# On linear isometries of Banach lattices in $\mathcal{C}_{0}(\Omega)$-spaces 

JOSÉ M ISIDRO<br>Departamento de Análisis Matemático, Facultad de Matemáticas, Universidade de Santiago de Compostela, Spain<br>E-mail: jm.isidro@usc.es

MS received 22 November 2008; revised 19 January 2009


#### Abstract

Consider the space $\mathcal{C}_{0}(\Omega)$ endowed with a Banach lattice-norm \| $\cdot \|$ that is not assumed to be the usual spectral norm $\|\cdot\|_{\infty}$ of the supremum over $\Omega$. A recent extension of the classical Banach-Stone theorem establishes that each surjective linear isometry $U$ of the Banach lattice $\left(\mathcal{C}_{0}(\Omega),\|\cdot\|\right)$ induces a partition $\Pi$ of $\Omega$ into a family of finite subsets $S \subset \Omega$ along with a bijection $T: \Pi \rightarrow \Pi$ which preserves cardinality, and a family $[\mathbf{u}(S): S \in \Pi$ ] of surjective linear maps $\mathbf{u}(S): \mathcal{C}(T(S)) \rightarrow \mathcal{C}(S)$ of the finite-dimensional $\mathrm{C}^{*}$-algebras $\mathcal{C}(S)$ such that $$
\left.(U f)\right|_{T(S)}=\mathbf{u}(S)\left(\left.f\right|_{S}\right) \quad \forall f \in \mathcal{C}_{0}(\Omega) \quad \forall S \in \Pi
$$

Here we endow the space $\Pi$ of finite sets $S \subset \Omega$ with a topology for which the bijection $T$ and the map $\mathbf{u}$ are continuous, thus completing the analogy with the classical result.


Keywords. Banach lattices; Banach-Stone theorem; linear isometries.

## 1. Introduction and preliminaries

In a recent article [3], the author has studied the Banach lattice $E:=\left(\mathcal{C}_{0}(\Omega),\|\cdot\|\right)$, where $\Omega$ is a locally compact Hausdorff topological space and $\mathcal{C}_{0}(\Omega)$ stands for the space of all continous complex valued functions $f: \Omega \rightarrow \mathbb{C}$ that vanish at infinity, endowed with a Banach lattice norm $\|\cdot\|$ that is not assumed to be the usual spectral norm $\|\cdot\|_{\infty}$ of the supremum over $\Omega$. It is proven that each $\|\cdot\|$-Hermitian operator $A$ on $\mathcal{C}_{0}(\Omega)$ gives rise to a uniquely determined partition $\Pi$ of the set $\Omega$ into pairwise disjoints subsets $S \subset \Omega$ such that

$$
\begin{equation*}
\left.(A f)\right|_{S}=\mathbf{a}(S)\left(\left.f\right|_{S}\right), \quad \forall f \in \mathcal{C}_{0}(\Omega) \quad \forall S \in \Pi \tag{1}
\end{equation*}
$$

holds with a uniquely determined family of linear maps $\mathbf{a}^{A}(S): \mathcal{C}(S) \rightarrow \mathcal{C}(S), S \in$ $\Pi$. There is also a uniquely determined family $\langle\cdot, \cdot\rangle_{S}$ of inner products on the finitedimensional function spaces $\mathcal{C}(S), S \in \Pi$, such that

$$
\begin{equation*}
\{f \mid S:\|f\| \leq 1\}=\left\{\phi \in \mathcal{C}(S):\langle\phi \phi\rangle_{S} \leq 1\right\} . \tag{2}
\end{equation*}
$$

It is also proved that, for each surjective linear $\|\cdot\|$-isometry $U: \mathcal{C}_{0}(\Omega) \rightarrow \mathcal{C}_{0}(\Omega)$, there is a uniquely determined bijection $T: \Pi \rightarrow \Pi$ along with a family $[\mathbf{u}(S): S \in \Pi]$ of surjective linear $\langle\cdot, \cdot\rangle_{S}$-unitary operators $\mathbf{u}(S): \mathcal{C}(T(S)) \rightarrow \mathcal{C}(S)$ such that the sets $S$ and $T(S)$ have the same cardinalities and

$$
\begin{equation*}
\left.(U f)\right|_{S}=\mathbf{u}(S)\left(\left.f\right|_{T(S)}\right) \quad \forall f \in \mathcal{C}_{0}(\Omega) \quad \forall S \in \Pi . \tag{3}
\end{equation*}
$$

In the classical case (when the lattice norm $\|\cdot\|$ coincides with the spectral norm $\|\cdot\|_{\infty}$ ), each element $S \in \Pi$ is a singleton $S=\{\omega\}$ for some $\omega \in \Omega$, the family $\mathbf{a}^{A}$ can be identified with a continuous real-valued function $\mathbf{a}: \Omega \rightarrow \mathbb{R}$, the inner products $\langle\cdot, \cdot\rangle_{\omega}$ are all equal to the usual inner product in $\mathbb{C}$, the family $\mathbf{u}(S)$ of unitary operators is identified with a continuous function $u: \Omega \rightarrow \mathbb{C},|u(\omega)|=1$, and the permutation $T: \Pi \rightarrow \Pi$ actually is a homeomorphism of $\Omega$.

The aim of this note is to make a study of the topological properties of the bijection $T$ and of the other elements $\mathbf{a}$ and $\mathbf{u}$ that appear in the above situation. To be more precise, we endow the carrier space (the space whose points are the subsets $S \in \Pi$ ) with a natural topology that makes $T$ into a homeomorphism. However, one can not expect this task to be a straightforward generalization of the classical situation. Indeed, some of the objects involved in our considerations (the points in $\Pi$ ) now are finite subsets of $\Omega$ rather than points (subsets of one single element) in $\Omega$. We also deal with functions $T$ : $S \in \Pi \rightarrow T(S) \in \Pi$ for which both the variable $S$ and the values $T(S)$ are finite subsets in $\Omega$. A relevant fact here is that a finite set $S=\left\{\omega_{1}, \ldots, \omega_{k}\right\} \in \Pi$ and all sets $S^{\prime}$ obtained by permuting its elements are the same point in $\Pi$, and hence we must have $T(S)=T\left(S^{\prime}\right)$, which poses a real difficulty concerning the continuity of $T$ since the action of $T$ on those singletons $S=\{\omega\}$ that lie in $\Pi$ has to be continuous. In particular, we have to consider topologies $\sigma$ in the space of finite subsets of $\Omega$ and an appropriate notion of continuity. One candidate for $\sigma$ is the classical Hausdorff extension of the topology $\tau$ in $\Omega$ to a topology $\sigma$ in the space $\mathcal{K}$ of all compact subsets $K \subset \Omega$. Since the elements of $\Pi$ are finite (hence compact) sets, we can endow $\Pi$ with the topology induced on it by $\sigma$. However, it is known that then the cardinality function $\#: \Pi \rightarrow \mathbb{N}$ given by $S \mapsto \#(S)$, though upper semicontinous, in general, is not continuous. To overcome this trouble, we consider $\Pi$ as the disjoint union

