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In this lecture we give a short survey how bounded symmetric domains in
complex Banach spaces can be described by JB*-triples. These can be considered
as generalizations of C*-algebras and also of Jordan C*-algebras, the so-called
JB*-algebras.

1. Holomorphy in infinite dimensions

Let E,F be arbitrary complex Banach spaces in the following. With L(E, F )
we denote the space of all bounded linear mappings E → F endowed with the
operator norm. In case E = F we also write L(E) instead of L(E, E). A (vector
valued) function f : U → F , defined in a domain U ⊂ E, is called holomorphic if
to every a ∈ U there exists an operator dfa ∈ L(E, F ) satisfying

lim
z 7→a

||f(z)− f(a)− dfa(z − a)||
||z − a|| = 0 ,

where z 6= a runs in U . It is easily seen that for every holomorphic f the operator
dfa, called the complex (Fréchet) derivative of f at a, is uniquely determined by a.
For holomorphic functions in this sense the usual properties of elementary calculus
hold - like the chain rule and the implicit function theorem.

For every holomorphic f : U → F the derivative df : U 7→ L(E, F ), u 7→ dfu,
again is holomorphic. As a consequence, the second derivative d2f = d(df) exists
on U and has values in the space L(

E,L(E, F )
)

which is canonically isomorphic to
the Banach space L2(E, F ) of all bounded complex bilinear mappings E×E → F .
By iteration, for every n ∈ IN the nth derivative dnf exists on U and has values in
the space Ln(E, F ) of all bounded n-multilinear mappings En → F . In addition,
f has a local power series expansion at every a ∈ U , more precisely, there exists
an open neighbourhood V ⊂ U of a such that the series

f(z) =
∞∑

n=0

1
n!

pn(z − a)

converges uniformly on V , where the n-homogeneous polynomial pn : E → F is
defined by pn(t) = dnfa(t, t, . . . , t) for all t ∈ E.
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Now suppose that a further domain V ⊂ F is given. Then every holomorphic
function f on U with f(U) ⊂ V is called a holomorphic mapping f : U → V . A
bijective mapping f : U → V is called biholomorphic if f and its inverse f−1

both are holomorphic. The domains U, V are called biholomorphically equivalent
if there exists a biholomorphic mapping between them.

1.1 Cartan’s uniqueness theorem. Suppose that U ⊂ E is a bounded domain,
V ⊂ F is an arbitrary domain and f, g : U → V are holomorphic mappings with
g biholomorphic. Then f, g coincide if there exists at least one point a ∈ U with
f(a) = g(a) and dfa = dga.

The proof, originally given by Cartan [3] in the 2-dimensional situation, is
astonishingly simple and immediately extends to arbitrary complex Banach spaces.
Usually the theorem is applied for the special case U = V and g = idU . It then
states that the holomorphic mapping f : U → U is already the identity if there is
a fixed point a ∈ U of f with dfa = id ∈ L(E).

Notice that the notion of holomorphy does not depend on the norms but only
on the topologies of the Banach spaces involved. A connection between holomorphy
and the isometric structure of Banach spaces is given by the following result in
[12]:

1.2 Theorem. The complex Banach spaces E, F are isometrically equivalent if
and only if their open unit balls are biholomorphically equivalent.

This means that the isometric structure of every complex Banach space is
completely encoded in the holomorphic structure of its open unit ball. Our interest
will be the class of all those complex Banach spaces E for which the corresponding
open unit ball B has the following holomorphic property: To every pair of points
a, b ∈ B there is a biholomorphic mapping g : B → B with b = g(a).

2. Automorphism groups and holomorphic vector fields

For every domain U in the complex Banach space E we denote by Aut(U)
the group of all biholomorphic mappings g : U → U and call it the biholomorphic
automorphism group of U . In general, Aut(U) consists only of the identity trans-
formation, but can also be very large: For instance, the group Aut(C2) contains
all transformations (z, w) 7→ (z, w + f(z)) as well as (z, w) 7→ (ef(w)z, w) with f
an arbitrary entire function of one complex variable. On the other hand, in case
U is bounded in E, the group Aut(U) cannot be too big. Indeed, by Cartan’s
uniqueness theorem u 7→ (g(u), dgu) gives an injection Aut(U) ↪→ U × L(E).

