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Bicircular projections on some Banach spaces
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Abstract

In this paper we show that the bicircular projections are precisely the Hermitian projections and prove
some immediate consequences of this result.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, Stacho and Zalar [13] introduced a new class of operators for Banach spaces called
bicircular projections. They proved some nice results for these projections on the Banach spaces
B(H), S(H), and A(H). These spaces consist, respectively, of all bounded operators, all bounded
symmetric, and all bounded antisymmetric linear operators on a complex Hilbert space H . In
a later paper [14], they gave an isomorphic characterization of Hilbert space using bicircular
projections on JB∗ triples. In [13], it was remarked that a natural problem is to describe the
bicircular projections of a given Banach space, cf. the reviews of both articles [13] and [14].
Our aim in this note is to address this question by showing the relationship between bicircular
projections and norm hermitian projections. This relationship leads to results in Banach spaces
which do not have the algebraic structure required in [13]. Let X be a Banach space over C and
P a bounded linear projection on X and P its complementary projection . The projection P is
called a bicircular projection provided eiαP + eiβP is an isometry for all real values of α and β.
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As observed in [13], this condition is equivalent to the requirement that P + eiθP is an isometry
for every real value of θ . This fact is extremely important in our study of these projections.

2. Bicircular projections on certain ideals of operators

We begin by recalling the definition of a Hermitian operator on a complex Banach space. There
are several equivalent definitions of Hermitian operators, cf. [5, p. 109], but the following is most
useful form for this study.

Definition 2.1. Let X be a complex Banach space and T ∈ B(X). The operator T is said to be
Hermitian if eiθT is an isometry for every θ ∈ R.

Definition 2.2. Let X be a complex Banach space and P be a projection. P is a bicircular pro-
jection if eiαP + eiβ(I − P) is an isometry for all real values of α and β.

From the fact that P − (I − P) is an isometry, it follows immediately that every bicircu-
lar projection P is bounded. The following lemma clarifies the relationship between Hermitian
projections and bicircular projections.

Lemma 2.1. A projection on a complex Banach space is a bicircular projection if and only if it
is a Hermitian projection.

Proof. Let P be a projection on X. Then

eiθP =
∞∑

n=0

(iθP )n

n! = eiθ (P + e−iθ (I − P)),

P is bicircular if and only if for any x ∈ X we have

‖eiθP x‖ = ‖eiθ (P + e−iθP )x‖ = ‖x‖
or equivalently P is a Hermitian projection. �

We now give some results which follow immediately from the proceeding lemma. We first recall
some terminology and background on ideals of operators, see [12]. Let H be a complex separable
infinite-dimensional Hilbert space, and B(H) be the bounded operators on H. A symmetric norm
ideal (J, ν) consists of a proper two sided ideal J in B(H) together with a norm ν on J which
satisfies the conditions

• ν(A) = ‖A‖for rank 1 operators and
• ν(UAV ) = ν(A) for every A ∈ J and every pair of unitary operators U and V.

It is also assumed that the set of finite rank operators is dense in J. The canonical example
of such an ideal J is the Schatten class Cp(H). Sourour in [12] proved the following theorem
concerning Hermitian operators on such ideals of operators. It extends an earlier result in [6].

Theorem 2.1. Let (J, ν) be a minimal norm ideal in B(H) other than C2, and let τ be a linear
transformation on J. Then τ is a bounded Hermitian operator if and only if there are bounded
self-adjoint operators A and B on H such that τ(T ) = AT + TB, for every T ∈ J.
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From this result Sourour observes the following.

Corollary 2.1. Let τ be a bounded operator on J. Then τ and τ 2 are Hermitian if and only if τ

is either a left multiplication or a right multiplication by a self-adjoint operator on H.

The following corollary is immediate and is similar in flavor to Theorem 2.2 of [13].

Corollary 2.2. Let P be a bicircular projection on J. Then there is orthogonal projection Q on
H such that P(T ) = QT or P(T ) = TQ for every T ∈ J.

