Proc. Indian Acad. Sci. (Math. Sci.) Vol. 119, No. 5, November 2009, pp. 635–645. © Printed in India

On linear isometries of Banach lattices in $\mathcal{C}_0(\Omega)$ -spaces

JOSÉ M ISIDRO

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidade de Santiago de Compostela, Spain E-mail: jm.isidro@usc.es

MS received 22 November 2008; revised 19 January 2009

Abstract. Consider the space $C_0(\Omega)$ endowed with a Banach lattice-norm $\|\cdot\|$ that is not assumed to be the usual spectral norm $\|\cdot\|_{\infty}$ of the supremum over Ω . A recent extension of the classical Banach-Stone theorem establishes that each surjective linear isometry U of the Banach lattice $(C_0(\Omega), \|\cdot\|)$ induces a partition Π of Ω into a family of finite subsets $S \subset \Omega$ along with a bijection $T: \Pi \to \Pi$ which preserves cardinality, and a family $[\mathbf{u}(S): S \in \Pi]$ of surjective linear maps $\mathbf{u}(S): C(T(S)) \to C(S)$ of the finite-dimensional C*-algebras C(S) such that

$$(Uf)|_{T(S)} = \mathbf{u}(S)(f|_S) \quad \forall f \in \mathcal{C}_0(\Omega) \quad \forall S \in \Pi.$$

Here we endow the space Π of finite sets $S \subset \Omega$ with a topology for which the bijection T and the map **u** are continuous, thus completing the analogy with the classical result.

Keywords. Banach lattices; Banach-Stone theorem; linear isometries.

1. Introduction and preliminaries

In a recent article [3], the author has studied the Banach lattice $E := (C_0(\Omega), \|\cdot\|)$, where Ω is a locally compact Hausdorff topological space and $C_0(\Omega)$ stands for the space of all continous complex valued functions $f: \Omega \to \mathbb{C}$ that vanish at infinity, endowed with a Banach lattice norm $\|\cdot\|$ that is not assumed to be the usual spectral norm $\|\cdot\|_{\infty}$ of the supremum over Ω . It is proven that each $\|\cdot\|$ -Hermitian operator A on $C_0(\Omega)$ gives rise to a uniquely determined partition Π of the set Ω into pairwise disjoints subsets $S \subset \Omega$ such that

$$(Af)|_{S} = \mathbf{a}(S)(f|_{S}), \qquad \forall f \in \mathcal{C}_{0}(\Omega) \qquad \forall S \in \Pi$$
(1)

holds with a uniquely determined family of linear maps $\mathbf{a}^A(S)$: $\mathcal{C}(S) \to \mathcal{C}(S), S \in \Pi$. There is also a uniquely determined family $\langle \cdot, \cdot \rangle_S$ of inner products on the finite-dimensional function spaces $\mathcal{C}(S), S \in \Pi$, such that

$$\{f|_{S} \colon ||f|| \le 1\} = \{\phi \in \mathcal{C}(S) \colon \langle \phi | \phi \rangle_{S} \le 1\}.$$
(2)

It is also proved that, for each surjective linear $\|\cdot\|$ -isometry $U: \mathcal{C}_0(\Omega) \to \mathcal{C}_0(\Omega)$, there is a uniquely determined bijection $T: \Pi \to \Pi$ along with a family $[\mathbf{u}(S): S \in \Pi]$ of surjective linear $\langle \cdot, \cdot \rangle_S$ -unitary operators $\mathbf{u}(S): \mathcal{C}(T(S)) \to \mathcal{C}(S)$ such that the sets *S* and *T*(*S*) have the same cardinalities and

$$(Uf)|_{S} = \mathbf{u}(S)(f|_{T(S)}) \qquad \forall f \in \mathcal{C}_{0}(\Omega) \qquad \forall S \in \Pi.$$
(3)

In the classical case (when the lattice norm $\|\cdot\|$ coincides with the spectral norm $\|\cdot\|_{\infty}$), each element $S \in \Pi$ is a singleton $S = \{\omega\}$ for some $\omega \in \Omega$, the family \mathbf{a}^A can be identified with a continuous real-valued function $\mathbf{a}: \Omega \to \mathbb{R}$, the inner products $\langle \cdot, \cdot \rangle_{\omega}$ are all equal to the usual inner product in \mathbb{C} , the family $\mathbf{u}(S)$ of unitary operators is identified with a continuous function $u: \Omega \to \mathbb{C}, |u(\omega)| = 1$, and the permutation $T: \Pi \to \Pi$ actually is a *homeomorphism* of Ω .

The aim of this note is to make a study of the topological properties of the bijection Tand of the other elements **a** and **u** that appear in the above situation. To be more precise, we endow the carrier space (the space whose points are the subsets $S \in \Pi$) with a natural topology that makes T into a homeomorphism. However, one can not expect this task to be a straightforward generalization of the classical situation. Indeed, some of the objects involved in our considerations (the points in Π) now are *finite subsets* of Ω rather than *points* (subsets of one single element) in Ω . We also deal with functions $T: S \in \Pi \to T(S) \in \Pi$ for which both the variable S and the values T(S) are finite subsets in Ω . A relevant fact here is that a finite set $S = \{\omega_1, \ldots, \omega_k\} \in \Pi$ and all sets S' obtained by permuting its elements are the same point in Π , and hence we must have T(S) = T(S'), which poses a real difficulty concerning the continuity of T since the action of T on those singletons $S = \{\omega\}$ that lie in Π has to be continuous. In particular, we have to consider topologies σ in the space of finite subsets of Ω and an *appropriate* notion of continuity. One candidate for σ is the classical Hausdorff extension of the topology τ in Ω to a topology σ in the space \mathcal{K} of all compact subsets $K \subset \Omega$. Since the elements of Π are finite (hence compact) sets, we can endow Π with the topology induced on it by σ . However, it is known that then the cardinality function #: $\Pi \to \mathbb{N}$ given by $S \mapsto \#(S)$, though upper semicontinous, in general, is not continuous. To overcome this trouble, we consider Π as the disjoint union

