ON THE CONVERGENCE OF EIGENFUNCTION EXPANSION IN THE NORM OF SOBOLEFF SPACES

I. JOO (Budapest)

1. Let $S_{k} \subset R^{n}(n \geqq 3 ; k=1, \ldots, l)$ be manifolds of dimension $\operatorname{dim} S_{k}=m_{k} \leqq$ $\leqq n-3$ having smooth projection to $R^{m_{k}}$, i.e. there exist coordinates $(\xi, y)=$ $=\left(\xi_{1}, \ldots, \xi_{m_{k}} ; y_{1}, \ldots, y_{n-m_{k}}\right)$ and functions $\varphi_{j}^{k} \in C^{1}\left(R^{\left.m_{k} \rightarrow R^{n-m_{k}}\right)}\right.$ such that

$$
S_{k}=\left\{(\xi, y) \in R^{n}: y_{j}=\varphi_{j}^{k}(\xi),\left|\nabla \varphi_{j}^{k}(\xi)\right| \leqq C_{j}^{k}\right\}, \quad S=\bigcup_{k=1}^{l} S_{k} .
$$

Let $q \in C^{\infty}\left(R^{n} \backslash S\right)$ be a real-valued function, for which

$$
\begin{equation*}
\left|D^{\alpha} q(x)\right| \leqq C[\operatorname{dist}(x, S)]^{-\tau-|\alpha|}, \quad\left(x \in R^{n}, 0 \leqq|\alpha| \leqq 1\right), \tag{1}
\end{equation*}
$$

holds, for some $\tau \geqq 0$.
Consider the Schrödinger operator $L_{0}=-\Delta+q(x) \cdot, D\left(L_{0}\right)=C_{0}^{\infty}\left(R^{n}\right)$. Such operators occur as the Hamiltonian of molecules [6-12]. E.g., in the case of Li (or H_{2}) molecule we have $n=6, m=3, x \in R^{3}, y \in R^{3}, q\left(x_{n} y\right)=c_{1}|x|^{-1}+c_{2}|y|^{-1}+$ $+c_{3}|x-y|^{-1}, H=-\Delta+q(x, y) \cdot$. In the case of homogeneous and isotropic space the manifolds S_{k} are subspaces in R^{n}.

It is easy to see that for $\operatorname{dim} S \leqq n-3$ we have $q \in L_{\mathrm{loc}}^{2}\left(R^{n}\right)$ if $\tau<3 / 2$. Indeed, taking into account

$$
l^{-1} \sum_{k=1}^{l}\left[\operatorname{dist}\left(x, S_{k}\right)\right]^{-1} \leqq[\operatorname{dist}(x, S)]^{-1} \leqq \sum_{k=1}^{l}\left[\operatorname{dist}\left(x, S_{k}\right)\right]^{-1}
$$

it is enough to prove this for $S=S_{k}, \operatorname{dim} S=m \leq n-3$,

$$
S=\left\{(\xi, y) \in R^{n}: y_{j}=\varphi_{j}(\tilde{\xi}),\left|\nabla \varphi_{j}(\xi)\right| \leqq C_{j} ; j=1, \ldots, n-m\right\} .
$$

Using the coordinate transformation $(\xi, y) \rightarrow(\xi, z), z_{j}=y_{j}-\varphi_{j}(\xi)$ we have for the Jacobian $D(\xi, z) / D(\xi, y)=1$ and for any $0 \leqq \eta \in C_{8}^{\infty}\left(R^{n}\right)$

$$
\begin{equation*}
\int_{R^{n}}|q(x)|^{2} \eta(x) d x=\int_{R^{m}} d \xi \int_{R^{n-m}}|q(\xi, z+\varphi(\xi))|^{2} \eta(\xi, z+\varphi(\xi)) d z \tag{2}
\end{equation*}
$$

where $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n-m}\right) \in C^{1}\left(R^{m} \rightarrow R^{n-m}\right)$. On the other hand for any $x=(\xi, y) \in R^{n}$ and $u=(\tilde{\xi}, \varphi(\tilde{\xi})) \in S$ we have
hence

$$
\begin{gathered}
|y-\varphi(\xi)| \leqq|y-\varphi(\tilde{\xi})|+|\varphi(\tilde{\xi})-\varphi(\xi)| \leqq|y-\varphi(\tilde{\xi})|+\left|\nabla \varphi\left(\xi^{*}\right)\right| \cdot|\tilde{\xi}-\xi| \leqq \\
\leqq C(|y-\varphi(\tilde{\xi})|+|\tilde{\xi}-\xi|)
\end{gathered}
$$

$$
|y-\varphi(\xi)|^{2} \leqq 2 C^{2}\left(|y-\varphi(\tilde{\xi})|^{2}+|\tilde{\xi}-\xi|^{2}\right)=2 C^{2}|x-u|^{2}
$$

i.e. $|y-\varphi(\xi)| \equiv C \operatorname{dist}(x, S)$, consequently

$$
|q(\xi, z+\varphi(\xi))| \leqq C[\operatorname{dist}((\xi, z+\varphi(\xi)), S)]^{-\tau} \leqq C|z|^{-\tau}
$$

