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Abstract: Given a complex Hilbert space H, we study the manifold A of algebraic elements

in Z = L(H). We represent A as a disjoint union of closed connected subsets M of Z each of

which is an orbit under the action of G, the group of all C∗-algebra automorphisms of Z. Those

orbits M consisting of hermitian algebraic elements with a fixed finite rank r, (0 < r < ∞) are

real-analytic direct submanifolds of Z. Using the C∗-algebra structure of Z, a Banach-manifold

structure and a G-invariant torsionfree affine connection ∇ are defined on M , and the geodesics

are computed. If M is the orbit of a finite rank projection, then a G-invariant Riemann structure

is defined with respect to which ∇ is the Levi-Civita connection.
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1 Introduction

In this paper we are concerned with certain infinite-dimensional Grassmann manifolds

in Z : = L(H), the space of bounded linear operators z : H → H in a complex Hilbert

space H. Grassmann manifolds are a classical object in Differential Geometry and in

recent years several authors have considered them in the Banach space setting. Besides

the Grassmann structure, a Riemann and a Kähler structure has sometimes been defined

even in the infinite-dimensional setting. Let us recall some aspects of the topic that are

relevant for our purpose.
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The study of the manifold of minimal projections in a finite-dimensional simple for-

mally real Jordan algebra was made by U. Hirzebruch in [4], who proved that such a

manifold is a compact symmetric Riemann space of rank 1, and that every such a space

arises in this way. Later on, Nomura in [13, 14] established similar results for the manifold

of fixed finite rank projections in a topologically simple real Jordan-Hilbert algebra. In

[7], the authors studied the Riemann structure of the manifold of finite rank projections in

Z without the use of any global scalar product. As pointed out there, the Jordan-Banach

structure of Z encodes information about the differential geometry of some manifolds

naturally associated to it, one of which is the manifold of algebraic elements in Z. On

the other hand, the Grassmann manifold of all projections in Z has been discussed by

Kaup in [11]. See also [1, 8] for related results.

It is therefore reasonable to study the manifold of algebraic elements in Z. We restrict

our considerations to the set A of all normal algebraic elements in Z that have finite

rank. Normality allows us to use spectral theory which is an essential tool. In the case

H = C
n all elements in Z are algebraic (as any square matrix is a root of its characteristic

polynomial) and have finite rank, whereas for arbitrary H the set of all (finite and non

finite rank) algebraic elements is norm total in Z, see [5] (Lemma 3.11). Under the above

restrictions A is represented as a disjoint union of closed connected subsets M of Z, each

of which is homogeneous and invariant under the natural action of G, the group of all

C∗-automorphisms of Z. Actually these sets are the orbits of G in A. The family of these

orbits is quite plentiful and different orbits may have quite different properties. If an orbit

M contains a hermitian element then all elements in M are hermitian and M turns out

to be a closed real-analytic direct submanifold of Z. Using algebraic tools, a real-analytic

Banach-manifold structure and a G-invariant affine connection ∇ are defined on M in

that case, and the ∇-geodesics are computed. For a ∈ M , the restriction to M of the

Peirce reflection Sa on Z around the projection a := supp(a) is a real-analytic involution

of M for which a is a fixed point. The set FixM(Sa) of the fixed points of such involution

is a direct real-analytic submanifold of Z. If a is a finite rank projection then M is a

symmetric manifold.

For an orbit M and a point a ∈ M , the following conditions on TaM are known to be

equivalent: (1) TaM is linearly homeomorphic to a Hilbert space, (2) TaM is a reflexive

Banach space, (3) the rank of a is finite. If these conditions hold for some a ∈ M , then

this occurs for all a ∈ M . If in addition a is a finite rank projection, then a G-invariant

Riemann structure can be defined on M . We take a JB∗-triple system approach instead

of the Jordan-algebra approach of [13, 14]. As noted in [1] and [6], within this context

the algebraic structure of JB∗-triple acts as a substitute for the Jordan algebra structure.

Since M consists of elements with a fixed finite rank r, (0 < r < ∞), the JB∗-triple

structure provides a local scalar product known as the algebraic metric of Harris ([2],

prop. 9.12). Although Z is not a Hilbert space, the use of the algebraic scalar product

allows us to define a G-invariant Riemann structure on M for which ∇ is the Levi-Civita

connection.
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2 Algebraic preliminaries.

For a complex Banach space X denote by XR the underlying real Banach space, and

let L(X) and LR(X) respectively be the Banach algebra of all bounded complex-linear

operators on X and the Banach algebra of all bounded real-linear operators on XR. A

complex Banach space Z with a continuous mapping (a, b, c) 7→ {abc} from Z ×Z ×Z to

Z is called a JB*-triple if the following conditions are satisfied for all a, b, c, d ∈ Z, where

the operator a¤b ∈ L(Z) is defined by z 7→ {abz} and [ , ] is the commutator product:

(1) {abc} is symmetric complex linear in a, c and conjugate linear in b.

(2) [a¤b, c¤d] = {abc}¤d − c¤{dab}.

(3) a¤a is hermitian and has spectrum ≥ 0.

(4) ‖{aaa}‖ = ‖a‖3.