$$\Pi = \bigcup_{n} \Omega_{n}, \qquad \Omega_{n} := \{ S \in \Pi : \#S = n \}$$

where each Ω_n is equipped with the topology induced by σ and Π is considered as the disjoint topological direct sum of the Ω_n , a topology that we denote by κ . In this way, the Ω_n are open and closed subsets in (Π, κ) and, in order to study the continuity of a function $f: \Pi \to X$, where X is a topological space, we only need to analyse its restriction to the Ω_n . The fact that a net (S_i) in Ω_n with $S_i = \{\omega_i^1, \ldots, \omega_i^n\}$, $(i \in I)$, converges to $S_0 = \{\eta^1, \ldots, \eta^n\} \in \Omega_n$ relative to κ only provides us with the following information on the components: There is a subnet $(S_j), (J \subset I)$, along with a reordering of $S_0 = \{\eta^1, \ldots, \eta^n\}$ (that is, a permutation π of the indices $\{1, \ldots, n\}$) such that $\lim_{j \in J} \omega_j^k = \eta^{\pi(k)}$ holds in Ω for $1 \le k \le n$. Thus, we have had to weaken the notion of continuity, though, of course, the new notion agrees with the classical one when restricted to singletons $S = \{\omega\} \in \Pi$. For details, see §§2, 3 and 4 below.

In what follows $C_0(\Omega)$ is endowed with a complete complex *lattice norm*, denoted by $\|\cdot\|$, whose open unit ball is

$$D := \{ f \in \mathcal{C}_0(\Omega) : \| f \| < 1 \}.$$

Notice that we *do not* assume that $\|\cdot\|$ coincides with $\|\cdot\|_{\infty}$. We let $\mathfrak{M}(\Omega) := (\mathfrak{M}(\Omega), \|\cdot\|^*)$ be the toplogical dual of $\mathcal{C}_0(\Omega)$, that is, the space of all Radon measures on Ω , endowed with the corresponding dual norm $\|\cdot\|^*$, whose open unit ball is

$$D^* = \{ \mu \in \mathfrak{M}(\Omega) : \|\mu\|^* < 1 \}.$$

Notice that, in general $\|\cdot\|^*$ does not coincide with the usual norm of total variation on Ω . We recall that both $C_0(\Omega)$ and $\mathfrak{M}(\Omega)$ are Banach lattices when endowed with their respective usual order.

2. Preliminaries on the space of measures $\mathfrak{M}_{\Pi}(\Omega)$

Denote by $\mathfrak{M}_{\Pi}(\Omega) := \{\mu \in \mathfrak{M}(\Omega): \sup \mu \in \Pi\}$ the set of the Radon measures on Ω whose support $S := \sup \mu$ is an element of the partition Π of Ω . Remark that $\mathfrak{M}_{\Pi}(\Omega)$ is not a vector subspace of $\mathfrak{M}(\Omega)$ and that whenever μ and ν are measures in $\mathfrak{M}_{\Pi}(\Omega)$ with $\mu \neq \nu$ we have $\sup \mu \cap \sup \nu = \emptyset$. Define an equivalence on $\mathfrak{M}_{\Pi}(\Omega)$ by setting $\mu \sim \nu$ if and only if $\sup \mu = \sup \nu$. Clearly we can identify the quotient set $\mathfrak{M}_{\Pi}(\Omega)/\sim$ and the partition Π by the map $\sup p : \mathfrak{M}_{\Pi}(\Omega)/\sim \Leftrightarrow \Pi$ taking each class of measures $[\mu]$ to their common support. If $S := \sup \mu$ for some $\mu \in \mathfrak{M}_{\Pi}(\Omega)$, then $S \subset \Omega$ is a finite subset $S = \{s_1, \ldots, s_r\}$ for certain pairwise distinct points $s_j \in \Omega$ and we have

$$[\mu] = \left\{ \sum_{k=1}^{r} \alpha_k \delta_{s_k} \colon \alpha_k \in \mathbb{C} \setminus \{0\}, \ 1 \le k \le r \right\},\$$

where δ_s denotes the Dirac measure at the point $s \in \Omega$ and none of the coefficients α_k can vanish in order to ensure supp $\mu = S$. Thus the class $[\mu]$ is not a vector space. Let $S \in \Pi$ be given and, instead of the condition supp $\nu = S$, consider the weaker one supp $\nu \subset S$; then the set

$$\mathfrak{N}(S,\Omega) := \{ \nu \in \mathfrak{M}(\Omega) \colon \operatorname{supp} \nu \subset S \}$$

is a vector subspace of $\mathfrak{M}(\Omega)$ that is linearly spanned by the elements in the class $[\mu]$, that is $\mathfrak{N}(S, \Omega) = \operatorname{span}[\mu]$. Notice, however, that $\mathfrak{N}(S, \Omega)$ fails to be contained in $\mathfrak{M}_{\Pi}(\Omega)$ since there are measures $\nu \in \mathfrak{N}(S, \Omega)$ whose support $S' := \operatorname{supp} \nu$ is a proper subset $S' \subset S$ and therefore $S' \notin \Pi$. According to the proof of Theorem 1.4 of [3], for every surjective linear isometry $U: C_0(\Omega) \to C_0(\Omega)$, the family of vector spaces