According to (2) we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|q(x)|^{2} \eta(x) d x \leqq C \int_{R^{m}} d \xi \int_{R^{n-m}}|z|^{-2 \tau} \eta(\xi, z+\varphi(\xi)) d z<\infty \tag{3}
\end{equation*}
$$

if $2 \tau<n-m$. But we assume in this work that $m \leqq n-3$, i.e. $n-m \geqq 3$ and hence for $\tau<3 / 2$ we get $2 \tau<3 \leqq n-m$. It follows from Lemma 3 of the present work that the operator L_{0} is bounded below, i.e. $\left(L_{0} f, f\right)=(-\Delta f, f)+(g f, f)=$ $=(\nabla f, \nabla f)+(q f, f) \geqq-c(f, f)$ for every $f \in C_{0}^{\infty}\left(R^{n}\right)$ and hence, by a theorem of K. O. Friedrichs [3] the operator L_{0} has a selfadjoint extension L with $L \geqq-c I$. Denote $L=\int_{-c}^{\infty} \lambda d E_{\lambda}$ the spectral expansion of L and consider for any $f \in L_{2}\left(R^{n}\right)$ the expan$\operatorname{sion} E_{2} f$.

It is proved in [5]: if $\tau=1$ and $0 \leqq s \leqq 1$, then $\left\|E_{\lambda} f-f\right\|_{H^{s\left(R^{n}\right)}} \rightarrow 0$ as $\lambda \rightarrow \infty$. $H^{s}\left(R^{n}\right)$ denotes the space of functions from $L_{2}\left(R^{n}\right)$, with the norm $[6,2.3 .3]$

$$
\|f\|_{H^{s}\left(R^{n}\right)}:=\left\|(I-\Delta)^{5 / 2} f\right\|_{L_{2}\left(R^{n}\right)}=\left\|\left(1+|\xi|^{2}\right)^{s / 2} \hat{f}(\xi)\right\|_{L_{2}\left(R^{n}\right)} .
$$

Later on this theorem was extended in [4] for $\tau=1$ and $0 \leqq s \leqq 2$. The localization of E_{λ} was investigated in [8]. Our aim is to prove the following

Theorem. Suppose $\tau \in[0,3 / 2)$ and $0 \leqq s \leqq 2$ or $\tau \in[0,1 / 2)$ and $0 \leqq s<\frac{7}{2}-\tau$. Then, for any $f \in H^{s}\left(R^{n}\right)$ we have

$$
\begin{equation*}
\left\|E_{\lambda} f-f\right\|_{H^{s}\left(R^{n}\right)} \rightarrow 0 \quad \text { as } \quad \lambda \rightarrow \infty . \tag{4}
\end{equation*}
$$

It follows from Lemma 3 below - among others - taking into account the Kato-Rellich theorem [11, X.2] that the operator L_{0} is essentially selfadjoint, further $D\left(\bar{L}_{0}\right)=D(L)=H^{2}\left(R^{n}\right)$. Our theorem seems to be true for arbitrary $\tau \in[0,3 / 2)$ and $0 \leqq s<\frac{7}{2}-\tau$ but our Lemma 9 is not enough to prove this. According to the ideas of L. L. Stachó [15] this last result does not seem to be refinable, namely we can not replace $\tau=3 / 2$ or $s=\frac{7}{2}-\tau$.

The author is indebted to professor S . A. Alimov and to V. S. Serov for their valuable suggestions.
2. For the proof we need some lemmas.

Lemma 1. Let $k \geqq 3,1 \leqq p<k, 0 \leqq s<k / p$. Then for any $f \in L_{p}^{s}\left(R^{k}\right)$

$$
\begin{equation*}
\left\||x|^{-s} f(x)\right\|_{L_{p}\left(R^{k}\right)} \equiv C\|f\|_{L_{p}^{s}\left(R^{k}\right)} \tag{5}
\end{equation*}
$$

holds.
Here and below in this work C is a constant independent of f and not necessarily the same in each occurrences.

Proof. Using the notation $I:=\left\||x|^{-s} f(x)\right\|_{L_{p}\left(R^{k}\right)}^{p}$ we get by Hölder's inequality

$$
\begin{gathered}
I=\int_{R^{k}}|x|^{-s p}|f(x)|^{p} d x \leqq p \int_{\theta} d \theta \int_{0}^{\infty} r^{k-1-s p} \int_{r}^{\infty}|f|^{p-1}\left|\frac{\partial f}{\partial t}\right| d t d r= \\
=\frac{p}{k-s p} \int_{R^{k}}|x|^{-s p+1}|f|^{p-1}\left|\left(\nabla_{x} f, \frac{x}{|x|}\right)\right| d x \leqq \\
\leqq C\left(\int_{R^{k}}\left(|x|^{-s}|f(x)|\right)^{p} d x\right)^{(p-1) / p}\left(\int_{R^{k}}|\nabla f|^{p}|x|^{(-s+1) p} d x\right)^{1 / p}= \\
=C I^{(p-1) / p}\left(\left.\int_{R^{k}}\left|\nabla f^{p}\right| x\right|^{(-s+1) p} d x\right)^{1 / p},
\end{gathered}
$$

hence

$$
\begin{equation*}
\left\||x|^{-s} f(x)\right\|_{L_{p}\left(R^{k}\right)} \equiv C\left\||x|^{(-s+1)} \nabla f(x)\right\|_{L_{p}\left(R^{k}\right)} . \tag{6}
\end{equation*}
$$

If s is an integer, then iterating (6) s times we get (5).
Now define

$$
s_{0}:=\left\{\begin{array}{l}
\frac{k}{p}-1, \text { when } \frac{k}{p} \text { is an integer } \\
{\left[\frac{k}{p}\right] \text { otherwise. }}
\end{array}\right.
$$

