose U is a (complex) JBW*-tripte and rr is a conjugation of 

U. Then there are w °-closed ideals I, J, K C U such that  

(i) U = I G J $ K ,  

(ii) K = a(J)  and every w*-closed i d e a / o f I  is a-invariant. 

Proof Let J be an ideal of U that is maximal with respect to the property 

J .l. a(J).  Then J ,  K:  = a(J)  and I :  = (J  + K)  j- are w*-closed ideals of U 

satisfying (i) and 0(I)  = I. Suppose A C I is a w*-closed ideal. Then there is 
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a decomposition A = T ~ B into w*-closed ideals where T = A n a(A). But 

then a(A) = T $ a(B)  implies B N a(B) = 0 and hence B .l. a(B)  by (6.1). 

For jr = ( j  + B) also j t  .l_ a(J  I) holds, i.e. B = 0 by the maximality of J.  [] 

6.3 Corol la ry  Every real JBW*-triple E has a unique decomposition E = 

R ~ C into w*-closed ideals R, C where C is comptexifiable and R has the 

following property: Let I with conjugation 1" be the hermitification of R. Then 

every w*-closed ideal of I is ~--invariant. 

Proof Let U with conjugation a be the hermitification of E. Then E ~ I ~ $  JR 

with the notation of Lemma 6.2. [] 

In [15] the notion of real type for a real JB*-triple E has been introduced, 

that is, E has the following property: 

(P1) There exists a maximal abelian subtriple orE that is fiat. 

We do not know whether the subtriple R in 6.3 is of real type in this sense. 

Other properties of a real JB*-triple that might be interesting in this context 

are as follows 

(P2) Every maximal fiat subtriple orE is maximal abelian. 

(P3) Every closed ideal of U is a-invariant where U with conjugation a is the 

hermitification of E. 

We do not know which of the conditions (P1) - (P3) are equivalent. They are 

equivalent for real JB*-triples of finite dimension. 

As an example let E be the real JB*-triple of all symmetric real 2 x 2- 

matrices. As a Banach space E can be identified with C ~ IR endowed with 

norm [[ (z, t)[[ = ]z[ + [ t [ -  just identify (z, t) with the matrix 

( t+ba  t -ab  I where z = a + i b .  

The unit ball B of E is the double cone over the unit disc of • and t is the 

normalized trace of E. It  is easily verified that the maximal fiat subtriples of E 

are precisely the linear 2-planes passing through the unit matrix and hence are 

also maximal abelian (since E itself is not abelian). On the other hand, there 

is exactly one more maximal abelian subtriple A of E - it is given by t -- 0 or 

equivalently as the linear span of the matrices 

A is isomorphic to ~ t  and is not flat. A is the image of the operator A: = j o e  

and the restriction of A to A is a complex structure on A. 
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The idea of this example may be generalized in the following way: Let E 

be an arbitrary real JB*-triple and suppose e ~ 0 is a tripotent in E. Call an 

element j E E an imaginary unit (with respect to e) if 

(6.4) Q ( j ) e = - e  and Q ( e ) j = - j .  

This implies j e E l ( e )  and from { j e j }  a e - j o  {e je}  -- ~oe ,  joe] = 0 we derive 

eoe  = j ~ j  and hence that j is a tripotent with the same Peirce spaces in E as 

e. Obviously ]Re ~ ]Rj is a subtriple of E isomorphic to CR. 

6.5 L e m m a  j ~ e  = - e m j .  

Proof  Suppose x E E~(e) for k = 1,1/2,0. Then 

k { j e x }  = { j e {eex} }  = {{ j ee}ex}  - {e{e je}x}  + {ee{ jex}}  

= {je~} + {ej~} + k{je~} 

implies the statement. [] 

6.6 L e m m a  The operator A: = j v e  is a derivation of  the triple product and 

satisfies the algebraic equation A(A 2 + 1)(4A 2 + 1) = 0. 