$$\mathfrak{N}(S,\Omega), \qquad S \in \Pi \tag{4}$$

is invariant under the operator U^* . Therefore, U^* takes each $\mathfrak{N}(S, \Omega)$ with $S \in \Pi$ into another element of the family (4)

$$U^*(\mathfrak{N}(S,\Omega)) = \mathfrak{N}(S^*,\Omega), \qquad S \in \Pi$$

for some $S^* \in \Pi$ which depends on the operator U^* and satisfies $\#S^* = \#S$. Besides, $[\mu]$ contains a maximal free set $\{\delta_s : s \in S\}$ which spans $\mathfrak{N}(S, \Omega)$. Since U^* is invertible, it must transform the maximal free set *S* into a maximal free set *S*^{*} which spans $\mathfrak{N}(\Omega, S^*)$, and hence U^* takes the class $[\mu]$ into a class $[\mu^*]$ with supp $\mu^* = S^*$.

Recall that the transposed $U^*: \mathfrak{M}(\Omega) \to \mathfrak{M}(\Omega)$ is a surjective linear $\|\cdot\|^*$ -isometry, and U^* is weak*-weak*-continuous, hence U^* is a homeomorphism of $(\mathfrak{M}(\Omega), \|\cdot\|^*)$ and of $(\mathfrak{M}(\Omega), w^*)$. By the preceding discussion, the set $\mathfrak{M}_{\Pi}(\Omega) \subset \mathfrak{M}(\Omega)$ is invariant under U^* and, in the terminology introduced above, U^* is compatible with the equivalence \sim . Moreover, U^* induces a bijection $T: \Pi \to \Pi$ as suggested by the commutative diagram

$$\mathfrak{N}(S, \Omega) \xrightarrow{U^*} \mathfrak{N}(S^*, \Omega)$$

supp⁻¹
$$\downarrow$$
 supp
$$S \in \Pi \xrightarrow{T} S^* = T(S) \in \Pi$$

638 José M Isidro

in which the left hand side vertical arrow $S \to \operatorname{supp}^{-1} S$ takes each $S \in \Pi$ to the vector space $\mathfrak{N}(S, \Omega)$ of the Radon measures whose support is contained in S, and the right hand side vertical arrow $\mathfrak{N}(S^*, \Omega) \to S^*$ takes the vector space $\mathfrak{N}(S^*, \Omega)$ to its *joint support*. Here, by joint support of a vector space $M \subset \mathfrak{M}(\Omega)$ of measures we mean the set $\bigcup_{\mu \in M} \operatorname{supp} \mu$. Clearly its complement $\Omega \setminus \bigcup_{\mu \in M} \operatorname{supp} \mu$ can be characterized as the largest open subset $U \subset \Omega$ with the following property:

$$\phi \in \mathcal{C}_0(\Omega), \text{ supp } \phi \subset U \Longrightarrow \langle \mu \phi \rangle = 0, \quad \forall \mu \in M.$$

In our case the spaces M under consideration are finite-dimensional, and the joint support is nothing but the union of the supports of the elements in a maximal free set in M, and it does not depend on the spanning set we choose in M. Thus

$$T := \operatorname{supp} \circ U^* \circ \operatorname{supp}^{-1}.$$
(5)

Remark that in the classical case, all classes $S \in \Pi$ are of the form $S = \{\omega\}$ for a unique $\omega \in \Omega$ and we reobtain the homeomorphism $\Omega \to \Omega$ provided by the Banach-Stone representation theorem for surjective linear isometries of $C_0(\Omega)$.

3. Convergence of nets in $\mathfrak{M}_{\Pi}(\Omega)$

By Proposition 4.3 of [3], we have $N := \sup_{S \in \Pi} \#S < \infty$ where N is a characteristic of the Banach lattice $C_0(\Omega)$. Remark that $\emptyset \notin \Pi$, hence $0 \notin \mathfrak{M}_{\Pi}(\Omega)$. Thus $\mathfrak{M}_{\Pi}(\Omega)$ is a finite union of pairwise disjoint subsets

$$\mathfrak{M}_{\Pi}(\Omega) = \bigcup_{1}^{N} \mathfrak{M}_{k}(\Omega), \quad \mathfrak{M}_{k}(\Omega) := \{ \mu \in \mathfrak{M}_{\Pi}(\Omega) : \# \operatorname{supp} \mu = k \}, \quad 1 \le k \le N.$$

PROPOSITION 3.1

Let $n \in \mathbb{N}$ be given. Let $\mu_i = \sum_{k=1}^n \alpha_i^k \delta_{\omega_i^k}$, $(i \in I)$, where $\omega_i^k \in \Omega$ and $\alpha_i^k \in \mathbb{C}$ for $1 \le k \le n$ and $i \in I$, be a net in $\mathfrak{M}_n(\Omega)$, and assume that

- (i) μ_i is weak*-convergent to a point $\nu = \sum_{k=1}^n \alpha^k \delta_{n^k}$ that belongs to $\mathfrak{M}_n(\Omega)$.
- (ii) None of the nets $(\omega_i^1), (\omega_i^2) \cdots (\omega_i^{n-1})$ contains a subnet convergent to η^n in Ω .