$$
\Pi=\bigcup_{n} \boldsymbol{\Omega}_{n}, \quad \boldsymbol{\Omega}_{n}:=\{S \in \Pi: \# S=n\}
$$

where each $\boldsymbol{\Omega}_{n}$ is equipped with the topology induced by $\sigma$ and $\Pi$ is considered as the disjoint topological direct sum of the $\Omega_{n}$, a topology that we denote by $\kappa$. In this way, the $\boldsymbol{\Omega}_{n}$ are open and closed subsets in $(\Pi, \kappa)$ and, in order to study the continuity of a function $f: \Pi \rightarrow X$, where $X$ is a topological space, we only need to analyse its restriction to the $\boldsymbol{\Omega}_{n}$. The fact that a net $\left(S_{i}\right)$ in $\boldsymbol{\Omega}_{n}$ with $S_{i}=\left\{\omega_{i}^{1}, \ldots, \omega_{i}^{n}\right\},(i \in I)$, converges to $S_{0}=$ $\left\{\eta^{1}, \ldots, \eta^{n}\right\} \in \boldsymbol{\Omega}_{n}$ relative to $\kappa$ only provides us with the following information on the components: There is a subnet $\left(S_{j}\right),(J \subset I)$, along with a reordering of $S_{0}=\left\{\eta^{1}, \ldots, \eta^{n}\right\}$ (that is, a permutation $\pi$ of the indices $\{1, \ldots, n\}$ ) such that $\lim _{j \in J} \omega_{j}^{k}=\eta^{\pi(k)}$ holds in $\Omega$ for $1 \leq k \leq n$. Thus, we have had to weaken the notion of continuity, though, of course, the new notion agrees with the classical one when restricted to singletons $S=\{\omega\} \in \Pi$. For details, see $\S \S 2,3$ and 4 below.

In what follows $\mathcal{C}_{0}(\Omega)$ is endowed with a complete complex lattice norm, denoted by $\|\cdot\|$, whose open unit ball is

$$
D:=\left\{f \in \mathcal{C}_{0}(\Omega):\|f\|<1\right\}
$$

Notice that we do not assume that $\|\cdot\|$ coincides with $\|\cdot\|_{\infty}$. We let $\mathfrak{M}(\Omega):=\left(\mathfrak{M}(\Omega),\|\cdot\|^{*}\right)$ be the toplogical dual of $\mathcal{C}_{0}(\Omega)$, that is, the space of all Radon measures on $\Omega$, endowed with the corresponding dual norm $\|\cdot\|^{*}$, whose open unit ball is

$$
D^{*}=\left\{\mu \in \mathfrak{M}(\Omega):\|\mu\|^{*}<1\right\}
$$

Notice that, in general $\|\cdot\|^{*}$ does not coincide with the usual norm of total variation on $\Omega$. We recall that both $\mathcal{C}_{0}(\Omega)$ and $\mathfrak{M}(\Omega)$ are Banach lattices when endowed with their respective usual order.

## 2. Preliminaries on the space of measures $\mathfrak{M}_{\Pi}(\Omega)$

Denote by $\mathfrak{M}_{\Pi}(\Omega):=\{\mu \in \mathfrak{M}(\Omega)$ : $\operatorname{supp} \mu \in \Pi\}$ the set of the Radon measures on $\Omega$ whose support $S:=\operatorname{supp} \mu$ is an element of the partition $\Pi$ of $\Omega$. Remark that $\mathfrak{M}_{\Pi}(\Omega)$ is not a vector subspace of $\mathfrak{M}(\Omega)$ and that whenever $\mu$ and $v$ are measures in $\mathfrak{M}_{\Pi}(\Omega)$ with $\mu \neq v$ we have $\operatorname{supp} \mu \cap \operatorname{supp} \nu=\emptyset$. Define an equivalence on $\mathfrak{M}_{\Pi}(\Omega)$ by setting $\mu \sim \nu$ if and only if $\operatorname{supp} \mu=\operatorname{supp} \nu$. Clearly we can identify the quotient set $\mathfrak{M}_{\Pi}(\Omega) / \sim$ and the partition $\Pi$ by the map supp : $\mathfrak{M}_{\Pi}(\Omega / \sim \leftrightarrow \Pi$ taking each class of measures $[\mu]$ to their common support. If $S:=\operatorname{supp} \mu$ for some $\mu \in \mathfrak{M}_{\Pi}(\Omega)$, then $S \subset \Omega$ is a finite subset $S=\left\{s_{1}, \ldots, s_{r}\right\}$ for certain pairwise distinct points $s_{j} \in \Omega$ and we have

$$
[\mu]=\left\{\sum_{k=1}^{r} \alpha_{k} \delta_{s_{k}}: \alpha_{k} \in \mathbb{C} \backslash\{0\}, 1 \leq k \leq r\right\},
$$

where $\delta_{s}$ denotes the Dirac measure at the point $s \in \Omega$ and none of the coefficients $\alpha_{k}$ can vanish in order to ensure supp $\mu=S$. Thus the class [ $\mu$ ] is not a vector space. Let $S \in \Pi$ be given and, instead of the condition supp $v=S$, consider the weaker one supp $v \subset S$; then the set

$$
\mathfrak{N}(S, \Omega):=\{v \in \mathfrak{M}(\Omega): \operatorname{supp} v \subset S\}
$$

is a vector subspace of $\mathfrak{M}(\Omega)$ that is linearly spanned by the elements in the class [ $\mu$ ], that is $\mathfrak{N}(S, \Omega)=\operatorname{span}[\mu]$. Notice, however, that $\mathfrak{N}(S, \Omega)$ fails to be contained in $\mathfrak{M}_{\Pi}(\Omega)$ since there are measures $v \in \mathfrak{N}(S, \Omega)$ whose support $S^{\prime}:=\operatorname{supp} v$ is a proper subset $S^{\prime} \subset S$ and therefore $S^{\prime} \notin \Pi$. According to the proof of Theorem 1.4 of [3], for every surjective linear isometry $U: \mathcal{C}_{0}(\Omega) \rightarrow \mathcal{C}_{0}(\Omega)$, the family of vector spaces

