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NOTE ON MY PAPER "A SIMPLE PROOF FOR 
VON NEUMANN'S MINIMAX THEOREM" 

I. J O O  ( B u d a p e s t )  

At present the proofs for the minimax principles avoiding Brower's fixed point 
theorem are essentially of two types. One method is based on the application of some 
separating theorems (cf. Parthasaraty [9] and Balakrishnan [10]). Recently a dif- 
ferent treatment was developed in [2]--[7] which can be called the method of level 
sets, and which turns out to be more farreaching in several aspects than the previ- 
ous one (as it is pointedout in the work of L. L. Stach6 [5]). 

The question naturally arises: what is the deeper connection between the two 
approaches ? 

One of the aims of this paper is to point out how the finite intersection property 
of the level sets follows from the Hahn--Banach theorem. Theorem 1 below is essen- 
tially a consequence of [5, Proposition 3] because convex (resp. concave) functions 
are automatically continuous in the interior of a straight line segment in a vec- 
tor space. However our proof is more direct and bypasses the technical difficulty 
arising from the [5, Proposition 3] should be applied to ( X \ e x t  X)• Y) 
instead of X •  Y immediately. 

1. Let E and F be arbitrary vector spaces, and let X c E  and Y c F  be arbitrary 
convex sets. Letf(x, y) be a real function on X •  Y which is concave in x for any fixed 
yEY and convex in y for any fixed xEX. Denote H(v~={xEX: f(x,y)>=c}(yEY) 
and %' the set of real numbers c for which H (~) r  whenever yE Y. Denote 
c* = sup cd. 

THEOREM 1. For any c<c* the system oJ sets {Hy (~), yE Y} has the finite inter- 
section property. 

Pgoov. First we show that for any yl ,  y~EY and c<c* we have H(y~)AH(y~)r 
O. If  c* = - ~ then the statement of Theorem 1 is trivial, hence we may assume 

c * > - ~ , .  Suppose H(y~)AH(y~=f) for some yl,y~EY and c<c*. Then there 
def .  . .  

exists 2E[0,1] such that H(r~)={x:f(x,y)=c} for yx=zy~+(l-2)y~. Indeed, 
suppose the contrary, i.e. for every 2E[0, 1] there exists xEX with f(x,y~)>c. 
Then, because of the convexity of f i n  y we have: for every 2E[0, 1] there exists xEX 
such that 

2f(x, yl)+(1-J.)f(x, Y2) > c 
i.e. 

((f(x, Yl)  - -  C, f ( x ,  y~) --  C), ()~, 1 - -  ) .))  > O. 
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Then, according to a classical separating theorem for disjoint convex sets in R z we 
obtain: there exist Xl, x=, ..., x,  EX and 21, 2~, ..., 2,ER+ with ~2i=1 such that 

2, (f(x, ,  Yl)--c) =>- O, Z 2i (f(x~, Y2) --c) >0.= 
i=1  i= l  

Since f is concave in x we obtain 

f (xa,  Yl) >-- c, f(x;., y=) >= c (x~ d~f Z2,x,) .  

This means that --ylH(c) (~ H({ )~ # 0 which contradicts our indirect assumption. So we 
have proved the existence of y;.EY with the property H(:a)={xEX: f (x ,y~)=,} .  

( c )  ( c )  . Hence c>=c * follows and this contradicts c<c*. We proved that Hyl (~Hy~ #~  

if yl ,Y2EY and c<c*. Suppose (~Hy(~)#0 if n=<N, YiEY and c<c*. Let 
i = l  

N + I  

Yl,Y2, ...,YN+IEY and c<c* be arbitrary. We prove that (~ H(y~)#O. We 
1 

know that ~d~f N-z N H~, ~) # 0 and the set )~ is convex. We can repeat the proof 
1 

above for f= f l xxv  and nr /Ty(~,)+ = H ~ +  N)7, and Theorem 1 follows -~YN ~*YN l 
by induction on N. 

THEOREM 2. Let X, Y be arbitrary sets and let f:  X X  Y-~R be an arbitrary 
function. Then 

(B ~ ) s u p  inf f (x ,  y) = inf sup f (x ,  y ) ( ~  J) 
xCX yEY y ~ Y x E X  

i f  and only i f  for every c<c* (H(C)~) (~ H(y:)#O. In this case B=d=c*.  
y EY  

PROOF. It is easy to see that B<=d<=c *. Indeed B<=J is trivial. If  c>c* then 
there exists yEY  such that f ( x , y ) < c  for every xEX, i.e. J<-c. This proves the 
inequality d<=c *. Now let c<c* and x~EH (c). Then f(x~,y)>=c for every yEY, 
i.e. B>-c. Hence B=d=c* follows. 

Now suppose B=J.  Let c<c* and e>0  such that c+~<c*.  This means 
that for every yEY  there exists xEX such that f(x,y)>-_c+8, i.e. d>-c+e. This 
means (using B=J)  that there exists xEX such that f (x ,  y)>-_c for every yE Y, i.e. 

yEu  

REMARK. It is easy to see that for an arbitrary function f w e  have d=c*. d<=c* 
is proved above. Now we prove J>-c*. Let c<c*. Then for every yE Y there exists 
xEX such that f(x,y)>=c, hence J>=c and the desired inequality J>c* follows. 

From Theorems 1 and 2 we obtain immediately 

THEOREM 3. Suppose the conditions of  Theorem 1 are fulfilled and E is a topologi- 
cal vector space, X c E  is a compact subset, further f (x ,  y) is upper semi continuous in 
x for every fixed yE Y. Then we have 

inf max f ( x ,  y) = sup inf f (x ,  y). 
YEY x E X  x E X  y ~ Y  
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