Then
$$\omega_k^n \to \eta^n$$
 in Ω and $\alpha_k^n \to \alpha^n$ in \mathbb{C} .

Proof.

Step 1. First we show that $\omega_i^n \to \eta^n$, for which we proceed by contradiction. Thus, let us assume that ω_i^n does not converge to η^n in Ω . Hence there are an open neighbourhood U of η^n in Ω and a subnet $J \subset I$ such that

$$\omega_i^n \notin U, \quad \forall j \in J.$$

Now (ω_j^1) $(j \in J)$ is a subnet of (ω_i^1) which by (ii) does not converge to η^n . Hence there are an open neighbourhood $V_1 \subset U$ of η^n in Ω and a subnet $J_1 \subset J \subset I$ such that

$$\omega_i^1 \notin V_1, \qquad \forall j \in J_1.$$

Again (ω_j^2) , $(j \in J_1)$, is a subnet of (ω_i^2) which by (ii) does not converge to η^n , and we can argue as before. After a finite number of steps we get a neighbourhood V of η^n in Ω and a subnet $K \subset I$ such that

$$\omega_k^1, \omega_k^2, \dots, \omega_k^n \notin V, \qquad \forall k \in K.$$

Since the points in $\{\eta^1, \ldots, \eta^n\}$ are pairwise distinct, by shrinking *V* if needed we can assume that $\eta_1, \ldots, \eta^{n-1}$ do not lie in *V*. Take any function $\phi \in C_0(\Omega)$ with $\phi: \Omega \to [0, 1]$, $\phi(\eta^n) = 1$ and supp $\phi \subset V$. By construction, we have

$$\langle \mu_k \phi \rangle = 0, \quad \forall k \in K \text{ whereas } \langle \nu \phi \rangle = \alpha^n \neq 0$$

which contradicts the assumption $w^* \lim \mu_i = \nu$.

Step 2. We claim that the net of coefficients α_i^n satisfies $\alpha_i^n \to \alpha^n$ in \mathbb{C} . Otherwise there would exist a subnet $J \subset I$ and some $\varepsilon > 0$ such that

$$|\alpha_j^n - \alpha^n| \ge \varepsilon, \qquad \forall j \in J.$$

By (ii) the subnets (ω_j^r) $(j \in J)$ for $1 \le r \le n-1$ do not converge to η^n , hence there are a subnet $K \subset J \subset I$ and a neighbourhood V of η^n in Ω such that

$$\omega_k^1, \ldots, \omega_k^{n-1} \notin V, \qquad \forall j \in J.$$

Since $\omega_j^n \to \eta^n$, we have $\omega_k^n \in V$ for large enough $k \ge k_0$. We may assume that V does not contain any of the points $\eta^1, \ldots, \eta^{n-1}$. Take any function $\psi \in C_0(\Omega)$ with $\psi: \Omega \to [0, 1]$, $\psi(\eta^n) = 1$ and supp $\psi \subset V$. Then by construction

$$\langle \mu_k \psi \rangle = \alpha_k^n, \qquad \langle v \psi \rangle = \alpha^n, \qquad \forall k \in K$$

hence $|\langle \mu_k - \nu \psi \rangle| = |\alpha_k^n - \alpha^n| \ge \varepsilon$ which contradicts $w^* \lim \mu_k = \nu$.

COROLLARY 3.2

Let $n \in \mathbb{N}$ be given. Let $\mu_i = \sum_{k=1}^n \alpha_i^k \delta_{\omega_i^k}$, $(i \in I)$, be a net in $\mathfrak{M}_n(\Omega)$, and assume that μ_i is weak*-convergent to a point $v = \sum_{k=1}^n \alpha^k \delta_{\eta^k}$ that belongs to $\mathfrak{M}_n(\Omega)$. Then there is a reordering of (η^1, \ldots, η^n) such that

$$\omega_i^r \to \eta^r$$
 in Ω and $\alpha_i^r \to \alpha^r$ in \mathbb{C} $(1 \le r \le n)$.

Proof. By (3.1), there is an index k $(1 \le k \le n)$ such that

$$\omega_i^k \to \eta^k \quad \text{in} \quad \Omega \quad \text{and} \quad \alpha_i^k \to \alpha^k \quad \text{in} \quad \mathbb{C}.$$
 (6)

After reordering the *n*-tuple (η^1, \ldots, η^n) if needed, we may assume that the index *k* is precisely k = n. Clearly $w^* \lim \alpha_i^n \delta_{\alpha_i^n} = \alpha^n \delta_{\eta^n}$ by (6). Thus from

$$\mu_i = \sum_{k=1}^n \alpha_i^k \delta_{\omega_i^k} \to \nu = \sum_{k=1}^n \alpha^k \delta_{\eta^k} \quad \text{and} \quad \alpha_i^n \delta_{\omega_i^n} \to \alpha^n \delta_{\eta^n}$$

we derive

$$\tilde{\mu_i} := \sum_{k=1}^{n-1} \alpha_i^k \delta_{\omega_j^k} \to \tilde{\nu} := \sum_{k=1}^{n-1} \alpha^k \delta_{\eta^k}$$

A new application of (3.1), now to the net $(\tilde{\mu}_i)$ $(i \in I)$ and the measure $\tilde{\nu}$ in the space $\mathfrak{M}_{n-1}(\Omega)$, and an induction argument completes the proof. \Box