Taking into account Theorem 4.3.2/2 of Triebel [6]:
we obtain

$$
L_{p}^{s}\left(R^{k}\right)=\left(L_{p}\left(R^{k}\right), W_{p}^{s_{0}}\left(R^{k}\right)\right), \quad s=\theta s_{0}, \quad 0<\theta<1
$$

$$
\begin{equation*}
\left\||x|^{-s} f(x)\right\|_{L_{p}\left(R^{k}\right)} \leqq C\|f\|_{L_{p}^{s}\left(R^{k}\right)} \quad\left(0 \leqq s \leqq s_{0}, p<k / s\right) \tag{7}
\end{equation*}
$$

Now let $s \in\left(s_{0}, k / p\right)$. It follows from (7) that for $1 \leqq p_{0}<k / s_{0}$

$$
\begin{equation*}
\left\||x|^{-s_{0}} f(x)\right\|_{L_{p_{0}}\left(R^{k}\right)} \leqq C\|f\|_{L_{p_{0}}^{s_{0}}\left(R^{k}\right)} \tag{8}
\end{equation*}
$$

holds. On the other hand, for any $1 \leqq p_{1}<k /\left(s_{0}+1\right)$ we get from (7)

$$
\begin{align*}
\left\||x|^{-s_{0}} f(x)\right\|_{L_{p_{1}}^{1}\left(R^{k}\right)} & \leqq C\left[\left\|\left.x\right|^{-s_{0}} f(x)\right\|_{L_{p_{1}}\left(R^{k}\right)}+\left\||x|^{-s_{0}} \nabla f(x)\right\|_{L_{p_{1}}\left(R^{k}\right)}+\left\||x|^{-s_{0}-1} f(x)\right\|_{L_{p_{1}}\left(R^{k}\right)}\right] \leqq \tag{9}\\
& \leqq C\left[\|f\|_{L_{p_{1}}^{s_{0}\left(R^{k}\right)}}+\|f\|_{L_{p_{1}}^{s_{0}+1}\left(R^{k}\right)}\right] \leqq C\|f\|_{L_{p_{1}}^{s_{0}+1}\left(R^{k}\right)} .
\end{align*}
$$

Taking into account $\left(L_{p_{0}}, L_{p_{1}}^{1}\right)_{\delta}=L_{p}^{\delta}\left(0<\delta<1, p^{-1}=(1-\delta) p_{0}^{-1}+\delta p_{1}^{-1}\right)$ (cf. Triebel [6], 2.4.2/1) we obtain from (8) and (9) the estimate

$$
\begin{equation*}
\left\||x|^{-s_{0}} f(x)\right\|_{L_{p}^{\delta}\left(R^{k}\right)} \leqq C\|f\|_{L_{p}^{s_{0}+\delta_{\left(R^{k}\right)}}} \quad(\forall 0<\delta<1) . \tag{10}
\end{equation*}
$$

Now, using (10) we prove (5) for $s_{0}<s<k / p$. Define $\delta=s-s_{0}$. It is easy to see that $\delta \in(0,1)$. Indeed, if k / p is an integer, then $\delta=s-s_{0}=\left(\frac{k}{p}-\varepsilon\right)-\left(\frac{k}{p}-1\right)=1-\varepsilon$
$\left(s=\frac{k}{p}-\varepsilon, 0<\varepsilon<1\right)$. If k / p is not an integer, then $\delta=\left(\frac{k}{p}-\varepsilon\right)-\left[\frac{k}{p}\right]<1-\varepsilon$. Consequently, from (10) we get

$$
\begin{gathered}
\left\||x|^{-s} f(x)\right\|_{L_{p}\left(R^{k}\right)}=\left\||x|^{-\delta}\left(|x|^{-s_{0}} f(x)\right)\right\|_{L_{p}\left(R^{k}\right)} \leqq \\
\leqq C\left\||x|^{-s_{0}} f(x)\right\|_{L_{p}^{\delta}\left(R^{k}\right)} \leqq C\|f\|_{L_{p}^{s}\left(R^{k}\right)} .
\end{gathered}
$$

Lemma 1 is proved.
Lemma 2. For any natural number $k \geqq 3,0 \leqq s<3 / 2$ and $f \in C_{0}^{\infty}\left(R^{k}\right)$

$$
\begin{equation*}
\left\||x|^{-s} f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2} \leqq C\|f\|_{H^{1}\left(R^{k}\right)}\|f\|_{H^{2}\left(R^{k}\right)} . \tag{11}
\end{equation*}
$$

Proof. First we prove (11) for $s \geqq 1$. Using (6) at $p=2$ and taking into account the inequality $|x|^{-2 s+2} \leqq|x|^{-1}+1(0 \leqq 2 s-2 \leqq 1)$ we get

$$
\begin{aligned}
& \left\||x|^{-s} f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2} \leqq C\left\||x|^{-s+1} \nabla f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2} \leqq \\
& \leqq C\left[\left\||x|^{-1 / 2} \nabla f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2}+\|\nabla f(x)\|_{L_{2}\left(R^{k}\right)}^{2}\right] .
\end{aligned}
$$

Hence, taking into account the following estimate (cf. [4, Lemma 1])

$$
\begin{equation*}
\left\||x|^{-1 / 2} f(x)\right\|_{L_{2}\left(R^{k}\right)}^{2} \leqq C\|f\|_{\boldsymbol{H}^{\mathrm{x}}\left(R^{k}\right)}\|f\|_{L_{2}\left(R^{k}\right)} \quad\left(k \geqq 3, f \in C_{0}^{\infty}\left(R^{k}\right)\right) \tag{12}
\end{equation*}
$$

we obtain (11) for the case $1 \leqq s<3 / 2$. If $0 \leqq s \leqq 1$, then (11) follows from (5) immediately. Lemma 2 is proved.