Our next aim is to describe Aut(U) infinitesimally where that is possible.
To begin with, we call every holomorphic function f : U → E also a holomorphic
vector field on U . Since functions and vector fields are structurally different ob-
jects we prefer to write symbolically f(z) ∂/∂z instead of f (here z denotes the
‘local variable’ in U). Every holomorphic vector field X = f(z) ∂/∂z on U can
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be applied to arbitrary Banach space valued holomorphic functions h : U → F
by putting Xf(u) := dhu(f(u)) ∈ F for every u ∈ U . Then the space hol(U) of
all holomorphic vector fields on U becomes a complex Lie algebra with bracket
defined by

[X, Y ] : =
(
Xg(z)− Y f(z)

)
∂/∂z

for all X = f(z) ∂/∂z and Y = g(z) ∂/∂z in hol(U).

A word of caution is necessary here: Vector fields can also be applied to
smooth functions and many authors would write these in the real context as X =
f(z) ∂/∂z + f(z) ∂/∂z rather than X = f(z) ∂/∂z as we do here.

Every holomorphic vector field X = f(z) ∂/∂z on U gives rise to a flow of
local biholomorphic transformations - more precisely - by the elementary theory
of ordinary differential equations to every a ∈ U there are convex domains T ⊂ C,
V ⊂ U together with a holomorphic mapping g : T×V → U such that 0 ∈ T , a ∈ V
and g solves the initial value problem ∂g(t, v)/∂t = f(g(t, v)), g(0, a) = a. In case
T ⊂ C can be chosen to contain the full real line IR we write exp(X)(a) := g(1, a).
In case exp(X)(a) is defined for every a ∈ U the mapping exp(X) : U → U is
biholomorphic and we then call the vector field X complete on U . The subset
aut(U) ⊂ hol(U) of all complete holomorphic vector fields is not closed under
addition nor under the bracket in general. Nevertheless we have the exponential
mapping exp : aut(U) → Aut(U).

In 1935 H. Cartan [3] showed that for every bounded domain D ⊂ Cn the
group Aut(D) is a real Lie group in the compact open topology acting analytically
on D, that is, the mapping Aut(D)×D → D, (g, z) 7→ g(z), is real analytic (and
clearly holomorphic in z). In addition, then aut(D) is a real Lie algebra of finite
dimension canonically isomorphic to the Lie algebra of the Lie group Aut(D). An
extension of this result to infinite dimension is due to Upmeier [18]: Suppose that
U is a bounded domain in the complex Banach space E. Call a domain V ⊂ U
admissible if there exist a ∈ U and r > 0 such that ||z − a|| < r for all z ∈ V and
||z − a|| > 5r for all z /∈ U .

2.1 Theorem. Let U ⊂ E be a bounded domain. Then g := aut(U) is a real Lie
algebra and for every admissible domain V ⊂ U

||f(z) ∂/∂z ||V := sup
z∈V

||f(z)||

defines a complete norm on g making it to a real Banach Lie algebra (that is, the
bracket is continuous). For any two admissible domains in U the corresponding
norms are equivalent. The group G := Aut(U) has a unique structure of a real
Banach Lie group such that the exponential map is bianalytic in a suitable neigh-
bourhood of the origin in g . The canonical mapping G×U → U , (g, z) 7→ g(z), is
real analytic.
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We notice that for every bounded domain U ⊂ E the real Lie algebra g :=
aut(U) is totally real in hol(U): Indeed, suppose that X is in g ∩ ig . Then for every
a ∈ U the holomorphic function C → U defined by t 7→ exp(tX)a is constant by
Liouville, that is, X = 0.

The domain U ⊂ E is called homogeneous if the group Aut(U) acts transi-
tively on U , that is, if {g(a) : g ∈ Aut(U)} = U for some and hence every a ∈ U .
In case U is bounded there always exists a metric on U that is compatible with the
topology and is invariant under the action of Aut(U), for instance the Carathéodory
metric: Let B be the Banach space of all bounded C-valued holomorphic functions
on U and B∗ := L(B, C) its dual. Then a 7→ [f 7→ f(a)] defines a continuous
embedding U ↪→ B∗ and the norm of B∗ provides the invariant metric on U . With
this metric it can be seen:

2.2 Proposition. For every bounded domain U ⊂ E and every a ∈ U the
following conditions are equivalent:

(i) U is homogeneous,
(ii) Aut(U)(a) is open in U ,
(iii) the evaluation map aut(U) → E, f(z) ∂/∂z 7→ f(a), is surjective.