4. Convergence in the carrier space Ω

Now we analyse the set $\Omega = \Omega/_{\sim}$ of the classes defined by the partition Π of Ω . Clearly it is contained in the space \mathcal{K} whose points are the compact subsets of Ω and it would be reasonable to consider the classical Hausdorff extension of the topology τ in Ω to a topology σ in \mathcal{K} and view Ω as a topological subspace of it. However, the cardinality function $S \mapsto \#(S)$ is not continuous, which is a trouble for our purpose. The discussion in the previous section and the definition of the bijection T induced by U^* suggest the consideration of the carrier space $\Omega/_{\sim}$ as the finite union of the pairwise disjoint subsets

$$\mathbf{\Omega} = \bigcup_{1}^{N} \mathbf{\Omega}_{n}, \qquad \mathbf{\Omega}_{n} := \{ S \in \Pi : \#S = k \}, \qquad 1 \le k \le N, \tag{7}$$

where $N := \sup_{S \in \Pi} \#(S) < \infty$ is a characteristic of the Banach lattice $C_0(\Omega)$. Notice that Ω_n is a subset of Π , but not a subset of Ω , and that $\sup_{n \to \infty} \sup_{n \to \infty$

We endow each Ω_n with the topology that σ induces on it and view Ω as the disjoint direct topological sum of these spaces Ω_n . In this way we get a topological space (Ω, κ) in which each of the Ω_n is an open and closed subspace. Hence, in order to study the continuity properties of a function $f: \Omega \to X$, where X is an arbitrary topological space, we need only to analyse the restrictions of f to the Ω_n .

Recall that for $S \in \Omega$ we have $S = \text{supp } \mu = \{\omega_1, \dots, \omega_r\}$ for some pairwise distinct points ω_k in Ω . For $\eta \in \Omega$, let S_η denote the unique element of the partition Π such that $\eta \in S_\eta$, and take open disjoint neighbourhoods V_k of ω_k in Ω . Then the family

$$\boldsymbol{\mathcal{E}}_{(V_1,\dots,V_r)}(S) := \{S_\eta \colon \eta \in V_1 \cup \dots \cup V_r\},\tag{8}$$

where (V_1, \ldots, V_r) ranges over the *r*-tuples of open disjoint neighbourhoods of the points ω_k in *S*, form a basis of neighbourhoods of *S* for the restriction to Π of the Hausdorff topology σ on \mathcal{K} . First we consider the subspace (Ω_n, κ) with *n* fixed and study convergence of nets. Recall that each point $S \in \Omega_n$ is a finite subset of Ω , $S \in \Pi$. In what follows we assume *S* to have been ordered $S = \{s_1, \ldots, s_n\}$, however the particular order given to *S* is not relevant.

PROPOSITION 4.1

Let $S_i = \{\omega_i^1, \dots, \omega_i^n\}$, $(i \in L)$, and $S = \{\eta^1, \dots, \eta^n\}$ be a net and a point in Ω_n such that $\kappa \lim_{i \in I} S_i = S$. Then there are a subnet S_j , $(j \in J)$ and an index l with $1 \le l \le n$ such that the net (ω_j^l) converges to η^l in Ω .

Proof. Let V_1, \ldots, V_n open pairwise disjoint neighbourhoods of the points η^1, \ldots, η^n in Ω . Then

$$\mathcal{E}_{(V_1,...,V_n)} := \{ \{ \zeta^1, \ldots, \zeta^n \} \in \Omega_n : \zeta^k \in V_k, \ 1 \le k \le n \}$$

is a κ -neighborhood of S in Ω_n . By assumption we have $\kappa \lim_{i \in I} S_i = S$, hence there is an index $i_0 \in I$ such that

$$S_i \subset V_1 \cup \dots \cup V_n, \quad \forall i \ge i_0.$$
 (9)

Now we proceed by contradiction. Assume that for every subnet S_j ($J \subset I$), the net (ω_j^1) does not converge in Ω to any of the points η^1, \ldots, η^n . Thus there exists a subnet $J \subset I$ such that

$$\omega_i^1 \notin V_1, \quad \forall j \in J.$$

Consider now the net S_j ($J \in J$), which satisfies $\kappa \lim_{j \in J} S_j = S$. By assumption the net (ω_j^1) does not converge to any of the points η^2, \ldots, η^n , hence there exists a subnet $J' \subset J \subset I$ such that

$$\omega_i^1 \notin V_2, \qquad \forall j \in J'.$$

After repeating this argument *n* times we get a subnet $J^n \subset J^{n-1} \subset \cdots \subset I$ such that

$$\omega_i^1 \notin V_1 \cup \cdots \cup V_n, \qquad \forall j \in J^n$$

which contradicts (9) and completes the proof.

COROLLARY 4.2

Let $S_i = \{\omega_i^1, \ldots, \omega_i^n\}$, $(i \in L)$, and $S = \{\eta^1, \ldots, \eta^n\}$ be a net and a point in Ω_n such that $\kappa \lim_{i \in I} S_i = S$. Then, after reordering S if needed, there is a subnet (S_k) , $(K \subset I)$, such that $\lim_{i \in I} \omega_i^l = \eta^l$ for all l with $1 \le l \le n$.

Proof. By (4.1) we have $\lim_{j \in J} \omega_j = \eta^l$ for a suitable subnet $J \subset I$ and some $l, 1 \leq l \leq n$. Reordering S we may assume that l = 1. A repetition of the argument gives the result.

The above results clearly suggest the following weakened notion of continuity.