If a complex vector space Z admits a JB*-triple structure, then the norm and the triple

product determine each other. For x, y, z ∈ Z we write L(x, y)(z) = (x2y)(z) and

Q(x, y)(z) := {xzy}. Note that L(x, y) ∈ L(Z) whereas Q(x, y) ∈ LR(Z), and that

the operators La = L(a, a) and Qa = Q(a, a) commute. A derivation of a JB*-triple Z

is an element δ ∈ L(Z) such that δ{zzz} = {(δz)zz} + {z(δz)z} + {zz(δz)} and an

automorphism is a bijection φ ∈ L(Z) such that φ{zzz} = {(φz)(φz)(φz)} for z ∈ Z.

The latter occurs if and only if φ is a surjective linear isometry of Z. The group Aut(Z)

of automorphisms of Z is a real Banach-Lie group whose Banach-Lie algebra is the set

Der(Z) of all derivations of Z. The connected component of the identity in Aut(Z) is

denoted by Aut
◦(Z). Two elements x, y ∈ Z are orthogonal if x¤y = 0 and e ∈ Z is

called a tripotent if {eee} = e, the set of which is denoted by Tri(Z). For e ∈ Tri(Z), the

set of eigenvalues of e2e ∈ L(Z) is contained in {0, 1
2
, 1} and the topological direct sum

decomposition, called the Peirce decomposition of Z,

Z = Z1(e) ⊕ Z1/2(e) ⊕ Z0(e) (1)

holds. Here Zk(e) is the k- eigenspace of e2e and the Peirce projections are

P1(e) = Q2(e), P1/2(e) = 2(e2e − Q2(e)), P0(e) = Id − 2e2e + Q2(e).

We will use the Peirce rules {Zi(e) Zj(e) Zk(e)} ⊂ Zi−j+k(e) where Zl(e) = {0} for l 6=

0, 1/2, 1. In particular, every Peirce space is a JB∗-subtriple of Z and Z1(e)2Z0(e) =

{0} = Z0(e)2Z1(e).

A JB∗-triple Z may have no non-zero tripotents however the set of them is plentiful

if Z is a dual Banach space.
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Let e = (e1, · · · , en) be a finite sequence of non-zero mutually orthogonal tripotents

ej ∈ Z, and define for all integers 0 ≤ j, k ≤ n the linear subspaces

Zjj(e) = Z1(ej) 1 ≤ j ≤ n,

Zjk(e) = Zkj(e) = Z1/2(ej) ∩ Z1/2(ek) 1 ≤ j, k ≤ n, j 6= k,

Z0j(e) = Zj0(e) = Z1/2(ej) ∩
⋂

k 6=j

Z0(ek) 1 ≤ j ≤ n,

Z00(e) =
⋂

1≤j≤n

Z0(ej).

(2)

Then the following topologically direct sum decomposition, called the joint Peirce decom-

position relative to the family e, holds

Z =
( ⊕

0≤k≤n

Zk0(e)
)
⊕

( ⊕

1≤k<j≤n

Zkj(e)
)
⊕

( ⊕

1≤k≤n

Zkk(e)
)
. (3)

The Peirce spaces multiply according to the rules {ZjmZmnZnk} ⊂ Zjk, and all products

that cannot be brought to this form (after reflecting pairs of indices if necessary) vanish.

The projectors Pkj(e) : Z → Zkj(e), called joint Peirce projectors, are invariant under the

group Aut(Z), that is, they satisfy

Pkj(h(e)) = hPkj(e)h−1, h ∈ Aut(Z),

where h(e) := (h(e1), · · ·h(en)), and the explicit formula for the Pkj(e) can be found

in [5] (Lemma 3.15). If W is a complex Banach space with an involution ∗, then its

selfadjoint part Ws := {w ∈ W : w∗ = w} is a purely real Banach space. In the joint

Peirce decomposition of Z relative to the orthogonal family e := (e1, · · · , en) every Peirce

space Zjk(e), (0 ≤ j ≤ k ≤ n), is invariant under the natural involution ∗ of Z, hence

they are complex Banach spaces with involution too.

Recall that every C*-algebra Z is a JB*-triple with respect to the triple product

2{abc} := (ab∗c + cb∗a). In that case, every projection in Z is a tripotent and more

generally the tripotents are precisely the partial isometries in Z. C∗-algebra deriva-

tions and C∗-automorphisms are derivations and automorphisms of Z as a JB∗-triple

though the converse is not true. More precisely, for Z = L(H), the group of C∗-

algebra automorphisms consists of those elements in Aut(Z) that fix the unit of Z, i.e.,

G = {g ∈ Aut(Z) : g(1) = 1}.

We refer to [9], [11], [15] and the references therein for the background of JB∗-triple

theory, and to [12] for the finite dimensional case.

