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A SIMPLE P R O O F  FOR KONIG S M I N I M A X  
T H E O R E M  

G. KASSAY (Cluj) 

1. In 1953 Ky Fan [2] proved a minimax theorem without linear struc- 
ture. Since the appearance of this result, there is a living interest for the 
axiomatic character of minimax theorems. In 1968 H. Khnig [3] extended 
Ky Fan's [2] theorem to the case where the constant field for convexity is 
only a part of [0,1]. Applying the ideas of H. Kneser [1] and Ky Fan [2], 
M. A. Geraghty and B. L. Lin [10] rediscovered Khnig's theorem [3], while 
S. Simons [11] extended it for two functions. His proof is based on Khnig's 
version of the Mazur-Orlicz theorem [4]. 

In the last decade two approaches seemed to be successful for proving 
minimax theorems: the method of level sets (discovered by I. Jo6 [5] and 
applied by L. L. Stach6 [6] for quasiconvex-concave functions on interval 
spaces) and the so called cone method (given in [8] and used by Z. Sebesty4n 
[9, 12], M. Horvs Shvegjs [13]). Concerning these methods, we 
notice that by means of them one can prove most of the classical minimax 
theorems. For instance Ky Fan's theorem can be deduced using the method 
of level sets (see I. Jo6 and L. L. Stach6 [7] and L. L. Stach6 [6]) and also 
using the cone method [13]. We mention that the function lifting introduced 
in [7] provides an immediate deduction of Khnig's theorem from Ky Fan's 
one. 

The aim of this note is to give an elementary and simple proof for Khnig's 
theorem using both methods of Jo6 [5, 8]. We hope that this proof will be 
useful also for further generalizations. 

2. Let X and Y be nonempty sets and f :  X • Y --* R a given function. 

DEFINITION. f is said to be 1/2 concave-convex if the following condi- 
tions are fulfilled: 

(1) For each Yl,Y2 6 Y there exists Y3 6 Y such that 

f (x ,  y3) ~= l [ f ( x ,  yl) + f(x,y2)] for every x 6 X; 

(2) For every xl, x2 6 X there exists x3 6 X such that 

1 
f(x3,y)~= "~[f(xl, y) T f(x2, y)] forevery yE Y. 
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Denote by D (C [0,1]) the set of diadic rationals. It is easy to see that  if 
(1) is fulfilled, then 

(3) For every yl, Y2 E Y and t E D there exists Yt C Y such that  

f (x ,y t )  <-_ t f ( x , y l )  + (1 - t) f(x,y2) for every x E X. 

A similar s ta tement  holds for (2). 

THEOREM (H. Khnig [3]). Suppose X is a compact Hausdorff space and 
f ( . , y ) : X  ~ R is upper-semieontinuous for every y C Y, further f is 1/2- 
concave-convex. Then we have 

sup inf f ( x , y )  = inf sup f (x ,y) .  
x Y Y x 

For the proof we need the following 

LEMMA (I. Jo6 [8]). Let X and Y.be arbitrary sets, f ' X  • Y -~ R be 
any function. For y E Y and c E R (real) denote 

H y =  { x E  X : f ( x , y )  >=c), c . = s u p i n f  f (x ,y) ,  c * = i n f s u p f ( x , y ) .  
x Y Y x 

Then c. = c* if and only if for every c < c* we have 

r l  H ~ # 0  . 
yEY 

PROOF OF THE TttEOItEM. Since X is compact and f is upper semi- 
continuous on X for every fixed y E Y, the sets Hy are compact. Therefore, 
it is enough to prove that  the family of sets {H~:y E Y}  (c < c*) has the 
finite intersection property. It is obvious that  H c ~ ~ for every c < c*. 
First we prove that  any two sets of this family ~ave nonempty intersec- 
tion. Suppose the contrary, i.e. that  there exist c < c* and yl,y2 C Y 
such tha t  H~I M H~2 = 0 and define the function h : X  ~ R 2 by h(x) = 
= ( f ( x ,  y l ) - c , f ( x , y 2 ) - c ) ; f u r t h e r  consider the set K = {(s , t )  E R2:s >= 
>__ 0,t  >= 0}. According to our assumption, h(X) N K -- ~. Now we show 
that  C o b ( X ) N  i n t K  = ~. For this, supp~ose that  there exist A1, . . .  ,Ak C 

k k 

E [0,1] with ~ Ai = 1 and Xl , . . . ,Xk  E X such that  ~ Aih(xi) E i n t K .  It 
i----1 i = 1  

is easy to see that  there exists a dense subset M of ( ( t l , . . . , t k )  E Rk:ti >-_ 
k 

= O, ~ ~i = 1) with the following property: for every ( a l , . . . , a k )  C M and 
i---1 

x l , . . . , x k  E X there exists xa E X such that  f(xa, y) >= a l f ( x l , y )  § . . .  + 
~-akf (xk ,y)  for every y C Y. Choose an element a -~ ( a l , . . . , a k )  E M 
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k k 
such that  ~ aih(xi) E K.  Then h(xa) - ~ aih(x~) e K which contradicts 

i----1 i=1 
h(X)  V1 K = 0. By the well-known separation theorem of Hahn-Banach  in 
R 2, there exists a hyperplane (line) which separates the sets Co h(X)  and K. 
That  is, there exists b = (bl,b2) E K with bl +b2 = 1 such that blf(x ,  yl) + 
+ b2f(x,y2) _-< c for every x E X.  Let Cl E R be such that c < cl < c* and 
d =  C l - C .  Then we have b l [ f ( x , y l ) - C l ]  +b2[ f ( x , y2 ) -C l ]  <= - d  for 
every x E X ,  hence the set hi (X)  is separated from K by the line bls + 
+b2t = - d ,  where h i ( x ) =  ( f ( x , y l ) - c l , f ( x , y 2 ) - c l ) .  Now, since f ( ' , y l )  
and f( ' ,Y2) are upper-semicontinuous,  there exist p > 0 and q > 0 such that  
h i (X)  C ( - ~ , p ] x  ( -oo ,q ] .  Sinceb~+b~ # 0, the l inebls+b2t= - d i n t e r -  
sects at least one of the lines s = p and t = q. Suppose that  bls + b2t = - d 
intersects t = q. It is clear then, that  the line blqS + (d + b2q)t = 0, which 
contains the origin and the common point of these lines, separates hi (X)  
and K.  Let D C [0, 1] be the set of diadic rationals. It is clear then one can 
choose a C D such that  the line as + (1 - a)t = 0 separates hi(X) and K,  
or in other words, o ~ [ f ( x , y l ) - - r  -J- ( J . - - O ~ ) [ f ( x , y 2 ) - - C l ]  <: 0 for every 
x E X.  Consider y~ E Y such that  f (x ,  y~) <= a f ( x , y l ) +  ( 1 -  a) f (x ,  y2)for 
every x C X.  Then f (x ,  ya) <= Cl for every x C X and hence sup f (x ,ya)  <_ 

5g 

_-< Cl, consequently c* = infsup  f ( x , y )  <= Cl which contradicts cl < c*. 
Y x 

In order to prove that  for any c < c* and y l , . . . , y~  E Y we have 
H r ~ 0, we use induction. Suppose we know this for n < N and prove 

i=1 
N - 1  

it for N + 1. To this end denote C = ~ H c This is a nonempty  compact  Yi" 
i=1 

subset of X and since the function 7 = f i c x y  is 1/2-concave-convex, we can 
- -  C C repeat  the proof above for f and for the sets H1 = Hy N M C, H2 = HyN+ ~ n 

M C. This completes the proof of the theorem. 
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