Lemma 3. For any $\tau \in[0,3 / 2)$ and $\varepsilon>0$ there exists $C(\varepsilon)>0$ such that for every $f \in C_{0}^{\infty}\left(R^{n}\right)(n \geqq 3)$ the following estimate holds:

$$
\begin{equation*}
\|q f\|_{L_{2}\left(R^{n}\right)}^{2} \leqq \varepsilon\|f\|_{H^{2}\left(R^{n}\right)}^{2}+C(\varepsilon)\|f\|_{L_{2}\left(R^{n}\right)}^{2} . \tag{13}
\end{equation*}
$$

Proof. Using (3) for $\eta=|f|^{2}$, applying (11) for $k=n-m$ and taking into account the inequality

$$
\begin{equation*}
a b \leqq \varepsilon a^{2}+\frac{1}{4 \varepsilon} b^{2} \quad(a, b, \varepsilon>0) \tag{14}
\end{equation*}
$$

we get

$$
\|q f\|_{\mathcal{L}_{2}\left(R^{n}\right)}^{2} \leqq C\|f\|_{H^{1}\left(R^{n}\right)}\|f\|_{H^{2}\left(R^{n}\right)} \leqq \frac{\varepsilon}{2}\|f\|_{H^{2}\left(R^{n}\right)}^{2}+C(\varepsilon)\|f\|_{\Pi^{1}\left(R^{n}\right)}^{2} .
$$

Hence, taking into consideration the estimate
we obtain

$$
\|f\|_{\boldsymbol{H}^{1}\left(R^{n}\right)}^{2} \leqq \varepsilon_{1}\|f\|_{\boldsymbol{H}^{2}\left(\boldsymbol{R}^{n}\right)}^{2}+C\left(\varepsilon_{1}\right)\|f\|_{L_{2}\left(R^{n}\right)}^{2},
$$

$$
\|q f\|_{L_{2}\left(R^{n}\right)}^{2} \leqq \frac{\varepsilon}{2}\|f\|_{H^{2}\left(R^{n}\right)}^{2}+\varepsilon_{1} C(\varepsilon)\|f\|_{H^{2}\left(R^{n}\right)}^{2}+C\left(\varepsilon_{1}\right) C(\varepsilon)\|f\|_{L_{2}\left(R^{n}\right)}^{2} .
$$

If we choose ε_{1} so that $\varepsilon_{1} C(\varepsilon)<1 / 2$, then (13) follows. Lemma 3 is proved.
Corollary. For any $\tau \in[0,3 / 2)$ the operator L_{0} is essentially selfadjoint and $D\left(\bar{L}_{0}\right)=D(L)=H^{2}\left(R^{n}\right)$.

Proof. From (13) we obtain for any $\varepsilon>0$ the estimate

$$
\begin{equation*}
\|q f\|_{L_{2}\left(R^{n}\right)} \leqq \varepsilon\|(I-\Delta) f\|_{L_{2}\left(R^{n}\right)}+C(\varepsilon)\|f\|_{L_{2}\left(R^{n}\right)} \tag{15}
\end{equation*}
$$

Since $I-\Delta$ is essentially selfadjoint and $D(\overline{I-\Delta})=H^{2}\left(R^{n}\right)$, the Corollary follows by Kato-Rellich's theorem [11, X.2].

Remark. For the essential selfadjointness of L_{0} it is enough to prove the estimate

$$
\|q f\|_{L_{2}\left(R^{n}\right)} \leqq C\|f\|_{H^{2}\left(R^{n}\right)}\|f\|_{H^{2-\delta}\left(R^{n}\right)}
$$

for some $\delta>0$, because

$$
\begin{gathered}
\|q f\|_{L_{2}\left(R^{n}\right)} \leqq \varepsilon\|f\|_{H^{2}\left(R^{n}\right)}+C(\varepsilon)\|f\|_{H^{2-\delta}\left(R^{n}\right)} \leqq \\
\leqq \varepsilon\|f\|_{H^{2}\left(R^{n}\right)}+\varepsilon_{1} C(\varepsilon)\|f\|_{H^{2}\left(R^{n}\right)}+C\left(\varepsilon_{1}\right) C(\varepsilon)\|f\|_{L_{2}\left(R^{n}\right)} .
\end{gathered}
$$

Lemma 4. For any $f \in H^{2}\left(R^{n}\right)$

$$
\begin{equation*}
\|L f\|_{L_{2}\left(R^{n}\right)} \leqq C\|f\|_{H^{2}\left(R^{n}\right)} \tag{16}
\end{equation*}
$$

Proof. Using (13) we obtain for any $f \in H^{2}\left(R^{n}\right)$

$$
\begin{gathered}
\|L f\|_{L_{2}\left(R^{n}\right)}=\|-\Delta f+q f\|_{L_{2}\left(R^{n}\right)} \leqq\|\Delta f\|_{L_{2}\left(R^{n}\right)}+\|q f\|_{L_{2}\left(R^{n}\right)} \leqq \\
\leqq C\left[\|f\|_{H^{2}\left(R^{n}\right)}+\|f\|_{L_{2}\left(R^{n}\right)}\right] \leqq C\|f\|_{H^{2}\left(R^{n}\right)} .
\end{gathered}
$$

