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NOTE ON MY PAPER «A SIMPLE PROOF FOR
VON NEUMANN’S MINIMAX THEOREM™

1. JOO (Budapest)

At present the proofs for the minimax principles avoiding Brower’s fixed point
theorem are essentially of two types. One method is based on the application of some
separating theorems (cf. Parthasaraty [9] and Balakrishnan {10]). Recently a dif-
ferent treatment was developed in [2]—[7] which can be called the method of level
sets, and which turns out to be more farreaching in several aspects than the previ-
ous one (as it is pointedout in the work of L. L. Staché [5]).

The question naturally arises: what is the deeper connection between the two
approaches?

One of the aims of this paper is to point out how the finite intersection property
of the level sets follows from the Hahn—Banach theorem. Theorem 1 below is essen-
tially a consequence of [5, Proposition 3] because convex (resp. concave) functions
are automatically continuous in the interior of a straight line segment in a vec-
tor space. However our proof is more direct and bypasses the technical difficulty
arising from the [5, Proposition 3} should be applied to (X\ext X)X (¥ \ext ¥)
instead of X' X ¥ immediately.

1. Let E and F be arbitrary vector spaces, and let XcE and Y CF be arbitrary
convex sets. Let f(x, y) be a real function on XX ¥ which is concave in x for any fixed
»€Y and convex in y for any fixed x€X. Denote HO={x€X: f(x, y)=c}(y€Y)
and % the set of real numbers ¢ for which H{ ® whenever y€Y. Denote
c*=sup .

THEOREM 1. For any c<c* the system of sets {H?,y€Y} has the finite inter-
section property.

PROOF First we show that for any y,, y,€Y and c<c* we have H{O NHO =
#0 If ¢*= —eo then the statement of Theorem 1 is trivial, hence we may assume
¢*>~—co. Suppose HONHO=0 for some y;,y,€Y and c<c*. Then there

exists 1€[0, 1] such that HO={x: f(x,y)=c} for y,Zipy+(1— A)yz Indeed,
suppose the contrary, i.e. for every A€[0, 1] there exists x€X with fGx,p)=c.
Then, because of the convexity of fin y we have: for every A€[0, 1] there exists x¢X
such that

M(x, y)+ A=) f(x, y) = ¢
ie.

((f(xs yl)-c’ f(xa yz)—c), (}-, 1—1)) = 0.
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Then, according to a classical separating theorem for disjoint convex sets in R? we
obtain: there exist xj, Xy, ..., X,€X and Ay, 4y, ..., L,€R, with ZA;=1 such that

._ZLAi(f(xi, yo—c) =0, ._,Z;.)"i(f(xia y)—¢) = 0.
Since f is concave in x we obtain

SO,y =, flx,y)=c (xli_e—f Z;Lixi)'

This means that HONH© >0 which contradicts our indirect assumption. So we
have proved the existence of y,€Y with the property H{O={x€X: f(x,y;)=c}.
Hence c=c¢* follows and this contradicts c<c*. We proved that HONHE =9

if yi, €Y and c<c*. Suppose N HP =0 if n=N, y€Y and c<c* Let
i=1

N+1
V1> Vas s Py41€Y and c<c* be arbitrary. We prove that (1] HO =0, We

know that ¥ ') H®0 and the set X is convex. We can repeat the proof
~ 1 - e o~ o~

above for f=flgxy and HO=HONX, AO =H X, and Theorem 1 follows

by induction on N.

THEOREM 2. Let X, Y be arbitrary sets and let 1 XXY—~R be an arbitrary
Sfunction. Then

def

(B d—g) sup inf f(x, y) = inf sup f(x, yM= J)
xcX yey yEYxeX
if and only if for every c<c* (H (“)d=ef) QY H 0. In this case B=J=c*.
¥y

ProoF. It is easy to see that B=J=c*. Indeed B=J/ is trivial. If ¢>c* then
there exists y€¥ such that f(x, y)<c for every x€X, ie. J=c. This proves the
inequality J=c*. Now let c¢<c* and x,£H©. Then f(x., y)=c for every y€Y,
ie. B=c. Hence B=J=c* f{ollows.

Now suppose B=J. Let c¢<c¢* and >0 such that c¢+e<c*. This means
that for every y€Y there exists x€X such that f(x,y)=c+e, Le. J=c+e. This
means (using B=J) that there exists x€X such that f(x, y)=c forevery yeY, ie.
N H #0.
yey

REMARK. It is easy to see that for an arbitrary function f we have J=c* J=c*
is proved above. Now we prove J=c*, Let c<c* Then for every y€¥ there exists
x€X such that f(x, y)=c, hence J=¢ and the desired inequality J=>c* follows.

From Theorems 1 and 2 we obtain immediately

THEOREM 3. Suppose the conditions of Theorem 1 are fulfilled and E is a topologi-
cal vector space, XCE is a compact subset, further f(x, y) is upper semi continuous in
x for every fixed y€Y. Then we have

inf max f(x, y) = sup inf f(x, »).
yeyY xeX X€X yeY
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