DEFINITION 4.3

Let $n \in \mathbb{N}$ be fixed, and let X be a topological space. A function $T: \Omega_n \to X$ is said to be κ -continuous at a point $S_0 = \{\eta^1, \ldots, \eta^n\}$ if, for each net $S_i = \{\omega_i^1, \ldots, \omega_i^n\}$ in Ω_n with $\kappa \lim_{i \in I} S_i = S_0$, for each permutation π of the indices $\{1, \ldots, n\}$ and for each subnet (S_j) $(J \subset I)$ such that

$$\lim_{j \in J} \omega_j^k = \eta^{\pi(k)}, \qquad 1 \le k \le n \text{ (convergence in } \Omega),$$

we have $\lim_{i \in J} T(S_i) = T(S_0)$ in the space X.

And *T* is said to be κ -continuous in Ω_n if it is κ -continuous at each point of Ω_n . Remark that *X* is an arbitrary topological space, hence the case $X = \Omega_n$ is not excluded. Notice also that for n = 1, the above definition clearly coincides with the usual notion of continuity.

PROPOSITION 4.4

For each $n \in \mathbb{N}$, the restriction to Ω_n of the map $T: \Pi \to \Pi$ defined by (4.3) is κ -continuous on Ω_n .

Proof. Let $S_i = \{\omega_i^1, \ldots, \omega_i^n\}$ and $S_0 = \{\eta^1, \ldots, \eta^n\}$ be a net and a point in Ω_n and assume that $\kappa \lim S_i = S_0$. By the definition, after a reordering of S_0 if needed, we may assume that

$$\omega_i^1 \to \eta^1, \dots, \omega_i^n \to \eta^n$$
 (convergence in Ω).

Hence $w^* \lim_i \delta_{\omega_i^k} = \delta_{\eta^k}$ for $1 \le k \le n$ and therefore for the Radon measures $\mu_i := \sum_{k=1}^n \delta_{\omega_i^k}$ and $\nu := \sum_{k=1}^n \delta_{\eta^k}$ we have

$$w^* \lim_{i \to \infty} \mu_i = v. \tag{10}$$

Now apply the operator $U^*: \mathfrak{M}(\Omega) \to \mathfrak{M}(\Omega)$ and remark these two facts:

(1) The measures μ_i belong to the space $\mathfrak{M}_n(\Omega)$ which is invariant under U^* , therefore we have

$$\mu_i^* := U^* \mu_i = \sum_{k=1}^n \alpha_i^k \delta_{\omega_i^{*k}}, \qquad \nu^* := U^* \nu = \sum_{k=1}^n \alpha^k \delta_{\eta^{*k}}$$

for some $S^* = \{\omega_i^{*1}, \dots, \omega_i^{*n}\}$ and $S_0^* = \{\eta^{*1}, \dots, \eta^{*n}\}$ where S_i^* and S_0^* are elements of Π .

(2) The operator U^* is w^*-w^* -continuous, hence (10) gives $w^* \lim_i \mu_i^* = v^*$, that is

$$w^* \lim_i \sum_{k=1}^n \alpha_i^k \delta_{\omega_i^{*k}} = \sum_{k=1}^n \alpha^k \delta_{\eta^{*k}}.$$

By (3.1), after a reordering of $S_0^* = \{\eta^{*1}, \dots, \eta^n\}$ if needed, we may assume that

$$\omega_i^{*1} \to \eta^{1*}, \dots, \omega^{*n} \to \eta^{*n}$$
 (convergence in Ω),

which means that the net of finite sets $S_i^* = \{\omega_i^{*1}, \ldots, \omega_i^{*n}\}$ is κ -convergent to the finite set $S_0^* = \{\eta^{*1}, \ldots, \eta^{*n}\}$. Since $S_i^* = \operatorname{supp} \mu_i * = T(S_i)$ and $S_0^* = \operatorname{supp} \nu^* = T(S_0)$, we have proven

 $\kappa \lim S_i = S_0 \Longrightarrow \kappa \lim T(S_i) = T(S_0)$

that is, the map $T = \text{supp } \circ U^* \circ \text{supp}^{-1}$ is κ -continuous.

5. Continuity of Hermitian operators

As stated in the introduction, each hermitian operator $A: \mathcal{C}_0(\Omega) \to \mathcal{C}_0(\Omega)$ on the Banach lattice $E := (\mathcal{C}_0(\Omega), \|\cdot\|)$ gives rise to a uniquely determined family of maps $\mathbf{a}^A: S \to \mathbf{a}^A(S)$, where for each $S \in \Pi$, $\mathbf{a}^A(S)$ is a linear transformation of the finite-dimensional \mathbf{C}^* -algebra $\mathcal{C}(S)$ (that is, $\mathbf{a}^A(S) \in \mathcal{L}(\mathcal{C}(S))$), such that

$$(Af)|_{S} = \mathbf{a}^{A}(S)(f|_{S}), \quad \forall S \in \Pi, \quad \forall f \in \mathcal{C}_{0}(\Omega).$$
(11)

We discuss the continuity properties of the map $S \mapsto \mathbf{a}^A(S), S \in \Pi$, for which we first analyse its restriction to $\mathbf{\Omega}_n$ with *n* fixed.