3 Banach manifolds of algebraic elements in L(H).

From now on, Z will denote the C∗-algebra L(H). An element a ∈ Z is said to be

algebraic if it satisfies the equation p(a) = 0 for some non identically null polynomial

p ∈ C[X]. By elementary spectral theory σ(a), the spectrum of a in Z, is a finite set
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whose elements are roots of the algebraic equation p(λ) = 0. In case a is normal we have

a =
∑

λ∈σ(a)

λ eλ

where λ and eλ are, respectively, the spectral values and the corresponding spectral

projections of a. If 0 ∈ σ(a) then e0, the projection onto ker(a), satisfies e0 6= 0 but in

the above representation the summand 0 e0 is null and will be omitted. Thus for normal

algebraic elements a ∈ Z we have

a =
∑

λ∈σ(a)\{0}

λ eλ (4)

In particular, in (4) the numbers λ are non-zero pairwise distinct complex numbers and

the eλ are pairwise orthogonal non-zero projections. We say that a has finite rank if

dim a(H) < ∞, which always occurs if dim(H) < ∞. Set rλ := rank(eλ). Then a has

finite rank if and only if rλ < ∞ for all λ ∈ σ(a)\{0} (the case 0 ∈ σ(a) and dim ker a = ∞

may occur and still a has finite rank).

Hence every finite rank normal algebraic element a ∈ Z gives rise to: (i) a positive

integer n which is the cardinal of σ(a)\{0}, (ii) an ordered n-tuple (λ1, · · · , λn) of numbers

in C\{0}, which is the set of the pairwise distinct non-zero spectral values of a, (iii)

an ordered n-tuple (e1, · · · , en) of non-zero pairwise orthogonal projections, and (iii) an

ordered n-tuple (r1, · · · , rn) where rk ∈ N\{0} is the rank of the spectral projection ek.

The spectral resolution of a is unique except for the order of the summands in (4),

therefore these three n-tuples are uniquely determined up to a permutation of the indices

(1, · · · , n). The operator a can be recovered from the set of the first two ordered n-tuples,

a being given by (4).

Given the n-tuples Λ := (λ1, · · · , λn) and R := (r1, · · · , rn) in the above conditions,

we let

M(n, Λ, R) := {
∑

k

λkek : ejek = 0 for j 6= k, rank(ek) = rk, 1 ≤ j, k ≤ n } (5)

be the set of the elements (4) where the coefficients λk and ranks rk are given and the ek

range over non-zero, pairwise orthogonal projections of rank rk. For instance, for n = 1,

Λ = {1} and R = {r} we obtain the manifold of projections with a given finite rank r,

that was studied in [7].

The involution z 7→ z∗ on Z is a C∗-algebra antiautomorphism that fixes every pro-

jection, preserves normality, orthogonality and ranks, hence it maps the set A onto itself.

For the n-tuple Λ = (λ1, · · · , λn) we set Λ∗ := (λ̄1, · · · , λ̄n). Then z 7→ z∗ induces a

map M(n, Λ, R) → M(n, Λ, R)∗ where M(n, Λ, R)∗ = {z∗ : z ∈ M} = M(n, Λ∗, R), and

Λ ⊂ R
n if and only if M(n, Λ, R) consists of hermitian elements.

To a normal algebraic element a =
∑

λ∈σ(a)\{0} λeλ we associate a, called the support

of a, and e where

a = supp(a) :=
∑

λ∈σ(a)\{0}

eλ = e1 + · · · + en, e := e(a) := (e1, · · · , en).
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Proposition 3.1. Let A and H be the set of all normal (respectively, hermitian) algebraic

elements of finite rank in Z, and let M(n, Λ, R) be defined as in (5). Then

A =
⋃

n, Λ, R

M(n, Λ, R), H =
⋃

n, Λ=Λ∗, R

M(n, Λ, R) (6)

is a disjoint union of G-invariant closed connected subsets of Z on each of which the group

G acts transitively. The sets M = M(n, Λ, R) are the orbits of G in A (respectively, in

H).

Proof. It suffices to prove the statements concerning A. We have seen that A ⊂⋃
n, Λ, R M(n, Λ, R). Conversely, let a belong to some M(n, Λ, R) hence we have a =∑
k λkek for some orthogonal projections ek. Then Id = (e1 + · · · + en) + f where f is

the projection onto ker(a) if 0 ∈ σ(a) and f = 0 otherwise. The above properties of the

ek, f yield easily ap(a) = 0 or p(a) = 0 according to the cases, where p ∈ C[X] is the

polynomial p(z) = (z − λ1). · · · .(z − λn). Hence a ∈ A. Clearly (6) is union of disjoint

subsets.

Fix one of the sets M := M(n, Λ, R) and take any pair a, b ∈ M . Then

a = λ1p1 + · · · + λnpn, b = λ1q1 + · · · + λnqn.

In case 0 ∈ σ(a), set p0 := Id−
∑

k pk and q0 := Id−
∑

k qk. Since rank pk=rank qk < ∞,

the projections pk and qk are unitarily equivalent and so are p0 and q0. Let us choose

orthonormal basis Bp
k and Bq

k in the ranges pk(H) and qk(H) for k = 0, 1, · · · , n. Then⋃
k B

p
k and

⋃
k B

q
k are two orthonormal basis in H. The unitary operator U ∈ Z that

exchanges these basis satisfies Ua = b. In particular, M is the orbit of any of its points

under the action of the unitary group of H. Since this group is connected and its action

on Z is continuous, M is connected.