$$
\begin{equation*}
\mathfrak{N}(S, \Omega), \quad S \in \Pi \tag{4}
\end{equation*}
$$

is invariant under the operator $U^{*}$. Therefore, $U^{*}$ takes each $\mathfrak{N}(S, \Omega)$ with $S \in \Pi$ into another element of the family (4)

$$
U^{*}(\mathfrak{N}(S, \Omega))=\mathfrak{N}\left(S^{*}, \Omega\right), \quad S \in \Pi
$$

for some $S^{*} \in \Pi$ which depends on the operator $U^{*}$ and satisfies $\# S^{*}=\# S$. Besides, $[\mu]$ contains a maximal free set $\left\{\delta_{s}: s \in S\right\}$ which spans $\mathfrak{N}(S, \Omega)$. Since $U^{*}$ is invertible, it must transform the maximal free set $S$ into a maximal free set $S^{*}$ which spans $\mathfrak{N}\left(\Omega, S^{*}\right)$, and hence $U^{*}$ takes the class $[\mu]$ into a class $\left[\mu^{*}\right]$ with supp $\mu^{*}=S^{*}$.

Recall that the transposed $U^{*}: \mathfrak{M}(\Omega) \rightarrow \mathfrak{M}(\Omega)$ is a surjective linear $\|\cdot\|^{*}$-isometry, and $U^{*}$ is weak*-weak*-continuous, hence $U^{*}$ is a homeomorphism of $\left(\mathfrak{M}(\Omega),\|\cdot\|^{*}\right)$ and of $\left(\mathfrak{M}(\Omega), w^{*}\right)$. By the preceding discussion, the set $\mathfrak{M}_{\Pi}(\Omega) \subset \mathfrak{M}(\Omega)$ is invariant under $U^{*}$ and, in the terminology introduced above, $U^{*}$ is compatible with the equivalence $\sim$. Moreover, $U^{*}$ induces a bijection $T: \Pi \rightarrow \Pi$ as suggested by the commutative diagram

in which the left hand side vertical arrow $S \rightarrow \operatorname{supp}^{-1} S$ takes each $S \in \Pi$ to the vector space $\mathfrak{N}(S, \Omega)$ of the Radon measures whose support is contained in $S$, and the right hand side vertical arrow $\mathfrak{N}\left(S^{*}, \Omega\right) \rightarrow S^{*}$ takes the vector space $\mathfrak{N}\left(S^{*}, \Omega\right)$ to its joint support. Here, by joint support of a vector space $M \subset \mathfrak{M}(\Omega)$ of measures we mean the set $\bigcup_{\mu \in M} \operatorname{supp} \mu$. Clearly its complement $\Omega \backslash \bigcup_{\mu \in M} \operatorname{supp} \mu$ can be characterized as the largest open subset $U \subset \Omega$ with the following property:

$$
\phi \in \mathcal{C}_{0}(\Omega), \operatorname{supp} \phi \subset U \Longrightarrow\langle\mu \phi\rangle=0, \quad \forall \mu \in M
$$

In our case the spaces $M$ under consideration are finite-dimensional, and the joint support is nothing but the union of the supports of the elements in a maximal free set in $M$, and it does not depend on the spanning set we choose in $M$. Thus

$$
\begin{equation*}
T:=\operatorname{supp} \circ U^{*} \circ \operatorname{supp}^{-1} \tag{5}
\end{equation*}
$$

Remark that in the classical case, all classes $S \in \Pi$ are of the form $S=\{\omega\}$ for a unique $\omega \in \Omega$ and we reobtain the homeomorphism $\Omega \rightarrow \Omega$ provided by the Banach-Stone representation theorem for surjective linear isometries of $\mathcal{C}_{0}(\Omega)$.

## 3. Convergence of nets in $\mathfrak{M}_{\Pi}(\Omega)$

By Proposition 4.3 of [3], we have $N:=\sup _{S \in \Pi} \# S<\infty$ where $N$ is a characteristic of the Banach lattice $\mathcal{C}_{0}(\Omega)$. Remark that $\emptyset \notin \Pi$, hence $0 \notin \mathfrak{M}_{\Pi}(\Omega)$. Thus $\mathfrak{M}_{\Pi}(\Omega)$ is a finite union of pairwise disjoint subsets

$$
\mathfrak{M}_{\Pi}(\Omega)=\bigcup_{1}^{N} \mathfrak{M}_{k}(\Omega), \quad \mathfrak{M}_{k}(\Omega):=\left\{\mu \in \mathfrak{M}_{\Pi}(\Omega): \# \operatorname{supp} \mu=k\right\}, \quad 1 \leq k \leq N
$$

## PROPOSITION 3.1

Let $n \in \mathbb{N}$ be given. Let $\mu_{i}=\sum_{k=1}^{n} \alpha_{i}^{k} \delta_{\omega_{i}^{k}},(i \in I)$, where $\omega_{i}^{k} \in \Omega$ and $\alpha_{i}^{k} \in \mathbb{C}$ for $1 \leq k \leq n$ and $i \in I$, be a net in $\mathfrak{M}_{n}(\Omega)$, and assume that
(i) $\mu_{i}$ is weak*-convergent to a point $v=\sum_{k=1}^{n} \alpha^{k} \delta_{\eta^{k}}$ that belongs to $\mathfrak{M}_{n}(\Omega)$.
(ii) None of the nets $\left(\omega_{i}^{1}\right),\left(\omega_{i}^{2}\right) \cdots\left(\omega_{i}^{n-1}\right)$ contains a subnet convergent to $\eta^{n}$ in $\Omega$.

$$
\text { Then } \omega_{k}^{n} \rightarrow \eta^{n} \text { in } \Omega \text { and } \alpha_{k}^{n} \rightarrow \alpha^{n} \text { in } \mathbb{C} .
$$

Proof.
Step 1. First we show that $\omega_{i}^{n} \rightarrow \eta^{n}$, for which we proceed by contradiction. Thus, let us assume that $\omega_{i}^{n}$ does not converge to $\eta^{n}$ in $\Omega$. Hence there are an open neighbourhood $U$ of $\eta^{n}$ in $\Omega$ and a subnet $J \subset I$ such that

$$
\omega_{j}^{n} \notin U, \quad \forall j \in J
$$

Now $\left(\omega_{j}^{1}\right)(j \in J)$ is a subnet of $\left(\omega_{i}^{1}\right)$ which by (ii) does not converge to $\eta^{n}$. Hence there are an open neighbourhood $V_{1} \subset U$ of $\eta^{n}$ in $\Omega$ and a subnet $J_{1} \subset J \subset I$ such that

$$
\omega_{j}^{1} \notin V_{1}, \quad \forall j \in J_{1}
$$

Again $\left(\omega_{j}^{2}\right),\left(j \in J_{1}\right)$, is a subnet of $\left(\omega_{i}^{2}\right)$ which by (ii) does not converge to $\eta^{n}$, and we can argue as before. After a finite number of steps we get a neighbourhood $V$ of $\eta^{n}$ in $\Omega$ and a subnet $K \subset I$ such that

$$
\omega_{k}^{1}, \omega_{k}^{2}, \ldots, \omega_{k}^{n} \notin V, \quad \forall k \in K
$$