Lemma 4 is proved.
Lemma 5. There exist constants $C_{1}>0$ and $C_{2}>0$ such that for every $f \in H^{2}\left(R^{n}\right)$

$$
\begin{equation*}
\|L f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq C_{1}\|f\|_{H^{2}\left(R^{n}\right)}^{2}-C_{2}\|f\|_{L_{2}\left(R^{n}\right)}^{2} . \tag{17}
\end{equation*}
$$

Proof. Using (14), applying the Cauchy-Bunyakovsky inequality, further taking into account the identity

$$
\|L f\|_{L_{2}\left(R^{n}\right)}^{2}=\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-2(q f, \Delta f)+\|q f\|_{L_{2}\left(R^{n}\right)}^{2}
$$

we obtain

$$
|(q f, \Delta f)| \leqq\|q f\|_{L_{2}\left(R^{n}\right)}\|\Delta f\|_{L_{2}\left(R^{n}\right)} \leqq \varepsilon\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2_{2}^{\prime}}+C(\varepsilon)\|q f\|_{L_{2}\left(R^{n}\right)}^{2}
$$

and

$$
\begin{gathered}
\|L f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-2|(q f, \Delta f)|+\|q f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq \\
\geqq\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-\varepsilon\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-C(\varepsilon)\|q f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq \\
\geqq(1-\varepsilon)\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-C(\varepsilon)\|q f\|_{L_{2}\left(R^{n}\right)}^{2} .
\end{gathered}
$$

Now applying (13) for some $\varepsilon_{1}>0$, it follows

$$
\|L f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq(1-\varepsilon)\|\Delta f\|_{L_{2}\left(R^{n}\right)}^{2}-\varepsilon_{1} C(\varepsilon)\|f\|_{H^{2}\left(R^{n}\right)}^{2}-C\left(\varepsilon, \varepsilon_{1}\right)\|f\|_{L_{2}\left(R^{n}\right)}^{2} .
$$

On the other hand

$$
\|\Delta f\|_{L_{2}\left(R^{n}\right)}=\|\Delta f-f+f\|_{L_{2}\left(R^{n}\right)} \geqq\|(\Delta-I) f\|_{L_{z}\left(R^{n}\right)}-\|f\|_{L_{2}\left(R^{n}\right)}
$$

consequently

$$
\|L f\|_{L_{2}\left(R^{n}\right)}^{2} \geqq\left(1-\varepsilon-\varepsilon_{1} C(\varepsilon)\right)\|f\|_{H^{2}\left(R^{n}\right)}^{2}-C\left(\varepsilon, \varepsilon_{1}\right)\|f\|_{L_{2}\left(R^{n}\right)}^{2}
$$

and hence (17) follows if we set $\varepsilon=1 / 2$ and ε_{1} is small enough. Lemma 5 is proved.

Lemma 6. There exists $\mu_{0}>0$ such that for any $\mu \geqq \mu_{0}$ and $f \in C_{0}^{\infty}\left(R^{n}\right)$ we have

$$
\begin{equation*}
\left\|L_{\mu} f\right\|_{L_{2}\left(R^{n}\right)} \geqq C_{\mu}\|f\|_{H^{n}\left(R^{n}\right)} \quad\left(L_{\mu}:=L+\mu I\right) \tag{18}
\end{equation*}
$$

The constant C_{μ} does not depend on f.
Proof. It follows from (17) using the spectral theorem that

$$
\begin{gathered}
\|f\|_{H^{2}\left(R^{n}\right)}^{2} \leqq C_{1}\|L f\|_{L_{2}\left(R^{n}\right)}^{2}+C_{2}\|f\|_{L_{2}\left(R^{n}\right)}^{2} \leqq \\
\leqq C \int_{-C_{0}}^{\infty}\left(\lambda^{2}+1\right) d\left(E_{\lambda} f, f\right) \leqq C \int_{-C_{0}}^{\infty}(\lambda+\mu)^{2} d\left(E_{\lambda} f, f\right)=C\left\|L_{\mu} f\right\|_{L_{2}\left(R^{n}\right)}^{2},
\end{gathered}
$$

if $\mu \geqq \mu_{0}$ and μ_{0} is large enough, because in this case we have $\lambda^{2}+1 \leqq(\lambda+\mu)^{2}$ ($\lambda \geqq-C_{0}, \mu \geqq \mu_{0}$). Lemma 6 is proved.

Lemma 7 [4, Lemma 6]. Let A and B be strongly positive selfadjoint operators in the Hilbert space H. Suppose that the conditions

$$
\begin{equation*}
D(B) \subset D(A) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\|A f\|_{H} \leqq C\|B f\|_{H} \quad(f \in D(B)) \tag{20}
\end{equation*}
$$

are fulfilled. Then for any $\theta \in[0,1]$ we have

$$
\begin{equation*}
\left\|A^{\theta} f\right\|_{H} \leqq C_{\theta}\left\|B^{\theta} f\right\|_{G} \quad(f \in D(B)) . \tag{21}
\end{equation*}
$$

Lemma 8. For any $\mu \geqq \mu_{0}, s \in\left[0, \frac{7}{2}-\tau\right)$ and $f \in H^{s}\left(R^{n}\right)$

$$
\begin{equation*}
\left\|L_{\mu}^{s / 2} f\right\|_{L_{2}\left(R^{n}\right)} \leqq C_{s}\|f\|_{H^{s}\left(R^{n}\right)} \tag{22}
\end{equation*}
$$