By the orthogonality properties of the ek, the successive powers of a have the expres-

sion

al = λl
1e1 + · · · + λl

nen, 1 ≤ l ≤ n,

where the determinant det(λl
k) 6= 0 does not vanish since it is a Vandermonde determinant

and the λk are pairwise distinct. Thus the ek are polynomials in a whose coefficients are

rational functions of the λk.

Now we show that M is a closed subset of Z. Let w ∈ M and let (zµ)µ∈N be a sequence

in M such that limµ→∞ zµ = w. We have to show that w ∈ M . Each point zµ has a

spectral resolution of the form

zµ = λ1e1µ + · · · + λnenµ, µ ∈ N, (7)

where the spectral values Λ = (λ1, · · · , λn) are fixed. By the above, each projection ekµ,

(1 ≤ k ≤ n), is a polynomial in zµ, say

ekµ = f1k(Λ)zµ + f2k(Λ)z2
µ + · · · + fnk(Λ)zn

µ , 1 ≤ k ≤ n, µ ∈ N, (8)
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where the coefficients fkj(Λ) are rational functions of the spectral values Λ = (λ1, · · · , λn)

and do not depend on the index µ ∈ N. Since limµ→∞ zµ = w and the power operation

in Z is continuous, the expression (8) yields the existence of the limit

ek := lim
µ→∞

ekµ = f1k(Λ)w + f2k(Λ)w2 + · · · + fnk(Λ)wn, 1 ≤ k ≤ n.

In particular, each of the sequences (ekµ)µ∈N, (1 ≤ k ≤ n), is a Cauchy sequence in Z and

more precisely in the subset of Z that consists of the projections that have a fixed given

finite rank rk. Since the latter set is closed, we have rank(ek) = rk. Taking the limit for

µ → ∞ in (7) we get w = λ1e1 + · · · + λnen which shows w ∈ M . This completes the

proof. ¤

To establish our main result [Theorem (3.4) below] we need some notation and tech-

nical results. To a normal algebraic element a ∈ Z with spectral resolution a =
∑

k λkek,

we associate the Peirce space

Ξ(e) := Z1/2(e1) + · · · + Z1/2(en) ⊂ Z. (9)

Remark that Ξ(e) is linearly homeomorphic to a closed subspace of the product Z1/2(e1)×

· · ·×Z1/2(en). Indeed, the spaces Z1/2(ek), (1 ≤ k ≤ n), are not direct summands in Ξ(e),

however by ([12], th. 3.14 (3)) and ([5], lemma 3.15), Ξ(e) is a topologically complemented

subspace of Z and we have

Ξ(e) =
( ⊕

1≤r<s≤n

Zrs

)
⊕

( ⊕

1≤k≤n

Zk0

)
. (10)

Hence each u ∈ Ξ(e) determines in a unique way the projections ur,s and uk,0 of u onto

the subspaces Zr,s(e) and Zk,0(e), which in turn give in a unique way vectors uk := uk,0 +∑
r 6=k ur,k satisfying uk ∈ Z1/2(ek) and u =

∑
1≤k≤n uk. The map φ : u 7→ (u1, · · · , un),

(u ∈ Ξ(e)), where the uk have been just defined, is injective since (10) is a direct sum,

hence it is an isomorphism onto the image φ
(
Ξ(e)

)
⊂

∏n
k=1 Z1/2(ek). When this product

space is endowed with the norm of the supremum, φ is continuous by the continuity of

the Peirce projectors and the inverse φ−1 : (u1, · · · , un) 7→ u =
∑

k uk is also continuous.

In particular φ
(
Ξ(e)

)
is closed in

∏n
k=1 Z1/2(ek) and we shall always identify Ξ(e) with

its image φ
(
Ξ(e)

)
⊂

∏n
k=1 Z1/2(ek).

We define JB∗-triple inner derivation valued map Φa : Ξ(e) → Der(Z) by

Φa(u) :=
∑

1≤k≤n

(ek¤uk − uk¤ek) u = (u1, · · · , un) ∈ Ξ(e). (11)

Remark that all Peirce spaces Zk,j(e) as well as Ξ(e) are invariant under the canonical

adjoint operation of Z = L(Z). By ([5], lemma 3.15) for 1 ≤ k 6= j ≤ n the Peirce

projector onto the space Zkj(e) = Z1/2(ek)∩Z1/2(ej) is the operator Pkj(e) = 4Q(ek, ej)
2.

Therefore the map Zkj(e) → Zkj(e) defined by

w 7→ w# := 2Q(ek, ej)w (w ∈ Zkj(e))
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is a conjugate-linear involution on Zkj(e) which induces a decomposition of this space

into the direct sum of the ±-eigensubspaces of Q(ek, ej). Finally by ([1] th. 3.1), for

u = (u1, · · · , un) in the selfadjoint part Ξ(e)s of Ξ(e) the triple derivation Φa(u) is

actually a C∗-algebra derivation and we define the space

Dera(Z) := {Φa(u) : u = u∗ ∈ Ξ(e)s}.