Proof  The derivation property follows immediately from 6.5 and the Jordan 

triple identity. E becomes a real Jordan algebra with respect to the product 

x y  = {xey} .  Denote for every u E E by L(u) :=  u v e  the corresponding left 

multiplication operator on E. Then 2L(u) 3 = 3L(u2)L(u) - L(u s) holds by 

[3] p. 154 which gives 2A a + (3eve  - 1)A = 0 for u: = j .  Since A commutes 

with ewe we may consider the Peirce spaces Ek(e) separately. A vanishes on 

Eo(e) by the Peirce multiplication rules and for k = 1,1/2 the restriction of 

A to Ek(e) annihilates the polynomial 283 + (3k - 1)0 which is a factor of 

e(0 ~ + 1)(4e ~ + 1) ~ ]R[e]. []  

6.7 Coro l l a ry  E splits into the direct sum E = A ~ B ~ C of A-invariant 

subtriples where A: = ker(A 2 + 1) C El(e), B: = ker(4A 2 + 1) C E1/2(e) and 

C: = ker(A) D Eo(e). 

Proof  We only have to show that  A, B, C are subtriples. Let U: = E ~ i E  be the 

hermitification of E and denote by Ur the r-eigenspace of A when considered 

as a complex-linear operator on U. Then 

{uru.u,} c u~+~+, 

for all r, s, t E C since A is a derivation of U. The result now follows from 

A = E n (Ui ~ U-i) ,  B = E N (UI/2 ~ U_I/2) and C = E n Uo. v1 

It  is clear that  on A (on B resp.) a complex structure is given by A (by 

2A resp.). Actually we have 
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6.8 L e m m a  A is a complex JB*-triple with respect to the complex structure 

A. 

Proof We may assume without loss of generality tha t  E = A. Then E is a unital 

real Jordan algebra with product xy  = {xey} and involution x ~-+ ~: = Q(e)x. 

The conditions (6.4) are equivalent to j2 = - e  and ~ = - j .  For every u, v E E 

the identity 

L(u2v) = 2L(uv)L(u)  + L(u2)L(v) - 2L(u)L(v)L(u)  

holds by [3] p. 145. For u = j this implies L ( j v ) L ( j )  = L ( j ) L ( v ) L ( j )  and hence 

L( jv)  = L ( j )L (v )  since L( j )  is invertible. Therefore A commutes with every 

L(v) and hence with every operator x o y  = [L(x), L(~)] + L(x~). But then [15] 

proposition 2.6 gives the result. [] 

6.9 C o r o l l a r y  Let  E be a real JBW*-triple and suppose that el, e2 E E are 

orthogonal tripotents with E12: = El l~(el)NEII2(e2)  ~ O. Then E contains an 

abelian subtriple that is not fiat. 

Proof Put  e: = el +e2. The Peirce space E1 (e) is a Jordan algebra with product 

xy = {xey} and involution x ~ 5: = Q(e)x. Then {xyz}  = ( x y ) z - ( z y ) x + ( x z ) y  

is an easy consequence of the Jordan triple identity. Replacing e2 by - e2  if 

necessary we may assume without loss of generality that  V: = {v E EI~ : 

Q(e)v = - v }  ¢ 0. Since V is a real JBW*-triple we may choose a tripotent c 

0 in V. Then ~ = - c  = c 3 and also ~ = - j  holds for j :  = c 2 E El (e l )  $ Ez(e2). 

Now Q(c)j  = - j  and Q(j )c  = - c  5 = - c  implies that  A = l R c +  IRj is a 

subtriple isomorphic to Cn .  []  

6.10 C o r o l l a r y  Let  E be a real JBW*-triple factor. Then the following con- 

ditions are equivalent 

(i) Every maximal  abelian subtriple of  E is fiat, 

(ii) E is a real Cartan factor o f  rank 1, i.e. the underlying Banach space of  

E is Hilbert. 

Proof Let e E E be a complete tripotent and choose a maximal flat subtriple 

F C E containing e. Then F C El  (e). Suppose that  (i) and dim F > 1 holds. 

Since F is w*-closed in E there are orthogonal tripotents el ,e2 E F with 

e = el + e2. E cannot contain a non-flat abelian subtriple by assumption, i.e. 

E12 = 0 as a consequence of 6.9. But  this is a contradiction to our assumption 

that E is a factor. Therefore (i) implies F = ]Re and E is the real form of a 

Cartan factor of rank < 2. D 
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