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Abstract. Given a family {xk}k∈K of elements xk in the predual A∗ of a
JBW∗-triple A, such that the support tripotents ek of xk form a collinear
system in the sense of [31], necessary and sufficient criteria for the existence

of a contractive projection from A∗ onto the subspace lin{xk : k ∈ K}n
are

provided. Preparatory to these results, and interesting in itself, is a set of
necessary and sufficient algebraic conditions upon a contractive projection P
on A for its range PA to be a subtriple. The results also provide criteria for
the range of a normal contractive projection on A to be a Hilbert space.

Mathematics Subject Classification (2000). Primary 17C65; Secondary 47D27.

Keywords. JBW∗-triple, collinearity, contractive projection.

1. Introduction

In recent years, considerable effort has been devoted to the investigations of con-
tractive projections on an operator algebra and its related Banach spaces. The
question of whether or not there exists a contractive projection onto a given sub-
space of a Banach space is of fundamental significance. In the presence of algebraic
structure on the Banach space in consideration, it is natural to tie this question
to algebraic conditions upon the given subspace. Among the extensive literature
on these topics we refer the reader to [4] [6] [7] [8] [22] [30] [33] [38].

The aim of this article is to investigate normal contractive projections in con-
nection with certain algebraic conditions on generalized operator algebras. It has
been observed earlier that the structures known as JB∗-triples and their weak∗-
closed analogues, JBW∗-triples, provide a natural setting for studying contractive
projections or normal contractive projections. As shown by Kaup in [27] and in-
dependently by Stachò in [34], the range PA of a contractive projection P on a
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JB∗-triple A is itself a JB∗-triple in a canonical way. The algebraic structure on
A is given by a ternary product {. . .} : A × A × A → A, that on PA by P{. . .}.
This generalizes earlier results by Choi and Effros [5], Effros and Størmer [18],
Friedman and Russo [21] and others. For further reading on the subject and its
connections to holomorphy see for example [23] [26] [28] [31] [35] [36].

In joint work with Edwards and Rüttimann [11] [12] contractive projections
have been studied by the author for the case in which the global vector space is
the Banach predual A∗ of a JBW∗-triple A. By standard Banach space theory, the
adjoints of the contractive projections on A∗ are precisely the normal contractive
projections on A. A main result in [12] states that, for any family {Pk}k∈K of
contractive projections on A∗, such that, for k �= j, all elements x in Pj(A∗) and y
in Pk(A∗) are L-orthogonal in that ‖x±y‖ = ‖x‖+‖y‖, there exists a contractive
projection onto the norm closed subspace

⋃
k∈K Pk(A∗)

n
of A∗. In particular, there

is a contractive projection from A∗ onto the norm-closed subspace spanned by
any family {xk}k∈K of pairwise L-orthogonal elements in A∗. Moreover, such a
projection is explicitly given in terms of the support tripotents ek in A of the
elements xk. By [17] and [19], the L-orthogonality of the elements xj and xk in A∗
is equivalent to the algebraic orthogonality of their respective support tripotents
ej and ek in A, or in the terminology of [31], to {ek}k∈K being an orthogonal
system. For details on these and related results, see also [25]. In this article we
investigate the similar situation in which the support tripotents ek of the elements
xk form a collinear system in the sense of [31]. Under this global assumption, we
obtain criteria upon {ek}k∈K and {xk}k∈K which are equivalent to the existence of
a contractive projection on A∗ with range G = lin{xk : k ∈ K}n

. One set of these
conditions involves only the triple product on A and its duality with A∗. Moreover,

a necessary condition is that G is a Hilbert space with dual H = {ek : k ∈ K}w∗

and H is a subtriple of A. Further conditions are formulated in terms of GL-
projections on A∗, which were introduced in [11]. Neal and Russo classified the
atomic contractively complemented subspaces of B(H) up to complete isometry
using the theory of operator spaces [30]. The subtriple H given above is an example
of an atomic JBW∗-triple. Our considerations proceed within the theory of of
JBW∗-triples and their preduals, and hence provide detailed information related
to the general triple structure of these spaces.

The article is organized as follows. In Section 2 some well known facts about
JB∗-triples and JBW∗-triples are reviewed. Section 3 is devoted to the triple struc-
ture of a Hilbert space H . It is shown that a certain set of isometries, obtained
from the triple product on H , acts transitively on the unit-sphere of H . In The-
orem 3.3, pivotal in proving the main theorems, that observation is generalized
to JB∗-triples which are generated by a collinear system of tripotents. Of simi-
lar significance is Theorem 4.1 in Section 4. It provides algebraic conditions on a
contractive projection P on a JB∗-triple A which are necessary and sufficient for
PA to be a subtriple. This result draws heavily on the conditional expectation
formulas in [20], and [27]. In Section 5, the principal question as outlined above is
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answered in Theorem 5.3, Theorem 5.2 and Theorem 5.4. Further connections be-
tween contractive projections and Hilbert spaces are explored in Theorem 5.7 and
Theorem 5.8. When dealing with collinearity, the technical difficulties are consid-
erably greater than those arising from orthogonality. In particular, the existence
of the sought-after projections is automatically ensured by orthogonality, but not
by collinearity of {ek}k∈K . Therefore, our main theorems provide non-trivial infor-
mation, even in the case of finite dimensional spaces, as can be seen from Example
5. The relation of collinearity was considered for the purpose of a classification
of Jordan-triples by Dang and Friedman [9], Horn [24] McCrimmon and Meyberg
[29], and by Neher [31]. Moreover, Edwards and Rüttimann [16] and Wright [37]
used collinearity to represent the relation of quantum-decoherence of states, and
JBW∗-triples are used to describe non-classical statistical systems.