Proof. First we prove (22) for $0 \leqq s \leqq 2$. It is trivial for $s=0$ and it was proved in Lemma 4 for $s=2$. Now apply Lemma 7 for $A=L_{\mu}, B=I-\Delta, D(B)=H^{2}\left(R^{\prime \prime}\right)$. We obtain:

$$
\begin{equation*}
\left\|L_{\mu}^{\theta} f\right\|_{L_{2}\left(R^{n}\right)} \leqq C\|f\|_{H^{2 \theta}\left(R^{n}\right)} \quad(0 \leqq \theta \leqq 1) . \tag{23}
\end{equation*}
$$

Now let $2<s<\frac{7}{2}-\tau$. Using Lemma 1 we obtain for any $p_{0}<3 / \tau$ the estimate

$$
\begin{align*}
& \left\|L_{\mu} f\right\|_{L_{p_{0}}\left(R^{n}\right)} \leqq C\left[\|f\|_{L_{p_{0}}\left(R^{n}\right)}+\|f\|_{L_{p_{0}}^{2}\left(R^{n}\right)}+\|q f\|_{L_{p_{0}}\left(R^{n}\right)}\right] \leqq \tag{24}\\
& \leqq C\left[\|f\|_{L_{p_{0}}^{2}\left(R^{n}\right)}+\|f\|_{L_{p_{0}}^{\tau}\left(R^{n}\right)}\right] \leqq C\|f\|_{L_{p_{0}}^{2}\left(R^{n}\right)} .
\end{align*}
$$

On the other hand, using Lemma 1 once again, we obtain for any $p_{1}<3 /(\tau+1)$ and $f \in L_{p_{1}}^{3}\left(R^{n}\right)$ the estimate

$$
\begin{gather*}
\left\|\nabla L_{\mu} f\right\|_{L_{p_{1}}\left(R^{n}\right)} \leqq C\left[\|f\|_{L_{p_{1}}^{3}\left(R^{n}\right)}+\|(\nabla q) f\|_{L_{p_{1}}\left(R^{n}\right)}+\right. \tag{25}\\
\left.+\|q \nabla f\|_{L_{p_{1}}\left(R^{n}\right)}\right] \leqq C\left[\|f\|_{L_{p_{1}}^{3}\left(R^{n}\right)}+\|f\|_{L_{p_{1}}^{1+\tau}\left(R^{n}\right)}\right] \leqq C\|f\|_{L_{p_{1}}^{3}\left(R^{n}\right)} .
\end{gather*}
$$

Using (24), (25), the equality ($\left.L_{p_{0}}, L_{p_{1}}^{1}\right)_{\delta}=L_{p}^{\delta}\left(0<\delta<1, p^{-1}=(1-\delta) p_{0}^{-1}+\delta p_{1}^{-1}\right)$ of Triebel [6, 2.4.2/1] and taking into account that in our case $p<3 /(\tau+\delta)$, we obtain for any $\delta \in(0,1)$ and $f \in L_{p}^{2+\delta}\left(R^{n}\right)$ the estimate

$$
\begin{equation*}
\left\|L_{\mu} f\right\|_{L_{p}^{\delta}\left(R^{n}\right)} \leqq C\|f\|_{L_{p}^{2+\delta}\left(R^{n}\right)} . \tag{26}
\end{equation*}
$$

Now we are in the position to prove (22) for $2<s<\frac{7}{2}-\tau$. Set $\delta:=s-2$. Then $\delta<\frac{7}{2}-\tau-2<\frac{3}{2}$, further we obtain from (26) that for any $f \in H^{s}\left(R^{n}\right)$ we have $L_{\mu} f \in H^{\delta}\left(R^{n}\right)$. Using (23) and then (26) we obtain

$$
\left\|L_{\mu}^{s / 2} f\right\|_{L_{2}\left(R^{n}\right)}=\left\|L_{\mu}^{\delta / 2}\left(L_{\mu} f\right)\right\|_{L_{2}\left(R^{n}\right)} \leqq C\left\|L_{\mu} f\right\|_{L_{2}^{\delta}\left(R^{n}\right)} \leqq C\|f\|_{L_{2}^{2}+\left(R^{n}\right)}=C\|f\|_{H^{s}\left(R^{n}\right)} .
$$

Lemma 8 is proved.
Lemma 9. Suppose $0 \leqq s \leqq 2,0 \leqq \tau<3 / 2$ or $0 \leqq \tau<1 / 2$ and $0 \leqq s<\frac{7}{2}-\tau$. Then for any $\mu \geqq \mu_{0}$ and $g \in H^{s}\left(R^{n}\right)$ we have

$$
\begin{equation*}
\|g\|_{H^{s}\left(R^{n}\right)} \leqq C\left\|L_{\mu}^{s / 2} g\right\|_{L_{2}\left(R^{n}\right)} . \tag{27}
\end{equation*}
$$

Proof. (27) is trivial for $s=0$ and it was proved in Lemma 6 for $s=2$. Hence, using Lemma 7 for $B=L_{\mu}, A=I-\Delta, D(A)=H^{2}\left(R^{n}\right)$, we obtain

$$
\begin{equation*}
\|g\|_{H^{s}\left(R^{n}\right)} \leqq C\left\|L_{\mu}^{s / 2} g\right\|_{L_{2}\left(R^{n}\right)} \quad(0 \leqq s \leqq 2,0 \leqq \tau<7 / 2-\tau) . \tag{28}
\end{equation*}
$$