Since the points in $\left\{\eta^{1}, \ldots, \eta^{n}\right\}$ are pairwise distinct, by shrinking $V$ if needed we can assume that $\eta_{1}, \ldots, \eta^{n-1}$ do not lie in $V$. Take any function $\phi \in \mathcal{C}_{0}(\Omega)$ with $\phi: \Omega \rightarrow[0,1]$, $\phi\left(\eta^{n}\right)=1$ and $\operatorname{supp} \phi \subset V$. By construction, we have

$$
\left\langle\mu_{k} \phi\right\rangle=0, \quad \forall k \in K \quad \text { whereas } \quad\langle v \phi\rangle=\alpha^{n} \neq 0
$$

which contradicts the assumption $w^{*} \lim \mu_{i}=v$.
Step 2. We claim that the net of coefficients $\alpha_{i}^{n}$ satisfies $\alpha_{i}^{n} \rightarrow \alpha^{n}$ in $\mathbb{C}$. Otherwise there would exist a subnet $J \subset I$ and some $\varepsilon>0$ such that

$$
\left|\alpha_{j}^{n}-\alpha^{n}\right| \geq \varepsilon, \quad \forall j \in J
$$

By (ii) the subnets $\left(\omega_{j}^{r}\right)(j \in J)$ for $1 \leq r \leq n-1$ do not converge to $\eta^{n}$, hence there are a subnet $K \subset J \subset I$ and a neighbourhood $V$ of $\eta^{n}$ in $\Omega$ such that

$$
\omega_{k}^{1}, \ldots, \omega_{k}^{n-1} \notin V, \quad \forall j \in J
$$

Since $\omega_{j}^{n} \rightarrow \eta^{n}$, we have $\omega_{k}^{n} \in V$ for large enough $k \geq k_{0}$. We may assume that $V$ does not contain any of the points $\eta^{1}, \ldots, \eta^{n-1}$. Take any function $\psi \in \mathcal{C}_{0}(\Omega)$ with $\psi: \Omega \rightarrow[0,1]$, $\psi\left(\eta^{n}\right)=1$ and supp $\psi \subset V$. Then by construction

$$
\left\langle\mu_{k} \psi\right\rangle=\alpha_{k}^{n}, \quad\langle v \psi\rangle=\alpha^{n}, \quad \forall k \in K
$$

hence $\left|\left\langle\mu_{k}-v \psi\right\rangle\right|=\left|\alpha_{k}^{n}-\alpha^{n}\right| \geq \varepsilon$ which contradicts $w^{*} \lim \mu_{k}=v$.

## COROLLARY 3.2

Let $n \in \mathbb{N}$ be given. Let $\mu_{i}=\sum_{k=1}^{n} \alpha_{i}^{k} \delta_{\omega_{i}^{k}},(i \in I)$, be a net in $\mathfrak{M}_{n}(\Omega)$, and assume that $\mu_{i}$ is weak*-convergent to a point $v=\sum_{k=1}^{n} \alpha^{k} \delta_{\eta^{k}}$ that belongs to $\mathfrak{M}_{n}(\Omega)$. Then there is a reordering of $\left(\eta^{1}, \ldots, \eta^{n}\right)$ such that

$$
\omega_{i}^{r} \rightarrow \eta^{r} \quad \text { in } \quad \Omega \quad \text { and } \quad \alpha_{i}^{r} \rightarrow \alpha^{r} \quad \text { in } \quad \mathbb{C} \quad(1 \leq r \leq n)
$$

Proof. By (3.1), there is an index $k(1 \leq k \leq n)$ such that

$$
\begin{equation*}
\omega_{i}^{k} \rightarrow \eta^{k} \quad \text { in } \quad \Omega \quad \text { and } \quad \alpha_{i}^{k} \rightarrow \alpha^{k} \quad \text { in } \quad \mathbb{C} . \tag{6}
\end{equation*}
$$

After reordering the $n$-tuple $\left(\eta^{1}, \ldots, \eta^{n}\right)$ if needed, we may assume that the index $k$ is precisely $k=n$. Clearly $w^{*} \lim \alpha_{i}^{n} \delta_{\omega_{i}^{n}}=\alpha^{n} \delta_{\eta^{n}}$ by (6). Thus from

$$
\mu_{i}=\sum_{k=1}^{n} \alpha_{i}^{k} \delta_{\omega_{i}^{k}} \rightarrow v=\sum_{k=1}^{n} \alpha^{k} \delta_{\eta^{k}} \quad \text { and } \quad \alpha_{i}^{n} \delta_{\omega_{i}^{n}} \rightarrow \alpha^{n} \delta_{\eta^{n}}
$$

we derive

$$
\tilde{\mu_{i}}:=\sum_{k=1}^{n-1} \alpha_{i}^{k} \delta_{\omega_{j}^{k}} \rightarrow \tilde{v}:=\sum_{k=1}^{n-1} \alpha^{k} \delta_{\eta^{k}}
$$

A new application of (3.1), now to the net $\left(\tilde{\mu}_{i}\right)(i \in I)$ and the measure $\tilde{v}$ in the space $\mathfrak{M}_{n-1}(\Omega)$, and an induction argument completes the proof.

## 4. Convergence in the carrier space $\Omega$

Now we analyse the set $\Omega=\Omega / \sim$ of the classes defined by the partition $\Pi$ of $\Omega$. Clearly it is contained in the space $\mathcal{K}$ whose points are the compact subsets of $\Omega$ and it would be reasonable to consider the classical Hausdorff extension of the topology $\tau$ in $\Omega$ to a topology $\sigma$ in $\mathcal{K}$ and view $\Omega$ as a topological subspace of it. However, the cardinality function $S \mapsto \#(S)$ is not continuous, which is a trouble for our purpose. The discussion in the previous section and the definition of the bijection $T$ induced by $U^{*}$ suggest the consideration of the carrier space $\Omega / \sim$ as the finite union of the pairwise disjoint subsets

$$
\begin{equation*}
\boldsymbol{\Omega}=\bigcup_{1}^{N} \boldsymbol{\Omega}_{n}, \quad \boldsymbol{\Omega}_{n}:=\{S \in \Pi: \# S=k\}, \quad 1 \leq k \leq N \tag{7}
\end{equation*}
$$

where $N:=\sup _{S \in \Pi} \#(S)<\infty$ is a characteristic of the Banach lattice $\mathcal{C}_{0}(\Omega)$. Notice that $\boldsymbol{\Omega}_{n}$ is a subset of $\Pi$, but not a subset of $\Omega$, and that $\operatorname{supp}^{-1} \boldsymbol{\Omega}_{n}=\mathfrak{M}(\Omega)_{n}$.