Lemma 3.2. Let a =
∑

k λkek be the spectral resolution of a normal algebraic element

in Z. Let u =
∑

k uk where uk ∈ Z1/2(ek) and uk = u∗
k are selfadjoint elements for

k = 1, · · · , n. Let uk = uk0 +
∑

r 6=k urk be the joint Peirce decomposition of uk relative

to e. Then

[Φa(u)]a =
1

2

∑

1≤j, k≤n
j 6=k

(λj − λk)ukj −
1

2

∑

1≤k≤n

λkuk0. (12)

Proof. First we check that

{ekukej} = Q(ek, ej)(uk) =
1

2
ukj for k 6= j and {ekukek} = 0 (1 ≤ j, k ≤ n). (13)

Clearly {ekukek} = Q(ek)uk ∈ Q(ek)Z1/2(ek) = 0 by the Peirce rules. For k 6= j we have

uk,0 ∈ Z1/2(ek) ∩
⋂

r 6=k Z0(er) ⊂ Z0(ej) hence {ekuk0ej} = 0. By ([5], lemma 3.15) for

1 ≤ k 6= j ≤ n we have Pkj(e) = 4Q(ek, ej)
2. Since the uk are ∗-selfadjoint (hence also

#-selfadjoint), we have by the Peirce rules

{ek

∑

1≤r≤n
r 6=k

ukr ej} =
∑

1≤r≤n
r 6=k

{ek ukr ej} = {ek ukj ej} = Q(ek, ej)ukj =
1

2
u#

kj =
1

2
ukj.

As a consequence

( ∑

1≤k≤n

ek¤uk

)
a =

∑

1≤k≤n

∑

1≤j≤n

λj{ek ukj ej} =
1

2

∑

1≤k,j≤n
j 6=k

λjukj. (14)

Next we use uk ∈ Z1/2(ek) to compute

( ∑

1≤k≤n

uk¤ek

)
a =

∑

1≤k≤n

∑

1≤j≤n

λj{uk ek ej} =
∑

1≤j≤n

{uj, ej, ej} =
∑

1≤j≤n

λjuj0+
1

2

∑

1≤j,k≤n
j 6=k

λjujk.

(15)

Collecting the results in (14) and (15) and using ukj = ujk one gets (12). ¤

Corollary 3.3. Assume that in lemma (3.2) the algebraic element a is hermitian. Then

the map Φa : u 7→ [Φa(u)](·) is a real-linear isomorphism of the Banach space Ξ(e)s onto

Dera(Z).

Proof. If a is hermitian then the λk are real numbers, hence [Φa(u)](·) ∈ Dera(Z). Clearly

u 7→ Φa(u) is a real-linear map. By (12) the relation Φa(u) = 0 implies uk,j = 0 = uk,0
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since λk 6= λj and λj 6= 0, therefore u = 0. Moreover Φa is surjective. Indeed, let

δ ∈ Dera(Z) be arbitrarily given. Then δ =
∑

k(vk¤ek−ek¤vk) for some v = (v1, · · · , vn)

in Ξ(e)s, and by (12) we can recover v from the value δ(a) that the derivation δ takes at

the point a ∈ Z. If we let πk,j(e) : Z → Zk,j(e) denote the Peirce joint projection relative

to the family e, then (12) reads

vk,j =
2

λj − λk

πk,j(e)
(
δ(a)

)
, vk,0 =

−2

λk

πk,0(e)
(
δ(a)

)
.

Since the evaluation at a and the Peirce projections are continuous, so is Φ−1
a . ¤

Recall that a subset M ⊂ Z is called a real analytic submanifold if to every a ∈ M there

are open subsets P,Q ⊂ Z and a closed real-linear subspace X ⊂ Z with a ∈ P and

φ(P ∩ M) = Q ∩ X for some bianalytic map φ : P → Q. If to every a ∈ M the linear

subspace X = TaM , called the tangent space to M at a, can be chosen to be topologically

complemented in Z then M is called a direct submanifold of Z.

Theorem 3.4. The selfadjoint orbits M = M(n, Λ, R) defined in (5) are closed real

analytic direct submanifolds of Z, the tangent space at the point a ∈ M is the selfadjoint

part of space Ξ(e) defined in (9) and a local chart at a is given by

u =
∑

k

uk 7→ [exp Φa(u)](a), u ∈ Ξ(e)s, (16)

with Φa(u) =
∑

k(ek¤uk − uk¤ek).

Proof. Fix one of the sets M = M(n, Λ, R) with M = M∗ and a point a ∈ M with

spectral resolution a =
∑

k λkek. We know by (3.1) that M is closed in Z. By the

orthogonality properties of the ek, the successive powers of a have the expression

al = λl
1e1 + · · · + λl

nen, 1 ≤ l ≤ n,

where the determinant det(λl
k) 6= 0 does not vanish since it is a Vandermonde determinant

and the λk are pairwise distinct. Thus the ek are polynomials in a whose coefficients are

rational functions of the λk.