3. Operator algebras and generalizations

As a special example let us start with E := L(H), where H is an arbitrary
complex Hilbert space. Then E is a Banach algebra with involution z 7→ z∗. We
are interested in holomorphic properties of the open unit ball of E, that we always
denote by D in the following. For every c ∈ D the square roots (11 − cc∗)1/2,
(11− c∗c)1/2 are well defined as positive hermitian operators on H and

(3.1) gc(z) := c + (11− cc∗)1/2(11− zc∗)−1z(11− c∗c)1/2

defines a holomorphic function gc : D → E. Actually, it is not difficult to see that
gc takes values in D and satisfies gcg−c = idD, that is, gc ∈ G := Aut(D) for
every c ∈ D. From gc(0) = c we see that G acts transitively on D, that is, D is
homogeneous.

Now consider the isotropy subgroup K := {g ∈ G : g(0) = 0}. Then every
g ∈ K is linear. Indeed, for every real t the automorphisms g(eitz) and eitg(z)
have the same value and the same derivative at the origin and hence coincide by
Cartan’s uniqueness theorem. Comparing the power series expansions then gives
that g is linear. As a consequence, K is just the linear isometry group of the
Banach space E. Furthermore, G = {gck : c ∈ D, k ∈ K}.

For an abstract generalization later on it is convenient to write (3.1) in a
slightly different form: For all x, y ∈ E define the Bergman operator B(x, y) ∈
L(E) by

(3.2) B(x, y)z = (11− xy∗)z(11− y∗x) = z − (xy∗z + zy∗x) + xy∗zy∗x .
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For x, y ∈ D then B(x, y) has spectrum in the right halfplane and therefore
B(x, y)1/2 ∈ L(E) with B(0, 0)1/2 = 11 exists in the sense of the holomorphic
functional calculus. Now (3.1) just reads

(3.3) gc(z) = c + B(c, c)1/2(z + zc∗z + zc∗zc∗z + . . .) .

Also the Lie algebra g := aut(D) can be easily described. The isotropy
subalgebra

(3.4) k :=
{
f(z) ∂/∂z ∈ g : f(0) = 0

}

at the origin is k = {i(uz + zv) ∂/∂z : u = u∗, v = v∗ ∈ L(H)}. For every fixed
a ∈ E consider the real 1-parameter family (gta)|t|<1 in G, that has derivative
(a− za∗z) at t = 0. From this it is easily derived that

(3.5) g = k ⊕ p with p :=
{
(a− za∗z) ∂/∂z : a ∈ E

}
.

From (3.3) as well as (3.5) it is obvious that the above considerations im-
mediately extend to the case were E ⊂ L(H) is an arbitrary C*-algebra, that is
a closed complex *-invariant subalgebra of L(H). Actually, only the following is
needed for a given closed linear subspace E ⊂ L(H): For every a, z ∈ E also za∗z
should be contained in E, or equivalently, E should be invariant under the Jordan
triple product {xyz} := (xy∗z + zy∗x)/2. Subspaces with this property were intro-
duced and studied by Harris [8] under the name J*-algebra (the defining property
there is that E is invariant under the mapping a 7→ aa∗a, a property that is easily
seen to be equivalent to the above). For systematic reasons in our notation we
prefer to call them JC*-triples in the following.

Examples for JC*-triples are obtained by the closed linear spans in L(H) of
all subsets ABC, where B ⊂ L(H) is a C*-subalgebra and A, C ⊂ B are arbitrary.
Further examples are given by the JC*-algebras - these are closed *-invariant linear
subspaces of L(H) that are invariant under the Jordan product x◦y := (xy+yx)/2.
Indeed, this follows from zc∗z = 2z ◦ (z ◦ c∗)− (z ◦ z) ◦ c∗.

C*-algebras, JC*-algebras as well as JC*-triples have their abstract analogs
(not referring to a Hilbert space H). By definition, a B*-algebra is a complex
Banach algebra A with (conjugate linear isometric) involution * satisfying ||aa∗|| =
||a||2 for all a ∈ A. Every C*-algebra is a B*-algebra, and on the other hand, by
the Gelfand-Naimark theorem every B*-algebra is isometrically *-isomorphic to
some C*-algebra, see [17] for details.

Abstract Jordan C*-algebras go back to Kaplansky, see [20]. Let J be a com-
plex Banach Jordan algebra, that is, a complex Banach space with commutative
bilinear product x◦y satisfying x◦(x2◦y) = x2◦(x◦y) as well as ||x◦y|| ≤ ||x||·||y||,
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and suppose that on J is given a (conjugate linear) isometric algebra involution
x 7→ x∗. Then J is called a JB*-algebra if ||{xxx}|| = ||x||3 for every x ∈ J , where
the ‘triple product’ {xyz} on J is given by

(3.6) {xyz} := x ◦ (z ◦ y∗) + z ◦ (x ◦ y∗)− (x ◦ z) ◦ y∗ .