We endow each $\boldsymbol{\Omega}_{n}$ with the topology that $\sigma$ induces on it and view $\boldsymbol{\Omega}$ as the disjoint direct topological sum of these spaces $\boldsymbol{\Omega}_{n}$. In this way we get a topological space $(\boldsymbol{\Omega}, \kappa)$ in which each of the $\boldsymbol{\Omega}_{n}$ is an open and closed subspace. Hence, in order to study the continuity properties of a function $f: \Omega \rightarrow X$, where $X$ is an arbitrary topological space, we need only to analyse the restrictions of $f$ to the $\boldsymbol{\Omega}_{n}$.

Recall that for $S \in \Omega$ we have $S=\operatorname{supp} \mu=\left\{\omega_{1}, \ldots, \omega_{r}\right\}$ for some pairwise distinct points $\omega_{k}$ in $\Omega$. For $\eta \in \Omega$, let $S_{\eta}$ denote the unique element of the partition $\Pi$ such that $\eta \in S_{\eta}$, and take open disjoint neighbourhoods $V_{k}$ of $\omega_{k}$ in $\Omega$. Then the family

$$
\begin{equation*}
\mathcal{E}_{\left(V_{1}, \ldots, V_{r}\right)}(S):=\left\{S_{\eta}: \eta \in V_{1} \cup \cdots \cup V_{r}\right\} \tag{8}
\end{equation*}
$$

where $\left(V_{1}, \ldots, V_{r}\right)$ ranges over the $r$-tuples of open disjoint neighbourhoods of the points $\omega_{k}$ in $S$, form a basis of neighbourhoods of $S$ for the restriction to $\Pi$ of the Hausdorff topology $\sigma$ on $\mathcal{K}$. First we consider the subspace $\left(\Omega_{n}, \kappa\right)$ with $n$ fixed and study convergence of nets. Recall that each point $S \in \boldsymbol{\Omega}_{n}$ is a finite subset of $\Omega, S \in \Pi$. In what follows we assume $S$ to have been ordered $S=\left\{s_{1}, \ldots, s_{n}\right\}$, however the particular order given to $S$ is not relevant.

## PROPOSITION 4.1

Let $S_{i}=\left\{\omega_{i}^{1}, \ldots, \omega_{i}^{n}\right\},(i \in L)$, and $S=\left\{\eta^{1}, \ldots, \eta^{n}\right\}$ be a net and a point in $\boldsymbol{\Omega}_{n}$ such that $\kappa \lim _{i \in I} S_{i}=S$. Then there are a subnet $S_{j},(j \in J)$ and an index $l$ with $1 \leq l \leq n$ such that the net $\left(\omega_{j}^{l}\right)$ converges to $\eta^{l}$ in $\Omega$.

Proof. Let $V_{1}, \ldots, V_{n}$ open pairwise disjoint neighbourhoods of the points $\eta^{1}, \ldots, \eta^{n}$ in $\Omega$. Then

$$
\mathcal{E}_{\left(V_{1}, \ldots, V_{n}\right)}:=\left\{\left\{\zeta^{1}, \ldots, \zeta^{n}\right\} \in \Omega_{n}: \zeta^{k} \in V_{k}, \quad 1 \leq k \leq n\right\}
$$

is a $\kappa$-neighborhood of $S$ in $\Omega_{n}$. By assumption we have $\kappa \lim _{i \in I} S_{i}=S$, hence there is an index $i_{0} \in I$ such that

$$
\begin{equation*}
S_{i} \subset V_{1} \cup \cdots \cup V_{n}, \quad \forall i \geq i_{0} \tag{9}
\end{equation*}
$$

Now we proceed by contradiction. Assume that for every subnet $S_{j}(J \subset I)$, the net $\left(\omega_{j}^{1}\right)$ does not converge in $\Omega$ to any of the points $\eta^{1}, \ldots, \eta^{n}$. Thus there exists a subnet $J \subset I$ such that

$$
\omega_{j}^{1} \notin V_{1}, \quad \forall j \in J
$$

Consider now the net $S_{j}(J \in J)$, which satisfies $\kappa \lim _{j \in J} S_{j}=S$. By assumption the net $\left(\omega_{j}^{1}\right)$ does not converge to any of the points $\eta^{2}, \ldots, \eta^{n}$, hence there exists a subnet $J^{\prime} \subset J \subset I$ such that

$$
\omega_{j}^{1} \notin V_{2}, \quad \forall j \in J^{\prime}
$$

After repeating this argument $n$ times we get a subnet $J^{n} \subset J^{n-1} \subset \cdots \subset I$ such that

$$
\omega_{j}^{1} \notin V_{1} \cup \cdots \cup V_{n}, \quad \forall j \in J^{n}
$$

which contradicts (9) and completes the proof.

## COROLLARY 4.2

Let $S_{i}=\left\{\omega_{i}^{1}, \ldots, \omega_{i}^{n}\right\},(i \in L)$, and $S=\left\{\eta^{1}, \ldots, \eta^{n}\right\}$ be a net and a point in $\boldsymbol{\Omega}_{n}$ such that $\kappa \lim _{i \in I} S_{i}=S$. Then, after reordering $S$ if needed, there is a subnet $\left(S_{k}\right),(K \subset I)$, such that $\lim _{i \in I} \omega_{i}^{l}=\eta^{l}$ for all $l$ with $1 \leq l \leq n$.

Proof. By (4.1) we have $\lim _{j \in J} \omega_{j}=\eta^{l}$ for a suitable subnet $J \subset I$ and some $l, 1 \leq$ $l \leq n$. Reordering $S$ we may assume that $l=1$. A repetition of the argument gives the result.

The above results clearly suggest the following weakened notion of continuity.