Next we show that the tangent space TaM to M at a can be identified with a real

vector subspace of Ξ(e)s. Consider a smooth curve t 7→ a(t), t ∈ I, through a ∈ M where

I is a neighbourhood of 0 ∈ R and a(0) = a. Each a(t) has a spectral resolution

a(t) = λ1e1(t) + · · · + λnen(t),

therefore the maps t 7→ ek(t), (1 ≤ k ≤ n), are smooth curves in the manifolds Mk of

the projections in Z that have fixed finite rank rk = rank(ek), whose tangent spaces at

ek = ek(0) are the real spaces Z1/2(ek)s (see [1] or [7]). Therefore

uk :=
d

dt
|t=0ek(t) ∈ Z1/2(ek)s, 1 ≤ k ≤ n.
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By assumption a is hermitian, hence σ(a) ⊂ R and the tangent vector to t 7→ a(t) at

t = 0 then satisfies u = d
dt |t=0

a(t) =
∑

k λkuk ∈ Ξ(e)s, thus TaM can be identified with a

vector subspace of Ξ(e)s. In fact TaN coincides with that space as it easily follows from

the following result that should be compared with ([1] th. 3.3)

Indeed, as shown above we have Z = Ξ(e)s ⊕ Y for a certain direct subspace Y . The

mapping Ξ(e)s ⊕ Y → Z defined by (x, y) 7→ F (x, y) := (exp Φa(x))y is a real-analytic

and its Fréchet derivative at (0, a) is

∂F

∂x
|(0,a)(u, v) = [Φa(u)]a,

∂F

∂y
|(0,a)(u, v) =

(
exp Φa(0)

)
v = v,

which is invertible according to (3.3). By the implicit function theorem there are open

sets U, V with 0 ∈ U ⊂ X and a ∈ V ⊂ Y such that W := F (U × V ) is open in Z and

F : U × V → W is bianalytic and the image F (U) is a direct real analytic submanifold

of Z. So it remains to show that F (U) = W ∩ M .

The operator Φa(u) =
∑

k(uk¤ek − ek¤uk), u ∈ Ξs(a), is an inner C∗-algebra deriva-

tion of Z, hence h := exp Φa(z) is a C∗-algebra automorphism of Z. Actually h lies

in Aut
◦(Z), the identity connected component. In particular h preserves the algebraic

character and the spectral decomposition, hence it preserves M and so

F (U) = {(exp Φa(u))a : z ∈ U} ⊂ M.

To complete the proof, let x ∈ Ξs(e) be given. By (3.3) the operator Φa(·) is a

surjective real linear homeomorphism of Ξs(e) hence u := Φ−1
a (x) ∈ Ξs(e), and by the

above paragraph t 7→ (exp Φa(tw))a, |t| < δ for some δ > 0, is a curve in M whose

tangent vector at a is Φa(u) = x. Thus Ξs(e) ⊂ TaM . ¤

The proof of (3.4) has the following corollaries

Corollary 3.5. The action of the Banach Lie group G = Aut(Z) on M admits local real-

analytic cross sections, more precisely: To every a ∈ M , there is an open neighbourhood

Na of a in M and a real-analytic function χ : Na → G such that [χ(b)](a) = b for all

b ∈ Na.

Proof. According to the proof of theorem (3.4), for each element b in a neighbourhood

Na of a there is a unique u ∈ Ξ(e), say u = u(b), such that [exp Φa

(
u(b)

)
](a) = b. Set

χ(b) := exp Φa

(
u(b)

)
∈ G. Then b 7→ χ(b) satisfies the requirements. ¤

Corollary 3.6. If dim Z < ∞ then the selfadjoint sets M = M(n, Λ, R) are compact

real analytic direct submanifolds of Z.

Let M be a real analytic manifold and TM its corresponding tangent bundle. Recall

that a norm on TM is a lower semicontinuous function α : TM → R such that the
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restriction of α to to every tangent space TxM , x ∈ M , is a norm on TxM with the

following property: there is a neighbourhood N of x in M which can be realized as a

domain in a real Banach space E such that

c‖a‖ ≤ α(u, a) ≤ C‖a‖

for all (u, a) ∈ TN ≈ N ×E and suitable constants 0 < c ≤ C. The manifold M together

with a fixed norm α on TM is called a real Banach manifold. If (M̃, α̃) is another real

Banach manifold, then we say that a real analytic mapping φ : M → M̃ is a contraction

if α̃ ◦ Tφ ≤ α and we say that φ is an isometry if α̃ ◦ Tφ = α.

Let M be a connected real analytic Banach manifold with a norm α and denote by

L the group of all real analytic surjective isometries of g : M → M . An element s in L

is called an involution of M if s2 = IdM and an involution s is called a symmetry at the

point x ∈ M if x is an isolated fixed point of s. Such an involution is unique if it exists.

A connected real analytic Banach manifold M is said to be symmetric if there exists a

symmetry at every point x ∈ M . A mapping h : M → M̃ is said to be a morphism of

the symmetric manifolds M and M̃ if h is real analytic and h ◦ sx = sh(x) ◦ h holds for all

x ∈ M .