Let us assume that Ω is compact, hence $C_0(\Omega)$ is a unital C*-algebra with unit element the constant function $\mathbf{1}_{\Omega}$. When the relation (11) is applied to $f := \mathbf{1}_{\Omega}$, we get

$$(A\mathbf{1}_{\Omega})|_{S} = \mathbf{a}^{A}(S)(\mathbf{1}|_{S}), \qquad \forall S \in \mathbf{\Omega}_{n}.$$
(12)

Here $\mathbf{1}_S$ is the unit of the C*-algebra $\mathcal{C}(S)$ (hence defined in an intrinsic way) and neither $\mathbf{1}_S$ nor its image by $\mathbf{a}^A(S)$ (which is $(A\mathbf{1}_\Omega)|_S$ in accordance with (6.1)) depend on the particular order we choose for the set *S*. We refer to $S \mapsto \mathbf{a}^A(S)(\mathbf{1}_S)$ as the *action* of the family \mathbf{a}^A on the units $\mathbf{1}_S$, and we shall prove that this action $\mathbf{a}^A: \Omega_n \to \mathbb{C}^n$ is continuous (in the sense of Definition (4.3)). Remark that in the classical case, when all sets *S* are singletons $S = \{\omega\}$, this action can be identified with the multiplication by a continuous complex-valued function.

PROPOSITION 5.1

Let Ω be a compact topological space and let A be a hermitian operator on the Banach lattice $E = (C_0(\Omega), \|\cdot\|)$. Then for each $n \in \mathbb{N}$, the action of the family $\mathbf{a}^A \colon S \to \mathbf{a}^A(S)$, $(S \in \mathbf{\Omega}_n)$, associated to A by (6.1) is κ -continuous on $\mathbf{\Omega}_n$.

Proof. Let $S_i = \{\omega_i^1, \ldots, \omega_i^n\}$ $(i \in I)$ and $S_0 = \{\eta^1, \ldots, \eta^n\}$ be a net and a point in Ω_n such that $\lim_{i \in I} S_i = S_0$ in the κ topology of the space Ω_n . We have to show that, for any reordering of S_0 and for every subnet (S_i) $(J \subset I)$ such that

$$\lim_{j\in J}\omega_j^1 = \eta^{\pi(1)}, \dots, \lim_{j\in J}\omega^n = \eta^{\pi(n)} \text{ (convergence in }\Omega),$$

we have $\lim_{j \in J} \mathbf{a}^A(S_j) = \mathbf{a}^A(S_0)$ (convergence in \mathbb{C}^n).

Let a reordering of S_0 and a subnet (S_j) $(J \subset I)$ of (S_i) be given in the above conditions. Without loss of generality we may assume that the reodering of S_0 corresponds with the natural permutation π = Id of the indices $1 \le k \le n$. Since $\mathbf{1}_{\Omega} \in C_0(\Omega)$, its image $A\mathbf{1}_{\Omega} \in C_0(\Omega)$ is uniformly continuous on the compact set $K := \{\eta^1, \ldots, \eta^n\}$. Thus, given any $\varepsilon > 0$ there are pairwise disjoint open neighbourhoods V_1, \ldots, V_n of the points η^1, \ldots, η^n in Ω such that

$$|(A\mathbf{1}_{\Omega})(s) - (A\mathbf{1}_{\Omega})(t)| \le \varepsilon \tag{13}$$

whenever *s* and *t* lie in one of the V_k for some *k* with $1 \le k \le n$. Now

$$\mathcal{E}_{(V_1,...,V_n)} := \{ \{ \zeta^1, \ldots, \zeta^n \} \in \mathbf{\Omega}_n : \zeta^k \in V_k, \ 1 \le k \le n \}$$

is a κ -neighbourhood of S_0 in Ω_n and by assumption the subnet (S_i) satisfies

$$\lim_{j\in J}\omega_j^1=\eta^1,\ldots,\lim_{j\in J}\omega_j^n=\eta^n \text{ (convergence in }\Omega).$$

Therefore, if $j \ge j_0$ is large enough we have $\omega_i^k \in V_k$ $(1 \le k \le n)$, and by (13)

$$|(A\mathbf{1}_{\Omega})(\omega_{j}^{k}) - (A\mathbf{1}_{\Omega})(\eta^{k})| \le \varepsilon, \qquad 1 \le k \le n, \qquad \forall j \le j_{0}.$$

Since the action \mathbf{a}^A is given by $\mathbf{a}^A(S) := \mathbf{a}^A(S)(\mathbf{1}_S) = (A\mathbf{1}_\Omega)|_S$ for all $S \in \mathbf{\Omega}_n$, the above can be written in the form

$$|\mathbf{a}^{A}(S_{j})(\mathbf{1}_{S_{j}}) - \mathbf{a}^{A}(S_{0})(\mathbf{1}_{S_{0}})| \le \varepsilon, \qquad \forall j \ge j_{0}$$

which completes the proof.

644 José M Isidro

6. Continuity of the isometry-valued map $S \mapsto \mathbf{u}(S)$

As stated in the Introduction, each surjective linear isometry $U: C_0(\Omega) \to C_0(\Omega)$ of the Banach lattice $E := (C_0(\Omega), \|\cdot\|)$ gives rise to the following intertwined elements:

- (1) A uniquely determined partition Π of the set Ω into pairwise disjoints subsets $S \subset \Omega$ and a uniquely determined bijection $T: \Pi \to \Pi$ such that #T(S) = #S for all $S \in \Pi$.
- (2) A family (·, ·)_S of inner products on the finite-dimensional function spaces C(S), S ∈ Π, such that

$$\{f|_S \colon ||f|| \le 1\} = \{\phi \in \mathcal{C}(S) \colon \langle \phi \phi \rangle_S \le 1\}.$$