## DEFINITION 4.3

Let $n \in \mathbb{N}$ be fixed, and let $X$ be a topological space. A function $T: \boldsymbol{\Omega}_{n} \rightarrow X$ is said to be $\kappa$-continuous at a point $S_{0}=\left\{\eta^{1}, \ldots, \eta^{n}\right\}$ if, for each net $S_{i}=\left\{\omega_{i}^{1}, \ldots \omega_{i}^{n}\right\}$ in $\Omega_{n}$ with $\kappa \lim _{i \in I} S_{i}=S_{0}$, for each permutation $\pi$ of the indices $\{1, \ldots, n\}$ and for each subnet $\left(S_{j}\right)(J \subset I)$ such that

$$
\lim _{j \in J} \omega_{j}^{k}=\eta^{\pi(k)}, \quad 1 \leq k \leq n(\text { convergence in } \Omega)
$$

we have $\lim _{j \in J} T\left(S_{j}\right)=T\left(S_{0}\right)$ in the space $X$.
And $T$ is said to be $\kappa$-continuous in $\boldsymbol{\Omega}_{n}$ if it is $\kappa$-continuous at each point of $\boldsymbol{\Omega}_{n}$. Remark that $X$ is an arbitrary topological space, hence the case $X=\Omega_{n}$ is not excluded. Notice also that for $n=1$, the above definition clearly coincides with the usual notion of continuity.

## PROPOSITION 4.4

For each $n \in \mathbb{N}$, the restriction to $\Omega_{n}$ of the map $T: \Pi \rightarrow \Pi$ defined by (4.3) is $\kappa$-continuous on $\boldsymbol{\Omega}_{n}$.

Proof. Let $S_{i}=\left\{\omega_{i}^{1}, \ldots, \omega_{i}^{n}\right\}$ and $S_{0}=\left\{\eta^{1}, \ldots, \eta^{n}\right\}$ be a net and a point in $\Omega_{n}$ and assume that $\kappa \lim S_{i}=S_{0}$. By the definition, after a reordering of $S_{0}$ if needed, we may assume that

$$
\omega_{i}^{1} \rightarrow \eta^{1}, \ldots, \omega_{i}^{n} \rightarrow \eta^{n} \quad(\text { convergence in } \Omega)
$$

Hence $w^{*} \lim _{i} \delta_{\omega_{i}^{k}}=\delta_{\eta^{k}}$ for $1 \leq k \leq n$ and therefore for the Radon measures $\mu_{i}:=$ $\sum_{k=1}^{n} \delta_{\omega_{i}^{k}}$ and $\nu:=\sum_{k=1}^{n} \delta_{\eta^{k}}$ we have

$$
\begin{equation*}
w^{*} \lim _{i} \mu_{i}=v \tag{10}
\end{equation*}
$$

Now apply the operator $U^{*}: \mathfrak{M}(\Omega) \rightarrow \mathfrak{M}(\Omega)$ and remark these two facts:
(1) The measures $\mu_{i}$ belong to the space $\mathfrak{M}_{n}(\Omega)$ which is invariant under $U^{*}$, therefore we have

$$
\mu_{i}^{*}:=U^{*} \mu_{i}=\sum_{k=1}^{n} \alpha_{i}^{k} \delta_{\omega_{i}^{* k}}, \quad v^{*}:=U^{*} v=\sum_{k=1}^{n} \alpha^{k} \delta_{\eta^{* k}}
$$

for some $S^{*}=\left\{\omega_{i}^{* 1}, \ldots, \omega_{i}^{* n}\right\}$ and $S_{0} *=\left\{\eta^{* 1}, \ldots, \eta^{* n}\right\}$ where $S_{i}^{*}$ and $S_{0}^{*}$ are elements of $\Pi$.
(2) The operator $U^{*}$ is $w^{*}-w^{*}$-continuous, hence (10) gives $w^{*} \lim _{i} \mu_{i}^{*}=v^{*}$, that is

$$
w^{*} \lim _{i} \sum_{k=1}^{n} \alpha_{i}^{k} \delta_{\omega_{i}^{* k}}=\sum_{k=1}^{n} \alpha^{k} \delta_{\eta^{* k}}
$$

By (3.1), after a reordering of $S_{0}^{*}=\left\{\eta^{* 1}, \ldots, \eta^{n}\right\}$ if needed, we may assume that

$$
\omega_{i}^{* 1} \rightarrow \eta^{1 *}, \ldots, \omega^{* n} \rightarrow \eta^{* n}(\text { convergence in } \Omega)
$$

which means that the net of finite sets $S_{i}^{*}=\left\{\omega_{i}^{* 1}, \ldots, \omega_{i}^{* n}\right\}$ is $\kappa$-convergent to the finite set $S_{0}^{*}=\left\{\eta^{* 1}, \ldots, \eta^{* n}\right\}$. Since $S_{i}^{*}=\operatorname{supp} \mu_{i} *=T\left(S_{i}\right)$ and $S_{0}^{*}=\operatorname{supp} v^{*}=T\left(S_{0}\right)$, we have proven

$$
\kappa \lim S_{i}=S_{0} \Longrightarrow \kappa \lim T\left(S_{i}\right)=T\left(S_{0}\right)
$$

that is, the map $T=\operatorname{supp} \circ U^{*} \circ \operatorname{supp}^{-1}$ is $\kappa$-continuous.

## 5. Continuity of Hermitian operators

As stated in the introduction, each hermitian operator $A: \mathcal{C}_{0}(\Omega) \rightarrow \mathcal{C}_{0}(\Omega)$ on the Banach lattice $E:=\left(\mathcal{C}_{0}(\Omega),\|\cdot\|\right)$ gives rise to a uniquely determined family of maps $\mathbf{a}^{A}: S \rightarrow$ $\mathbf{a}^{A}(S)$, where for each $S \in \Pi, \mathbf{a}^{A}(S)$ is a linear transformation of the finite-dimensional $\mathbf{C}^{*}$-algebra $\mathcal{C}(S)$ (that is, $\mathbf{a}^{A}(S) \in \mathcal{L}(\mathcal{C}(S))$ ), such that

$$
\begin{equation*}
\left.(A f)\right|_{S}=\mathbf{a}^{A}(S)\left(\left.f\right|_{S}\right), \quad \forall S \in \Pi, \quad \forall f \in \mathcal{C}_{0}(\Omega) \tag{11}
\end{equation*}
$$

We discuss the continuity properties of the map $S \mapsto \mathbf{a}^{A}(S), S \in \Pi$, for which we first analyse its restriction to $\Omega_{n}$ with $n$ fixed.