Theorem 3.7. Let H =
⋃

n,Λ,R M(n, Λ, R) be the set of all hermitian algebraic elements

of finite rank in Z = L(H). Then each component M = M(n, Λ, R) is a closed real-

analytic direct Banach submanifold of Z. For each a ∈ M , the Peirce reflection Sa in Z

around the support a = supp(a) of a is real-analytic involution M for which a is a fixed

point. The set FixM(Sa) of fixed points of Sa in M is real-analytic direct submanifold of

Z. If M is the orbit of a finite rank projection them M is a symmetric manifold.

Proof. Fix any orbit M(n, Λ, R) and any point a ∈ M . Set e = (e1, · · · , en) where

a =
∑

k λkek is the spectral resolution of a. Let N and E := TaM ≈ Ξ(e)s denote the

neighbourhood of a in M and the Banach space for which the tangent bundle satisfies

TN ≈ N × E. Define a function α : N × E → R by

α(b, u) := ‖u‖, b ∈ N u ∈ Ξ(e)s,

where ‖ · ‖ is the operator norm on Z. Since M is an orbit under the group G, we can

extend α in a unique way to a G-invariant norm on M in a natural way. Thus (M,α) is

a Banach manifold for which G (and in fact Aut(Z)) acts as a group of isometries.

For a tripotent e ∈ Tri(Z), the Peirce reflection around e is the linear map Se : =

Id − P1/2(e) or in detail z = z1 + z1/2 + z0 7→ Se(z) = z1 − z1/2 + z0 where zk are

the Peirce e-projections of z, (k = 1, 1/2, 0). Recall that Se is an involutory triple

automorphism of Z with Se(e) = e, and clearly the set FixZ(Se) of the fixed points of Se

in Z is FixZ(Se) = {z ∈ Z : P1/2(e)z = 0}. If e is a projection in Z = L(H) (taken

as a tripotent) then Se is a C∗-algebra automorphism of Z, hence Se preserves the set of

projections, the orthogonality relations and ranks as well as the hermitian character of the

elements in Z. In particular, Se transforms each orbit M onto another orbit M̃ := SeM of
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the set A of algebraic elements. Given a ∈ M , the preceding considerations apply to the

projection a = supp(a). By the Peirce rules we have Q(a)a = {
∑

j ej

∑
k λkek

∑
l el} =∑

k λkee = a, hence P1(a)a = a and Sa(a) = a, therefore SaM = M and Sa|M is a

real-analytic involution of M for which a is a fixed point. For n = 1 it is known that

M is symmetric ([1], [14] prop. 4.3). Thus we analyze the the set FixM(Sa) of the fixed

points of Sa in M for n > 1. By the previous discussion

FixM(Sa) = M ∩ FixZ(Sa) = M ∩ {z ∈ Z : P1/2(a)z = 0} = M ∩ kerP1/2(a), (17)

which is a real analytic submanifold of M . The points of M in a neighbourhood U of

a in M have the form z = [exp Φa(u)]a. Hence any smooth curve t 7→ z(t) in FixU(Sa)

passing through a with tangent vector u ∈ Ξ(e)s has the form z(t) = [exp Φa(tu)]a and

will therefore satisfy P1/2(a)[exp Φa(tu)]a = 0 for all t in some interval around t = 0. By

taking the derivative at t = 0 we get

P1/2(a)[Φa(u)]a = 0,

the tangent space to FixM(Sa) at a being the set of solutions u ∈ Ξ(e) of the above

equation. By (10) it suffices to find the solutions in the subspaces Zk,j(e) and Zk0(e).

Using the Peirce rules together with (12) and the expression P1/2(a) = 2
(
a¤a − Q2(a)

)

it is a routine exercise to show that

{u ∈ Ξ(e)s : P1/2(a)[Φa(u)]a = 0} =
⊕

1≤k≤n

Zk0(e)s.

Now for n ≥ 2 (and dim H ≤ 3) it is immediate to see that we have Zk0(e) 6= {0} for

some 1 ≤ k ≤ n, hence‡ FixM(Sa) does not reduce to an isolated point and S(a) is not a

symmetry of M . Note that if M is symmetric then the symmetry of M around a must

be S(a). ¤

4 The Jordan connection on M(n, Λ, R)

By (3.4) the tangent space TMa to M at the point a can be identified with the real space

Ξ(e)s, a direct summand in Z, the projector onto which is denoted by PΞ(e). As any

Peirce projector, PΞ(e) is Aut(Z)-invariant, that is,

PΞ(h(e)) = h PΞ(e) h−1, h ∈ Aut(Z). (18)

Recall that a smooth vector field X on M is a smooth function X : M → TM such

that π ◦ X = IdM , where π : TM → M is the canonical projection. Thus X(x), the

value of X at x ∈ M , is a pair X(x) = (x,Xx) where Xx ∈ TxM . For all points x

in a neighborhood of a, the tangent spaces TxM are unambiguously identified with the

Banach space E ≈ Ξ(e)s →֒ Z, hence smooth vector fields on M will be locally identified

with smooth Z-valued functions X : M → Z such that X(x) ∈ Ξ(e)s for all x ∈ M .

‡ When n = 1 the all summands Zk0(e) reduce to 0.
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We let D(M) be the Lie algebra of smooth vector fields on M . For Y ∈ D(M), we

let Y ′
a be the Fréchet derivative of Y at a. Thus Y ′

a is a bounded linear operator Z → Z,

hence Y ′
aXa ∈ Z and it makes sense to take the projection PΞ(e)Y ′

aXa ∈ Ξ(e)s ≈ TaM .