Every JC*-algebra is a JB*-algebra with respect to the Jordan product x ◦ y =
(xy+yx)/2, but not every JB*-algebra can be obtained this way. The most promi-
nent counter-example can be described as follows: Let O be the standard real Cay-
ley algebra, that is the unique (non-associative) real division algebra of dimension
8. Then O comes with an algebra involution x 7→ x whose fixed point set is a sub-
field isomorphic to IR. Let V := H3(O) be the space of all hermitian 3×3−matrices
over O, which obviously is a real vector space of dimension 27. With respect to
x◦y = (xy+yx)/2 the space V becomes a real Jordan algebra with the unit matrix
11 as identity. Now the formal complexification J := V C := V ⊕ iV is a complex
Jordan algebra by extending the Jordan product in a complex bilinear way. Also,
(x + iy)∗ := x − iy defines an algebra involution on J . As in every unital Jordan
algebra, to every z ∈ J there exists a (commutative) associative subalgebra of J
containing z and 11. This implies that all powers of z and hence also exp(z) ∈ J
are defined (usual exponential power series). There exists a unique norm on J such
that the corresponding closed unit ball is the convex hull of the ‘generalized unit
circle’ exp(iV ). With respect to this norm the Jordan *-algebra J is a JB*-algebra
not isomorphic to any JC*-algebra (J is called an exceptional JB*-algebra).

The open unit ball D of every JB*-algebra also is homogeneous. We do not
go into details here since there also exists an abstract analog to JC*-triples that
encloses the JB*-algebras. These are the JB*-triples that will be discussed in the
next section.

4. JB*-Triples

4.1 Definition. A JB*-triple is a complex Banach space E together with a
sesquilinear mapping

L : E × E → L(E)

such that for all a, b, x, y, z ∈ E the following conditions hold:

(i) {xyz} := L(x, y)z is symmetric in the outer variables (x, z),

(ii) [L(a, b), L(x, y)] = L({abx}, y)−L(x, L({yab})), where [ , ] is the usual com-
mutator of operators,

(iii) L(a, a) ∈ L(E) is hermitian, that is, || exp(itL(a, a))|| = 1 for all real t,

(iv) L(a, a) has spectrum ≥ 0 ,

(v) ||L(a, a)|| = ||a||2.
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Here sesquilinear always means ‘complex linear in the first and conjugate linear in
the second variable’.

The first two conditions in 4.1 are purely algebraic. Condition (ii) is called
the Jordan triple identity and is equivalent to exp(iL(a, a)) ∈ GL(E) being an
automorphism of the triple product { , , , } for every a ∈ E. Condition (iv) only
depends on the linear topology of E while (iii) and (v) depend heavily on the norm
structure of E. The JB*-triples form in a natural way a category JB*: A linear
map ϕ : E → F between JB*-triples is a morphism if ϕ({xyz}) = {(ϕx)(ϕy)(ϕz)}
holds for all x, y, z ∈ E. It is known that every triple morphism ϕ : E → F has
closed image in F and induces a linear isometry from E/ ker(ϕ) onto ϕ(E). The
notion of a JB*-subtriple is obvious and also the notion of an ideal in E (a linear
subspace I with {IEE} ⊂ I and {EIE} ⊂ I} ). For every closed ideal I ⊂ E the
quotient E/I in a canonical way is also a JB*-triple. We call a JB*-triple simple
if it does not contain any non-trivial closed ideal.

It is easy to see that every JC*-triple is a JB*-triple with respect to the triple
product {xyz} = (xy∗z + zy∗x)/2. Also every JB*-algebra is a JB*-triple with
respect to (3.6). In case the JB*-triple E contains an element e with L(e, e) = idE

then E becomes a JB*-algebra with unit e in terms of the product x ◦ y := {xey}
and the involution x∗ := {exe}. On the other hand, every unital JB*-algebra is
obtained this way. A simple JB*-triple that is neither a JC*-triple nor (triple-
isomorphic to) a JB*-algebra is obtained as follows: Consider in V = H3(O) the
subspace W of all 3× 3-matrices x = (xjk) with x11 = x22 = x33 = x23 = 0. Then
WC ⊂ H3(O)C is a JB*-subtriple of dimension 16 with the required properties.
On the other hand, locally every JB*-triple ‘looks like a commutative C*-algebra’,
more precisely, to every a ∈ E there exists a JB*-subtriple Ea ⊂ E that is (triple)
isomorphic to a commutative C*-algebra and contains a. A global result states
that every JB*-triple can be realized as JB*-subtriple of a JB*-algebra, actually
the following Gelfand-Naimark theorem for JB*-triples is much more precise [7]:

4.2 Theorem. Every JB*-triple is isomorphic to a JB*-subtriple of L(H) ⊕∞
C(S,H3(O)C

)
, where H is a suitable complex Hilbert space, S is a suitable compact

topological space, C(S, J) is the JB*-algebra of all continuous functions on S with
values in the exceptional Jordan algebra J = H3(O)C of dimension 27 and ⊕∞
means the `∞-sum.

Notice that in 4.2 the summand L(H) as an associative structure is alge-
braically easy but complicated in the functional analytic sense. On the other hand,
the second summand is algebraically complicated but is topologically easy since
H3(O)C has finite dimension.

As usual, we denote by F ∗ := L(F, C) the dual of the Banach space F . For
every JB*-triple E the triple product extends in a unique way to a separately
w∗-continuous triple product on the bidual E∗∗ making it to a JB*-triple as well.
Clearly, the JB*-triple E∗∗ is the dual of another complex Banach space (for
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instance of E∗). In analogy to the W*-algebras in the category of C*-algebras
the JB*-triple E is called a JBW*-triple if E is (isometrically isomorphic to) the
dual of another complex Banach space, which then is called a predual of E. Every
predual of the JBW*-triple E can be canonically considered as a subspace of E∗

which can be shown to be uniquely determined by E. This space is denoted by E∗.

It is easy to see that for every JB*-triple E the corresponding triple product
is continuous. Actually it can be shown that always ||L(x, y)|| ≤ ||x||·||y|| holds
(for JC*-triples this is obvious contrary to the general situation). Also it is clear
that the triple product determines the topology and even the norm on E. Indeed,
the closed unit ball of E consists of all a ∈ E such that for every real t > 1
the linear operator

(
t11 − L(a, a)

)
is bijective on E. Conversely, the holomorphic

structure of the open unit ball of the JB*-triple E - and hence the norm of E -
determines the triple product on E uniquely. This will be discussed in more detail
in the next section. As a consequence we may consider the category JB* of all
JB*-triples as a subcategory of the category of all complex Banach spaces (with
linear contractions as morphisms).

In contrast to the triple product on JB*-triples the algebra product of C*-
or JB*-algebras is not uniquely determined by the norm of the underlying Banach
space. For unital JB*-algebras it is uniquely determined by the norm together with
the unit element. On every JBW*-algebra and also on every JB*-algebra coming
from a C*-algebra any two unital JB*-algebra structures are at least isomorphic,
see Lemma (5.2) in [1]. An example of a JB*-triple carrying several non-isomorphic
unital JB*-algebra structures is obtained as follows [1]:
Let A ⊂ C2×2 be the JC*-subalgebra of all symmetric complex 2 × 2-matrices
with Jordan product x ◦ y = (xy + yx)/2 and let S := eiIR ⊂ C be the unit circle.
Then also E := C(S, A) is a JB*-algebra with product ◦ and involution ∗ defined
pointwise. Define the function e ∈ E by

e(s) :=
(

s 0
0 1

)
for all s ∈ S .

Then L(e, e) = idE and hence the new product x y := (xe∗y + ye∗x)/2 and the
new involution x? := ex∗e give a new JB*-algebra structure on E not isomorphic
to the original one.

The category JB* is closed under taking arbitrary `∞-sums, ultra-powers,
biduals as well as taking images of arbitrary contractive projections. A word of
caution is necessary for the last statement: Suppose that P : E → E is a contractive
projection (that is, P 2 = P and ||P || ≤ 1) with image F := P (E). Then F may
not be a subtriple of E, but it is a JB*-triple in the triple product

{xyz}F := P{xyz} , x, y, z ∈ F .

A simple example where F ⊂ E is not a subtriple is as follows: For S := [0, 1] ⊂ IR
let E := C(S) be the commutative C*-algebra of all continuous complex-valued
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functions on S and P the contractive projection on E defined by
(Pf)(s) := (1− s)f(0) + sf(1) for all f ∈ E and s ∈ S.