3. Bicircular projections on some other Banach spaces

We have observed that every bicircular projection on a complex Banach space must be Her-
mitian. As a consequence, on Lp(μ) 1 � p < ∞, p /= 2, and more generally reflexive Orlicz
spaces Lφ(μ) the only bicircular projections are multiplications by characteristic functions of
measurable sets see [10]. If � is a compact Hausdorff space with a closed and open subset set
G, then multiplication by χG is a Hermitian projection (hence bicircular projection). The space
C[0, 1] admits only trivial bicircular projections because the Hermitian operators on C[0, 1] are
multiplications by real valued continuous functions.

Some important Banach spaces admit only trivial Hermitian operators (real multiples of the
identity). For example, each of the following spaces: Bergman spaces L

p
a (�)p /= 2, Hardy spaces

Hp(�) (p /= 2), AC[0, 1], C1[0, 1], Lip([0, 1]) admit only trivial Hermitian operators and con-
sequently possess only trivial bicircular projections, cf. [3,2,8]. There are properties which an
abstract Banach space may have that imply existence of only trivial bicircular projections. For
example, Doust and Ricker [7] say a Banach space X has property P if every projection P /= I

with dimension of the range greater than 1 satisfies ‖P ‖ > 1. Since ‖P ‖ � 1 for every bicircular
projection P , the next result is immediate.

Corollary 3.1. Banach spaces with property P admit only 0, I as a bicircular projections.

There are Banach spaces which admit nontrivial bicircular projections. The Dirichlet space
Dp(�) is the Banach space of functions holomorphic in the disk � for which f ′ ∈ Lp(�, dA)

with dA denoting normalized area measure. The norm is given by

‖f ‖ =
(

|f (0)|p +
∫

�
|f ′(z)|p dA

)1/p

.

The space Sp(�) is the space of functions holomorphic in the disk with derivative belong to the
Hardy space Hp(�). The norm is given by

‖f ‖ = (|f (0)|p + ‖f ′‖p)1/p.

In [8] the authors prove the following.

Theorem 3.1. Let A be Hermitian operator onSp(�) orDp(�). Then there exists real constants
a and b such that

Af (z) = af (0) + bf (z)

for every f in the space.
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Corollary 3.2. Let P be a bicircular projection (different from 0 or I ) on Sp(�) or Dp(�). Then
P is of the following form:

• Pf (z) = f (0) or
• Pf (z) = f (z) − f (0).

Banach spaces with certain types of Schauder bases also admit nontrivial bicircular projections.
Let E be a Banach space of sequences x = (x(k))∞k=1 so that the standard unit vectors {en}∞n=1
defined by en(k) = δn,k is a Schauder basis of E. This sequence is said to be a 1-symmetric basis
of E provided that every operator of the form

V x = (λ(k)x(π(k)))∞k=1

is an isometry of E whenever the scalars λ(k) all have modulus one and π is a permutation of the
positive integers. Arazy [1] has proven the following

Theorem 3.2. Let E be a complex sequence space different from l2. Then a bounded operator T

on E is Hermitian if and only T = Ma with a = (a(k))∞k=1 a bounded sequence of real numbers,
where

Max = ax = (a(k)x(k))∞k=1.

It now follows immediately that

Corollary 3.3. Every bicircular projection on a complex symmetric sequence space E is a pro-
jection onto a subspace spanned by a subset of the canonical basis elements en’s.

For vector valued function spaces, many results concerning Hermitian operators are known. It
is easy to determine the Hermitian projections in these cases. For example, from Theorem 4.2 in
[11] we have the following corollary.

Corollary 3.4. An operator P is a bicircular projection on the Bochner space Lp(�, X) for
1 � p < ∞, p /= 2 if and only if there is strongly measurable map Q : � → Pr(X), the bounded
Hermitian projections on X such that (Pf )(x) = Q(x)f (x) for every f ∈ Lp(�, X).

We end this note with an observation related to the characterization of Hilbert spaces using
bicircular projections in [14]. An element x of a complex Banach space X is said to be Hermitian
[9] if there is an Hermitian (≡ bicircular) projection Px whose range is the span of x. Let h(X)

denote the set of Hermitian (≡ bicircular) elements of X. Results in [4] or Corollary 4.4 in [9]
implies that X is a Hilbert space if and only if h(X) = X.
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