Definition 4.1. We define a connection ∇ on M by

(∇XY )a := PΞ(e) Y ′
aXa, X, Y ∈ D(M), a ∈ M.

Note that if a is a projection, then ∇ coincides with the affine connection defined in

([1] def 3.6) and [7]. It is a matter of routine to check that ∇ is an affine connection on

M , that it is G- invariant and torsion-free, i. e.,

g (∇XY ) = ∇g(X) g (Y ), g ∈ G,

where (g X)a := g′
a (Xg−1

a
) for all X ∈ D(M), and

T (X,Y ) := ∇XY −∇Y X − [XY ] = 0, X, Y ∈ D(M).

Since ∇ has been defined in terms of the Jordan structure of Z we refer to it as the

Jordan connection on M .

Theorem 4.2. Let the manifold M be defined as in (5). Then the ∇-geodesics of M

through the point a ∈ M are the curves γ(t) := [exp t Φa(u)]a, (t ∈ R), where a ∈ M

and u ∈ Ξ(e)s.

Proof. Recall that the geodesics of ∇ are the curves t 7→ γ(t) =
∑

k λkek(t) ∈ M that

satisfy the second order ordinary differential equation

(
∇γ̇(t) γ̇(t)

)
γ(t)

= 0.

Let u ∈ Ξ(e)s. Then Φa(u) is an inner C∗-algebra derivation of Z and h(t) := exp t Φa(u)

is an inner C∗-automorphism of Z. Thus h(t)a ∈ M and t 7→ γ(t) is a curve in the

manifold M . Clearly γ(0) = a and taking the derivative with respect to t at t = 0 we get

by the Peirce rules

γ̇(t) = Φa(u)γ(t) = h(t)[Φa(u)]a, γ̇(0) = [Φa(u)]a ∈ Ξ(e)s,

γ̈(t) = [Φa(u)2]γ(t) = h(t)[Φa(u)2]a, γ̈(0) = Φa(u)γ̇(0) ∈ [Φa(u)]Ξ(e)s.

In particular PΞ(e)[Φa(u)2]a = 0. The definition of ∇ and the relation (18) give

(
∇γ̇(t) γ̇(t)

)
γ(t)

= PΞ(γ(t))
(
γ̇(t)′γ(t) γ̇(t)

)
= PΞ(γ(t)) γ̈(t) =

PΞ

(
h(t)a

)
h(t)[Φa(u)]a = h(t)PΞ

(
e
)
[Φa(u)2]a = 0

for all t ∈ R. Recall that by (3.3) the mapping u 7→ [Φa(u)]a is a linear homeomorphism

of Ξ(e)s. Since geodesics are uniquely determined by the initial point γ(0) = a and the
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initial velocity γ̇(0) = [Φa(u)]a, the above shows that family of curves in (4.2) with a ∈ M

and u ∈ TaM ≈ Ξ(e)s are all geodesics of the connection ∇. ¤

Proposition 4.3. Let H =
⋃

n,Λ,R M(n, Λ, R) be the set of all hermitian algebraic ele-

ments of finite rank in Z = L(H). Then each component M for which n = 1 admits a

G-invariant Riemann structure for which ∇ is the Levi-Civita connection.

Proof. First we assume that Ξ(e) is closed under the operation of taking triple product.

Suppose that rank(a) = r < ∞ for a ∈ M . Then rank(ek) ≤ r < ∞, (1 ≤ k ≤ n),

hence the JB∗-subtriple Z1/2(ek) has finite rank and so Z1/2(ek) is a reflexive Banach

space (see [10] or [2] prop. 9.11). The closed subspace Zk0(e) = Z1/2(ek) ∩
⋂

j 6=k Z0(ej)

is also reflexive and so is the finite ℓ∞-direct sum Ξ(e) =
⊕

1≤k≤n Zk0(e). But Ξ(e) is a

JB∗-triple by assumption and being reflexive is linearly homeomorphic to a Hilbert space.

Thus the tangent space TaM ≈ Ξ(e)s is linearly homeomorphic to a real Hilbert space

under a suitable scalar product. We may take for instance the algebraic inner product

on Ξ(e)s (denoted by 〈· , ·〉) ([2] page 161) and we can define a Riemann metric on M by

ga(X,Y ) := 〈Xa, Ya〉, X, Y ∈ D(M), a ∈ M. (19)

Remark that g has been defined in algebraic terms, hence it is G-invariant. Moreover, ∇

is compatible with the Riemann structure, i. e.

X g(Y,W ) = g(∇X Y, W ) + g(Y, ∇X W ), X, Y,W ∈ D(M).

Therefore, ∇ is the only Levi-Civita connection on M and each symmetry of M (as

induced by a Peirce reflection) is an isometry.

Remark that for n = 1 the Peirce joint decomposition of Z relative to e = e reduces

to (1) and so Ξ(e) = Z1/2(e) is a subtriple of Z. Actually this is the only case in which

Ξ(e) is closed under triple product. ¤
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