Now suppose $0 \leqq \tau<1 / 2$ and $2<s<\frac{7}{2}-\tau$. Let $\delta:=s-2$. For any $g \in C_{0}^{\infty}\left(R^{n}\right)$ we have obviously by (28)

$$
\begin{equation*}
\|g\|_{G^{s}\left(R^{n}\right)}=\|(I-\Delta) g\|_{H^{\delta}\left(R^{n}\right)} \leqq C\left\|L_{\mu}^{\delta / 2}(I-\Delta) g\right\|_{L_{2}\left(R^{n}\right)} \leqq \tag{29}
\end{equation*}
$$

$$
\begin{gathered}
\leqq C\left[\left\|L_{\mu}^{\delta / 2} g\right\|_{L_{2}\left(R^{n}\right)}+\left\|L_{\mu}^{\delta / 2}\left(L_{\mu}-q\right) g\right\|_{L_{2}\left(R^{n}\right)}\right] \leqq C\left[\left\|L_{\mu}^{-1}\left(L_{\mu}^{s / 2} g\right)\right\|_{L_{2}\left(R^{n}\right)}+\left\|L_{\mu}^{\delta / 2}(q g)\right\|_{L_{2}\left(R^{n}\right)}+\right. \\
\left.+\left\|L_{\mu}^{s / 2} g\right\|_{L_{2}\left(R^{n}\right)}\right] \leqq C\left[L_{\mu}^{s / 2} g\left\|_{L_{2}\left(R^{n}\right)}+\right\| L_{\mu}^{\delta / 2}(q g) \|_{L_{2}\left(R^{n}\right)}\right] .
\end{gathered}
$$

Now we estimate $\left\|L_{\mu}^{\delta / 2}(q g)\right\|_{L_{2}}$. We obtain from (3) and (5)

$$
\begin{equation*}
\|q g\|_{L_{2}\left(R^{n}\right)} \leqq C\|g\|_{H^{\tau}\left(R^{n}\right)} \quad(0 \leqq \tau<3 / 2) \tag{30}
\end{equation*}
$$

and
(31) $\|g q\|_{H^{1}\left(R^{n}\right)} \leqq\|q \nabla g\|_{L_{2}}+\|\nabla q g\|_{L_{2}}+\|g q\|_{L_{2}} \leqq C\|g\|_{H^{\tau+1}\left(R^{n}\right)} \quad(0 \leqq \tau<1 / 2)$.

We apply the interpolation theorem of Stein [13]. To this suppose δ is such that $\tau+\delta<3 / 2$ and choose $\varepsilon>0$ so that $\tau(\delta)=\tau$, where $\tau(z):=z(0,5-\varepsilon)+(1,5-\varepsilon)(1-z)$. Define the operators A_{z} and T_{z} as follows:

$$
A_{z} g:=|q(x)|^{\tau(z) / \tau}(\operatorname{sgn} q(x)) g(x), \quad T_{z} g:=(I-\Delta)^{z / 2} A_{z} g .
$$

From (30) and (31) we obtain for any $g \in C_{0}^{\infty}\left(R^{n}\right)$:
and

$$
\left\|T_{z} g\right\|_{L_{2}\left(R^{n}\right)}=\left\|A_{z} g\right\|_{L_{2}\left(R^{n}\right)} \leqq C\|g\|_{\left.H^{3 / 2-c_{(}} R^{n}\right)} \quad(\operatorname{Re} z=0)
$$

$$
\left\|T_{z} g\right\|_{L_{2}\left(R^{n}\right)} \leqq\left\|A_{z} g\right\|_{\mathbb{H}^{1}\left(R^{n}\right)} \leqq C\|g\|_{H^{3 / 2-\varepsilon}\left(R^{n}\right)} \quad(\operatorname{Re} z=1)
$$

hence by Stein's interpolation theorem [13] we get for $z=\delta$:

$$
\left\|T_{\delta} g\right\|_{L_{2}} \leqq C\|g\|_{H^{3 / 2-\varepsilon}}, \quad\left\|A_{\delta} g\right\|_{L_{2}} \leqq C\|g\|_{H^{3 / 2-\varepsilon}}
$$

i.e. using also (14) we obtain

$$
\|q g\|_{H^{\delta}\left(R^{n}\right)} \leqq \varepsilon\|g\|_{H^{2}\left(R^{n}\right)}+C(\varepsilon)\|g\|_{L_{2}\left(R^{n}\right)}
$$

Hence and from (29) the desired estimate (27) follows. Lemma 9 is proved.
Proof of the Theorem. Using (22) and (27) we obtain for $f \in H^{s}\left(R^{n}\right)$:

$$
\begin{gathered}
\left\|f-E_{\lambda} f\right\|_{H^{s}}=\left\|L_{\mu}^{-s / 2} L_{\mu}^{s / 2}\left(I-E_{\lambda}\right) f\right\|_{H^{s}} \leqq \\
\leqq C\left\|L_{\mu}^{s / 2}\left(I-E_{\lambda}\right) f\right\|_{L_{2}}=C\left\|\left(I-E_{\lambda}\right)\left(L_{\mu}^{s / 2} f\right)\right\|_{L_{2}} \rightarrow 0 \quad(\lambda \rightarrow \infty) .
\end{gathered}
$$