Let us assume that $\Omega$ is compact, hence $\mathcal{C}_{0}(\Omega)$ is a unital $\mathbf{C}^{*}$-algebra with unit element the constant function $1_{\Omega}$. When the relation (11) is applied to $f:=1_{\Omega}$, we get

$$
\begin{equation*}
\left.\left(A 1_{\Omega}\right)\right|_{S}=\mathbf{a}^{A}(S)\left(\left.1\right|_{S}\right), \quad \forall S \in \Omega_{n} \tag{12}
\end{equation*}
$$

Here $1_{S}$ is the unit of the $\mathrm{C}^{*}$-algebra $\mathcal{C}(S)$ (hence defined in an intrinsic way) and neither $1_{S}$ nor its image by $\mathbf{a}^{A}(S)$ (which is $\left.\left(A 1_{\Omega}\right)\right|_{S}$ in accordance with (6.1)) depend on the particular order we choose for the set $S$. We refer to $S \mapsto \mathbf{a}^{A}(S)\left(1_{S}\right)$ as the action of the family $\mathbf{a}^{A}$ on the units $\mathbf{1}_{S}$, and we shall prove that this action $\mathbf{a}^{A}: \boldsymbol{\Omega}_{n} \rightarrow \mathbb{C}^{n}$ is continuous (in the sense of Definition (4.3)). Remark that in the classical case, when all sets $S$ are singletons $S=\{\omega\}$, this action can be identified with the multiplication by a continuous complex-valued function.

## PROPOSITION 5.1

Let $\Omega$ be a compact topological space and let A be a hermitian operator on the Banach lattice $E=\left(\mathcal{C}_{0}(\Omega),\|\cdot\|\right)$. Then for each $n \in \mathbb{N}$, the action of the family $\mathbf{a}^{A}: S \rightarrow \mathbf{a}^{A}(S)$, ( $S \in \boldsymbol{\Omega}_{n}$ ), associated to A by (6.1) is $\kappa$-continuous on $\boldsymbol{\Omega}_{n}$.
Proof. Let $S_{i}=\left\{\omega_{i}^{1}, \ldots, \omega_{i}^{n}\right\}(i \in I)$ and $S_{0}=\left\{\eta^{1}, \ldots, \eta^{n}\right\}$ be a net and a point in $\boldsymbol{\Omega}_{n}$ such that $\lim _{i \in I} S_{i}=S_{0}$ in the $\kappa$ topology of the space $\Omega_{n}$. We have to show that, for any reordering of $S_{0}$ and for every subnet $\left(S_{j}\right)(J \subset I)$ such that

$$
\lim _{j \in J} \omega_{j}^{1}=\eta^{\pi(1)}, \ldots, \lim _{j \in J} \omega^{n}=\eta^{\pi(n)}(\text { convergence in } \Omega),
$$

we have $\lim _{j \in J} \mathbf{a}^{A}\left(S_{j}\right)=\mathbf{a}^{A}\left(S_{0}\right)$ (convergence in $\mathbb{C}^{n}$ ).
Let a reordering of $S_{0}$ and a subnet $\left(S_{j}\right)(J \subset I)$ of $\left(S_{i}\right)$ be given in the above conditions. Without loss of generality we may assume that the reodering of $S_{0}$ corresponds with the natural permutation $\pi=\mathrm{Id}$ of the indices $1 \leq k \leq n$. Since $1_{\Omega} \in \mathcal{C}_{0}(\Omega)$, its image $A 1_{\Omega} \in \mathcal{C}_{0}(\Omega)$ is uniformly continuous on the compact set $K:=\left\{\eta^{1}, \ldots, \eta^{n}\right\}$. Thus, given any $\varepsilon>0$ there are pairwise disjoint open neighbourhoods $V_{1}, \ldots, V_{n}$ of the points $\eta^{1}, \ldots, \eta^{n}$ in $\Omega$ such that

$$
\begin{equation*}
\left|\left(A 1_{\Omega}\right)(s)-\left(A 1_{\Omega}\right)(t)\right| \leq \varepsilon \tag{13}
\end{equation*}
$$

whenever $s$ and $t$ lie in one of the $V_{k}$ for some $k$ with $1 \leq k \leq n$. Now

$$
\mathcal{E}_{\left(V_{1}, \ldots, V_{n}\right)}:=\left\{\left\{\zeta^{1}, \ldots, \zeta^{n}\right\} \in \Omega_{n}: \zeta^{k} \in V_{k}, 1 \leq k \leq n\right\}
$$

is a $\kappa$-neighbourhood of $S_{0}$ in $\Omega_{n}$ and by assumption the subnet $\left(S_{j}\right)$ satisfies

$$
\lim _{j \in J} \omega_{j}^{1}=\eta^{1}, \ldots, \lim _{j \in J} \omega_{j}^{n}=\eta^{n} \quad(\text { convergence in } \Omega)
$$

Therefore, if $j \geq j_{0}$ is large enough we have $\omega_{j}^{k} \in V_{k}(1 \leq k \leq n)$, and by (13)

$$
\left|\left(A 1_{\Omega}\right)\left(\omega_{j}^{k}\right)-\left(A 1_{\Omega}\right)\left(\eta^{k}\right)\right| \leq \varepsilon, \quad 1 \leq k \leq n, \quad \forall j \leq j_{0}
$$

Since the action $\mathbf{a}^{A}$ is given by $\mathbf{a}^{A}(S):=\mathbf{a}^{A}(S)\left(1_{S}\right)=\left.\left(A 1_{\Omega}\right)\right|_{S}$ for all $S \in \Omega_{n}$, the above can be written in the form

$$
\left|\mathbf{a}^{A}\left(S_{j}\right)\left(1_{S_{j}}\right)-\mathbf{a}^{A}\left(S_{0}\right)\left(1_{S_{0}}\right)\right| \leq \varepsilon, \quad \forall j \geq j_{0}
$$

which completes the proof.

## 6. Continuity of the isometry-valued map $S \mapsto \mathbf{u}(S)$

As stated in the Introduction, each surjective linear isometry $U: \mathcal{C}_{0}(\Omega) \rightarrow \mathcal{C}_{0}(\Omega)$ of the Banach lattice $E:=\left(\mathcal{C}_{0}(\Omega),\|\cdot\|\right)$ gives rise to the following intertwined elements:
(1) A uniquely determined partition $\Pi$ of the set $\Omega$ into pairwise disjoints subsets $S \subset \Omega$ and a uniquely determined bijection $T: \Pi \rightarrow \Pi$ such that $\# T(S)=\# S$ for all $S \in \Pi$.
(2) A family $\langle\cdot, \cdot\rangle_{S}$ of inner products on the finite-dimensional function spaces $\mathcal{C}(S)$, $S \in \Pi$, such that

$$
\left\{\left.f\right|_{S}:\|f\| \leq 1\right\}=\left\{\phi \in \mathcal{C}(S):\langle\phi \phi\rangle_{S} \leq 1\right\}
$$