(3) A family $[\mathbf{u}(S): S \in \Pi]$ of surjective linear $\langle \cdot, \cdot \rangle_S$ -unitary operators $\mathbf{u}(S): \mathcal{C}(T(S)) \to \mathcal{C}(S)$ such that

$$(Uf)|_{S} = \mathbf{u}(S)(f|_{T(S)}), \quad \forall f \in \mathcal{C}_{0}(\Omega), \quad \forall S \in \Pi.$$

If Ω is compact and we apply the above relation to the unit 1_{Ω} of the C*-algebra $C_0(\Omega)$ we get

$$(U\mathbf{1}_{\Omega})|_{S} = \mathbf{u}(S)(\mathbf{1}_{T(S)}), \qquad \forall S \in \Pi.$$
(14)

In the classical case both C(T(S)) and C(S) are canonically isomorphic to \mathbb{C} , and the isometry $\mathbf{u}(S)$ can be identified with its value $\mathbf{u}(T(S))$ at the unit $\mathbf{1}_{T(S)}$ of C(T(S)). Thus, in general we are led to consider the *action* of the isometry \mathbf{u} at the unit $\mathbf{1}_{T(S)}$, that is, the map $\Omega_n \to \mathbb{C}^n$ given by $S \mapsto \mathbf{u}(\mathbf{1}_{T(S)})$ and we have

PROPOSITION 6.1

Let Ω be a compact topological space and let U be a surjective linear isometry of the Banach lattice $E = (C_0(\Omega), \|\cdot\|)$. Then for each $n \in \mathbb{N}$, the function $\mathbf{u}: \Omega_n \to \mathbb{C}^n$ given by $S \mapsto \mathbf{u}(\mathbf{1}_{T(S)})$ is κ -continuous on Ω_n .

Proof. Let $S_i = \{\omega_i^1, \ldots, \omega_i^n\}$ $(i \in I)$ and $S_0 = \{\eta^1, \ldots, \eta^n\}$ be a net and a point in Ω_n such that $\lim_{i \in I} S_i = S_0$ in the κ topology of the space Ω_n . We have to show that, for any reordering π of S_0 and for every subnet (S_i) $(J \subset I)$ such that

$$\lim_{j \in J} \omega_j^1 = \eta^{\pi(1)}, \dots, \lim_{j \in J} \omega^n = \eta^{\pi(n)} \quad \text{(convergence in } \Omega\text{)},$$

we have $\lim_{j \in J} \mathbf{u}(S_j)(\mathbf{1}_{T(S_j)}) = \mathbf{u}(S_0)(\mathbf{1}_{T(S_0)})$, where the limit is taken in \mathbb{C}^n . By (14) the latter is equivalent to

$$\lim_{j \in J} (U1_{\Omega})|_{S_j} = (U1_{\Omega})|_{S_0}.$$
(15)

Let a reordering of S_0 and a subnet (S_j) $(J \subset I)$ of (S_i) be given in the above mentioned conditions. Without loss of generality, we may assume that the reodering of S_0 corresponds with the natural permutation $\pi = \text{Id}$ of the indices $1 \le k \le n$. Since $\mathbf{1}_{\Omega} \in C_0(\Omega)$, its image $U\mathbf{1}_{\Omega} \in C_0(\Omega)$ is uniformly continuous on the compact set $K := \{\eta^1, \ldots, \eta^n\}$. Thus, given any $\varepsilon > 0$ there are pairwise disjoint open neighbourhoods V_1, \ldots, V_n of the points η^1, \ldots, η^n in Ω such that

$$|(U\mathbf{1}_{\Omega})(s) - (U\mathbf{1}_{\Omega})(t)| \le \varepsilon \tag{16}$$

Banach lattices in $C_0(\Omega)$ -spaces

whenever *s* and *t* lie in one of the V_k for some *k* with $1 \le k \le n$. Now

$$\mathcal{E}_{(V_1,\ldots,V_n)} := \{\{\zeta^1,\ldots,\zeta^n\} \in \mathbf{\Omega}_n \colon \zeta^k \in V_k, \ 1 \le k \le n\}$$

is a κ -neighbourhood of S_0 in Ω_n and by assumption the subnet (S_i) satisfies

$$\lim_{j \in J} \omega_j^1 = \eta^1, \dots, \lim_{j \in J} \omega_j^n = \eta^n \quad \text{(convergence in } \Omega\text{)}.$$

Therefore for $j \ge j_0$ large enough, we have

$$\omega_j^k \in V_k, \qquad 1 \le k \le n \qquad \forall j \ge j_0$$

and so from (16) we obtain

$$|(U\mathbf{1}_{\Omega})(\omega_{j}^{k}) - (U\mathbf{1}_{\Omega})(\eta^{k})| \le \varepsilon, \qquad 1 \le k \le n, \qquad \forall j \le j_{0}$$

which is (15) and completes the proof.

References

- Isidro J M and Stachó L L, Holomorphic invariants for continuous bounded symmetric Reinhadrt domains, Acta Sci. Math. (Szeged) 70 (2004) 623–637
- [2] Schaeffer H H, Banach lattices of positive operators, *Grundl. Math. Wiss.* **215** (Berlin: Springer) (1974)
- [3] Stachó L L, A Banach-Stone type theorem for lattice norms in C₀- spaces, Acta Sci. Math. (Szeged) 73 (2007) 193–208
- [4] Stachó L L, Continuous Reinhardt domains from a Jordan viewpoint, *Studia Math.* 185(2) (2008) 177–199
- [5] Stachó L L and Zalar B, Symmetric continuous Reinhardt domains, Arch. Math. (Basel) 81(2) (2003) 619–636