The Theorem is proved.
Remark. If the S_{k} 's are subspaces, then we can state the Theorem for any $\tau \in[0,3 / 2)$ and $s \in\left[0, \frac{7}{2}-\tau\right)$ because in this case we can prove Lemma 9 in a more general form. This follows from the following fact: if $g(z) \in C_{0}^{\infty}\left(R^{k} \backslash\{0\}\right)$ is a function for which $\left|D^{\alpha} g(z)\right| \leqq C|z|^{-\tau-|\alpha|}(z \neq 0)$ holds, then $g \in H^{s}\left(R^{n}\right)$ for any $s<\frac{k}{2}-$ $-\tau=: \delta$. For the proof of this fact it is enough to show that $g \in H_{1}^{k-\tau}\left(R^{k}\right)$ (here H denotes the Nikol'skiir's class of functions), because taking into account the well known imbeddings $H_{1}^{k-\tau} \subset H_{2}^{\delta} \subset B_{2,2}^{\delta-\varepsilon} \subset L_{2}^{\delta-\varepsilon}$ our statement follows. We use here the notations of [14]. For the proof we must show the estimate

$$
I:=\omega_{2}^{(2)}\left(D^{\alpha} g, t\right):=\sup _{|h| \leq t} \int_{\Omega}\left|\Delta_{h}^{2} D^{\alpha} g\right| d z=O\left(t^{s-|\alpha|}\right) \quad(\operatorname{supp} g \subset \Omega)
$$

The desired estimate follows immediately for $|z|<2 h$ and $|z| \geqq 2 h$, resp. from the following estimates:

$$
\begin{gathered}
\sup _{|h| \leqq t} \int_{\Omega^{\prime}}\left|D_{h}^{2} D^{z} g(z)\right| d z \leqq 4 \sup _{|h| \leqq t} \int_{\Omega^{\prime}}\left|D^{\alpha} g(z)\right| d z \leqq \\
\leqq C \sup _{|h| \leqq t} \int_{0}^{2|h|}|z|^{-\tau-|\alpha|+k-1} d z=\sup _{|h| \leqq t} O\left(|h|^{k-t-|x|}\right)= \\
=O\left(t^{s-|\alpha|}\right), \quad \Omega^{\prime}:=\{z \in \Omega:|z|<2|h|\} ; \\
\left|\Delta_{h}^{2} D^{\alpha} g\right|=\left|\sum_{i, j=1}^{k} \frac{\partial^{2}}{\partial z_{i} \partial z_{j}}\left(D^{\alpha} g\right)\left(z^{*}\right) h_{i} h_{j}\right| \leqq \\
\leqq C \sum_{|\beta|=2}\left(D^{\alpha+\beta} g\right)\left(z^{*}\right)|h|^{2}, \quad z^{*} \in[z-h, z+h],
\end{gathered}
$$

hence

$$
\begin{gathered}
I \leqq \sup _{|h| \leqq t}|h|^{2} \sum_{|\beta|=2} \int_{\Omega^{\prime \prime}}\left|D^{\alpha+\beta} g\right| d z+O\left(t^{s-|\alpha|}\right) \leqq \\
\leqq \sup _{|h| \leqq t} \int_{2|h|}^{A}|z|^{-z-|\alpha|-2+k-1} d z+O\left(t^{s-|\alpha|}\right)=O\left(t^{s-|\alpha|}\right), \quad \Omega^{\prime \prime}:=\{z \in \Omega ;|z| \geqq 2|h|\} .
\end{gathered}
$$

References

[1] G. Alexits, Convergence problems of orthogonal series (Budapest, 1960).
[2] V. A. Il'in, On convergence of expansions in eigenfunctions of the Laplace operator, Uspehi Mat. Nauk, 13 (1958), 87-180.
[3] F. Riesz et B. Sz.-Nagy, Leçons d'Analyse Fonctionelle, Akadémiai Kiadó (Budapest, 1952).
[4] S. A. Alimov, I. Joo, On the convergence of eigenfunction expansions in H^{s}-norm, Acta Sci. Math. (Szeged), 48 (1985), 5-12.
[5] S. A. Alimov, M. Barnowska, On eigenfunction expansions connected with the Schrödinger operator, Slovak Math. Journal (to appear).
[6] H. Triebel, Interpolation theory - function spaces - differential operators, VEB Deutscher Verl. d. Wissenschaften (Berlin, 1978).
[7] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Oxford, Clarendon Press (1958).
[8] A. R. Halmuhamedov, The conditions of convergence and localization of spectral expansions, Dissertation (Moscow, 1983).
[9] V. A. Il'in, Localization and convergence problems for Fourier series in fundamental function systems of Laplace's operator, Uspehi Mat. Nauk, 23 (1968), 61-120.
[10] S. A. Alimov, Fractional powers of elliptic operators and isomorphism of classes of differentiable functions, Differencial'nye Uravnenija, 8 (1972), 1609-1626.
[11] M. Reed, B. Simon, Methods of modern mathematical physics II, Fourier analysis, self-adjointness, Academic Press (New York, 1975).
[12] M. Reed, B. Simon, Methods of modern mathematical physics IV, Analysis of operators, Academic Press (New York, 1973).
[13] A. Zygmund, Trigonometric series, I-II, Cambridge University Press (1959).
[14] S. M. Nikol'skiř, Approximation of functions of several variables and imbedding theorems, Nauka (Moscow, 1969), English transl., Springer-Verlag (Berlin and New York, 1974).
[15] L. L. Stachó, Zeros of Schrödinger eigenfunctions at potential singularities, Acta Math. Hung., 44 (1984), 407-408.
(Received February 2, 1984)

```
LORÁND EÖTVÖS UNIVERSITY
MATHEMATICAL INSTITUTE
DEPARTMENT OF ANALYSIS
1088 BUDAPEST, MÜZEUM KRT. 6-8.
```