The open unit ball D of every JB*-triple is homogeneous with respect to
biholomorphic automorphisms. As in (3.3) for every c ∈ D an automorphism
gc ∈ Aut(D) with gc(0) = c is obtained, where the Bergman operator in the triple
product reads

(4.3) B(x, y)z = z − 2{xyz}+ {x{yzy}x} .

Also (3.5) holds with p =
{
(a − {zaz}) ∂/∂z : a ∈ E

}
for g := aut(D) and the

isotropy subalgebra k at the origin, see (3.4).

Summarizing we have that every JB*-triple has a (holomorphically) homoge-
neous open unit ball. Actually, also the converse is true, that is, a complex Banach
space is a JB*-triple if and only its open unit ball is homogeneous. In the next
section we discuss this in more detail.

5. Bounded symmetric domains

In the following let F be a complex Banach space and U ⊂ F a bounded
domain. Then U is called symmetric if to every a ∈ U there exists an s ∈ Aut(U)
such that

(i) s2 = idU ,

(ii) a is an isolated fixed point of s.

It is not difficult to see that condition (ii) can be replaced by s(a) = a and dsa =
− idE . By Cartan’s uniqueness theorem 1.1 the symmetry s about a is uniquely
determined by a and will always be denoted by sa. The mapping U → Aut(U),
a 7→ sa, is analytic and the subset {sasb : a, b ∈ U} generates a connected subgroup
of Aut(U) acting transitively on U . Therefore every bounded symmetric domain
is homogeneous. As an example, the open unit ball D of every JB*-triple E is
symmetric. Indeed, s0(z) = −z and sa = gas0g−a for every a ∈ D.

In finite dimensions all bounded symmetric domains have been classified
(up to biholomorphic equivalence) by É. Cartan in 1935. The irreducible among
these come in 4 series and 2 exceptional domains (the open unit balls of the two
exceptional JB*-triples in dimensions 16 and 27 as considered before). A typical
example is the matrix domain

D := {z ∈ Cp×q : (11− zz∗) positive definite} ,

where z∗ is the conjugate transpose of the p×q-matrix z.

5.1 Riemann mapping theorem for bounded symmetric domains. Ev-
ery bounded symmetric domain in a complex Banach space is biholomorphically
equivalent to the open unit ball of a JB*-triple.
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In the following we sketch how for a given bounded symmetric domain U ⊂ F
the corresponding JB*-triple E can be obtained: First we fix an arbitrary base
point o ∈ U . Now E as a Banach space is obtained by renorming F in the following
way: For every v ∈ F let

||v||E := sup{|dfo(v)| : f ∈ O(U) with f(o) = 0 , |f | ≤ 1} ,

where O(U) is the space of all C-valued holomorphic functions on U . Then || ||E
is an equivalent norm on F , called the Carathéodory norm with respect to o ∈ U .
For every g in the isotropy subgroup K := {g ∈ Aut(U) : g(o) = o} the derivative
dgo ∈ GL(E) is an isometry. The symmetry s = so about the base point o ∈ U is
in the center of K by Cartan’s uniqueness theorem and acts in a canonical way by
Ad(s) on the Lie algebra g := aut(U). From s2 = idU we get a decomposition g =
k ⊕ p into a (+1)- and a (−1)-eigenspace. k is the Lie subalgebra of g corresponding
to the Banach Lie subgroup K ⊂ Aut(U). Furthermore the inclusions [k , p ] ⊂ p
and [p , p ] ⊂ k hold. In particular, p is invariant under the Lie triple product
[xyz] := [[x, y], z]. The canonical evaluation map g → E, f(z) ∂/∂z 7→ f(o),
is surjective by 2.2 and hence gives a canonical IR-linear isomorphism p ≈ E.
Identifying both spaces this way we have a Lie triple product [xyz] on E that is
trilinear over IR and complex linear in z. Now define {xyz} as half the part of
[xyz] that is complex linear in x, more precisely,

{xyz} :=
1
4
(
[xyz]− i[(ix)yz]

)
.

Using the power series expansion of every vector field in p ≈ E, Cartan’s unique-
ness theorem 1.1 and g ∩ ig = 0 it is shown that the conditions (i) and (ii) in 4.1
are satisfied. For every a ∈ E and t ∈ IR the operator itL(a, a) is the derivative
of the automorphism exp(t[a, ia]) ∈ K (notice that after the identification p ≈ E
we have the bracket [ , ] : E × E → k). This implies condition (iii). The proof of
conditions (iv), (v) in 4.1 and of 5.1 is more involved, see [11] for details.
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