(3) A family $[\mathbf{u}(S): S \in \Pi]$ of surjective linear $\langle\cdot, \cdot\rangle_{S}$-unitary operators $\mathbf{u}(S): \mathcal{C}(T(S)) \rightarrow$ $\mathcal{C}(S)$ such that

$$
\left.(U f)\right|_{S}=\mathbf{u}(S)\left(\left.f\right|_{T(S)}\right), \quad \forall f \in \mathcal{C}_{0}(\Omega), \quad \forall S \in \Pi
$$

If $\Omega$ is compact and we apply the above relation to the unit $1_{\Omega}$ of the $\mathrm{C}^{*}$-algebra $\mathcal{C}_{0}(\Omega)$ we get

$$
\begin{equation*}
\left.\left(U 1_{\Omega}\right)\right|_{S}=\mathbf{u}(S)\left(1_{T(S)}\right), \quad \forall S \in \Pi \tag{14}
\end{equation*}
$$

In the classical case both $\mathcal{C}(T(S))$ and $\mathcal{C}(S)$ are canonically isomorphic to $\mathbb{C}$, and the isometry $\mathbf{u}(S)$ can be identified with its value $\mathbf{u}(T(S))$ at the unit $1_{T(S)}$ of $\mathcal{C}(T(S))$. Thus, in general we are led to consider the action of the isometry $\mathbf{u}$ at the unit $1_{T(S)}$, that is, the map $\boldsymbol{\Omega}_{n} \rightarrow \mathbb{C}^{n}$ given by $S \mapsto \mathbf{u}\left(\mathbf{1}_{T(S)}\right)$ and we have

## PROPOSITION 6.1

Let $\Omega$ be a compact topological space and let $U$ be a surjective linear isometry of the Banach lattice $E=\left(\mathcal{C}_{0}(\Omega),\|\cdot\|\right)$. Then for each $n \in \mathbb{N}$, the function $\mathbf{u}: \Omega_{n} \rightarrow \mathbb{C}^{n}$ given by $S \mapsto \mathbf{u}\left(\mathbf{1}_{T(S)}\right)$ is $\kappa$-continuous on $\boldsymbol{\Omega}_{n}$.

Proof. Let $S_{i}=\left\{\omega_{i}^{1}, \ldots, \omega_{i}^{n}\right\}(i \in I)$ and $S_{0}=\left\{\eta^{1}, \ldots, \eta^{n}\right\}$ be a net and a point in $\boldsymbol{\Omega}_{n}$ such that $\lim _{i \in I} S_{i}=S_{0}$ in the $\kappa$ topology of the space $\Omega_{n}$. We have to show that, for any reordering $\pi$ of $S_{0}$ and for every subnet $\left(S_{j}\right)(J \subset I)$ such that

$$
\lim _{j \in J} \omega_{j}^{1}=\eta^{\pi(1)}, \ldots, \lim _{j \in J} \omega^{n}=\eta^{\pi(n)} \quad(\text { convergence in } \Omega)
$$

we have $\lim _{j \in J} \mathbf{u}\left(S_{j}\right)\left(1_{T\left(S_{j}\right)}\right)=\mathbf{u}\left(S_{0}\right)\left(1_{T\left(S_{0}\right)}\right)$, where the limit is taken in $\mathbb{C}^{n}$. By (14) the latter is equivalent to

$$
\begin{equation*}
\left.\lim _{j \in J}\left(U 1_{\Omega}\right)\right|_{S_{j}}=\left.\left(U 1_{\Omega}\right)\right|_{S_{0}} \tag{15}
\end{equation*}
$$

Let a reordering of $S_{0}$ and a subnet $\left(S_{j}\right)(J \subset I)$ of $\left(S_{i}\right)$ be given in the above mentioned conditions. Without loss of generality, we may assume that the reodering of $S_{0}$ corresponds with the natural permutation $\pi=$ Id of the indices $1 \leq k \leq n$. Since $1_{\Omega} \in \mathcal{C}_{0}(\Omega)$, its image $U 1_{\Omega} \in \mathcal{C}_{0}(\Omega)$ is uniformly continuous on the compact set $K:=\left\{\eta^{1}, \ldots, \eta^{n}\right\}$. Thus, given any $\varepsilon>0$ there are pairwise disjoint open neighbourhoods $V_{1}, \ldots, V_{n}$ of the points $\eta^{1}, \ldots, \eta^{n}$ in $\Omega$ such that

$$
\begin{equation*}
\left|\left(U 1_{\Omega}\right)(s)-\left(U 1_{\Omega}\right)(t)\right| \leq \varepsilon \tag{16}
\end{equation*}
$$

whenever $s$ and $t$ lie in one of the $V_{k}$ for some $k$ with $1 \leq k \leq n$. Now

$$
\mathcal{E}_{\left(V_{1}, \ldots, V_{n}\right)}:=\left\{\left\{\zeta^{1}, \ldots, \zeta^{n}\right\} \in \Omega_{n}: \zeta^{k} \in V_{k}, 1 \leq k \leq n\right\}
$$

is a $\kappa$-neighbourhood of $S_{0}$ in $\Omega_{n}$ and by assumption the subnet $\left(S_{j}\right)$ satisfies

$$
\lim _{j \in J} \omega_{j}^{1}=\eta^{1}, \ldots, \lim _{j \in J} \omega_{j}^{n}=\eta^{n} \quad(\text { convergence in } \Omega)
$$

Therefore for $j \geq j_{0}$ large enough, we have

$$
\omega_{j}^{k} \in V_{k}, \quad 1 \leq k \leq n \quad \forall j \geq j_{0}
$$

and so from (16) we obtain

$$
\left|\left(U 1_{\Omega}\right)\left(\omega_{j}^{k}\right)-\left(U 1_{\Omega}\right)\left(\eta^{k}\right)\right| \leq \varepsilon, \quad 1 \leq k \leq n, \quad \forall j \leq j_{0}
$$

which is (15) and completes the proof.

## References

[1] Isidro J M and Stachó L L, Holomorphic invariants for continuous bounded symmetric Reinhadrt domains, Acta Sci. Math. (Szeged) 70 (2004) 623-637
[2] Schaeffer H H, Banach lattices of positive operators, Grundl. Math. Wiss. 215 (Berlin: Springer) (1974)
[3] Stachó L L, A Banach-Stone type theorem for lattice norms in $\mathcal{C}_{0}$ - spaces, Acta Sci. Math. (Szeged) 73 (2007) 193-208
[4] Stachó L L, Continuous Reinhardt domains from a Jordan viewpoint, Studia Math. 185(2) (2008) 177-199
[5] Stachó L L and Zalar B, Symmetric continuous Reinhardt domains, Arch. Math. (Basel) 81(2) (2003) 619-636