2. Preliminaries

A JB∗-triple is a complex Banach space A endowed with a triple product {. , . , .} :
A × A × A → A, which has the following properties, the axioms of the theory:
(A1) The expression {a, b, c} is symmetric and linear in the variables a and c and

is conjugate linear in b.

(A2) For all elements a and b of A, the linear maping c �→ {a, b, c} on A denoted
by D(a, b), satisfies the Jordan triple identity,

D(a, b){c, d, e} = {D(a, b)c, d, e} + {c, b, D(a, b)e} − {c, D(b, a)d, e},

(A3) For all elements a of A, the linear operator D(a, a) on A has nonnegative
spectrum (cf. [2]), and norm equal to ‖a‖2.

(A4) For all real numbers t, the linear operator exp(itD(a, a)) is an isometry of A.

By [26] Proposition 5.5 and [24] Proposition 2.4, two JB∗-triples are isometri-
cally isomorphic as Banach spaces if and only if they are triple isomorphic. Hence
the group of all triple automorphisms, denoted Aut(A), coincides with the group of
all bijective linear isometries of the JB∗-triple A. If A is also the dual of a Banach
space A∗, then A is said to be a JBW ∗-triple. To enhance the clarity of notation
in later calculations, we will henceforth write (x · a) for the dual pairing of the
elements x in A∗ and a in A.

A subspace B of A is a subtriple if {B, B, B} is a subset of B, which is the
case if and only if for all b ∈ B the element {b, b, b} lies in B. For an element b
of A, the conjugate linear operator Q(b) : A → A is defined by Q(b)a = {b, a, b}.
The operators D(a, b) and Q(b) are norm-continuous on the JB∗-triples and weak∗-
continuous on JBW∗-triples. On the latter, the triple product is separately weak∗-
continuous [1] [28].

An element u of A is said to be a tripotent if {u, u, u} = u. The set of
tripotents of A is denoted by U(A). Let j, k and l be equal to 0, 1 or 2. For each
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tripotent u of A, the norm- and weak∗-continuous projections

P2(u) = Q(u)2,
P1(u) = 2(D(u, u) − Q(u)2),
P0(u) = idA − 2D(u, u) + Q(u)2

are referred to as the Peirce projections corresponding to u. It can be seen that
P0(u) + P1(u) + P2(u) equals the identity idA on A and that if j �= k, then
Pj(u)Pk(u) equals zero. The ranges, Ak(u) of Pk(u) are weak∗-closed subtriples of
A, referred to as the Peirce spaces of u. Moreover, for all elements a of A,

a ∈ Ak(u) if and only if D(u, u)a =
k

2
a. (2.1)

Extensive use will be made of the Peirce rules,

{Aj(u), Ak(u), Al(u)} ⊆
{

Aj−k+l(u) if j − k + l ∈ {0, 1, 2}
{0} else (2.2)

{A2(u), A0(u), A} = {A0(u), A2(u), A} = {0}. (2.3)

A pair u, v of tripotents in A is said to be orthogonal, denoted u⊥v, if u ∈ A0(v)
and v ∈ A0(u). The relation ⊥ is symmetric, and u⊥v is equivalent to D(u, u)v = 0,
to D(v, v)u = 0 and to D(u, v) being identically zero on A. Moreover v is said to
be less than or equal to u, denoted v ≤ u, if (u − v) ∈ U(A) and (u − v)⊥v. The
relation ≤ is a partial order on the set U(A) [28]. If A is a JBW∗-triple, then, for
each element x in the predual A∗ of A, there exists the support tripotent ex of x
which is the smallest of all tripotents u in A with the property that (u · x) = ‖x‖.
Also, x lies in A2(ex)∗ [19].

For a non-empty subset G of A∗, the support space s(G) of G is defined to

be the weak∗-closed subspace lin{ex : x ∈ G}w∗
of A [11].

A pair u, v of tripotents is said to be collinear, denoted u
v, if u ∈ A1(v)
and v ∈ A1(u). By (2.1) the relation u
v holds if and only if

D(u, u)v =
1
2
v and D(v, v)u =

1
2
u. (2.4)

A family {uk}k∈K of tripotents is said to be a collinear system if the relation
uk
ul holds whenever k �= l. Observe that a collinear system not equal to {0} is
linearly independent.

When G and H are Hilbert spaces, the set B(G, H) of bounded linear opera-
tors from G to H is a JBW∗-triple with triple product, defined for elements a, b, c
in B(G, H) by

{a, b, c} =
1
2
(ab∗c + cb∗a). (2.5)

A JBW∗-triple isomorphic to B(G, H) is said to be rectangular. When G and
H have finite dimension, i.e. A is represented as a matrix algebra, examples of
collinear tripotents are provided by distinct matrix units ui,j and uk,l, i.e. matrices
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with entry 1 at position (i, j) and (k, l), respectively, and zero elsewhere. Then
ui,j
uk,l if either i = k or j = l. Further examples of JBW∗-triples are provided
by W∗-algebras and JBW∗-algebras, the spin factors, obtained from Hilbert spaces
equipped with a conjugation, or by the bi-Cayley numbers C8

1,2. The latter are the
1 by 2 matrices with entries in the Cayley numbers C8 over the field of complex
numbers. For more details on these structures, see for example [9] [24] [29] [31].

We conclude this section with a result which is easily obtained from the
aforesaid.

Proposition 2.1. Let u be a tripotent element in the JBW∗-triple A. For k =
0, 1, 2, denote by Pk the pre-adjoint Pk(u)∗ of the Peirce projection Pk(u). Then
the range PkA∗ of Pk is the eigenspace of the pre-adjoint D(u, u)∗ of D(u, u), with
corresponding eigenvalue k/2.

Proof. Using the Peirce-rules it can be seen that D(u, u) commutes with Pk(u) =
P ∗

k . Let x be an element of PkA∗. By (2.1), for all a in A,

(D(u, u)∗x · a) = (Pk∗x · D(u, u)a) = (x · P ∗
k D(u, u)a) = (x · D(u, u)P ∗

k a)

=
k

2
(x · a).

Therefore, x lies in the eigenspace of D(u, u)∗ with eigenvalue k/2.

Conversely, suppose that D(u, u)∗x equals (k/2)x. Notice that D(u, u)∗ = P2+ 1
2P1

and that P2 + P1 + P0 is the identity on A∗. Hence,

P2x +
1
2
P1x =

k

2
(P2x + P1x + P0x).

Since PiPj = 0, setting k equal to 0, 1 or 2 implies, in each case, that x = Pkx, as
required. �

3. Hilbert spaces

Since the triple structure of Hilbert spaces plays a significant part in subsequent
considerations, it is necessary to establish some preliminary results on Hilbert
spaces. Let H be a complex Hilbert space with scalar product 〈. , .〉 : H×H → H
which is linear in the first and conjugate linear in the second variable. For elements
a, b and c in H , let the triple product {a, b, c} be defined by

{a, b, c} =
1
2

(〈a, b〉c + 〈c, b〉a) . (3.1)

In this way, the Hilbert space H is a JBW∗-triple. We remark that another triple
product can be defined on H to obtain what is known as a spin triple. This,
however, requires the presence of additional structure, such as a conjugation, as
well as a new norm on H . We will only be working with the triple product described
above. Notice that (3.1) concurs with (2.5) for the case in which G equals C, i.e.
H is identyfied with the rectangular triple B(C, H).
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Denote the unit sphere of H by S1(H). It is straightforward from Equation
(3.1) that S1(H) ∪ {0} coincides with the set U(H) of tripotents of H , and that
the relation of collinearity on U(H) is the usual Hilbert-orthogonality restricted
to U(A). For an non-empty set S, let l2(S) be the Hilbert space of all functions
f : S → C, such that

∑
s∈S |f(s)|2 < ∞, equipped with the inner product 〈f, g〉 =

∑
s∈S f(s)g(s), for f, g ∈ l2(S).

The following lemma provides an algebraic characterization of Hilbert spaces
among the JB∗-triples and JBW∗-triples. Similar results may be obtained from
classification theory, as carried out e.g. in [31] and [9].

Lemma 3.1. Let C be a collinear system in the JB∗-triple A. Denote by H the
closed subspace linC

n
spanned by C. Then the following conditions are equivalent:

(1.) The subspace H is a subtriple of A.

(2.) Either |C| ≤ 2, or, for any three distinct elements u, v and w of C,
{u, v, w} = 0.

(3.) The subspace H is a Hilbert space with orthonormal basis C, i.e. H ∼= l2(C),
and the restriction of the triple product of A to H coincides with the triple
product given by (3.1) on H.

If these hold, and if in addition A is a JBW∗-triple, then H is also weak∗-closed,
hence a JBW∗-subtriple of A.

Proof. (1.) ⇒ (2.): Suppose that C has at least three elements, and choose u,
v and w in C to be distinct. The assumption of collinearity of C implies that,
H ⊆ Cv ⊕ A1(v) ⊆ A2(v) ⊕ A1(v). Since H is a subtriple, {u, v, w} ∈ A2(v) ⊕
A1(v). The Peirce rules (2.2), (2.3) imply that {u, v, w} ∈ A0(v). It follows that
{u, v, w} = {0}.
(2.) ⇒ (1.): It is easily seen that the arguments can be simplified when |C| ≤ 2.
Therefore, assume again that |C| ≥ 3. An element a in H can be written as
the norm convergent sum a =

∑
k∈N

αkuk, for uk ∈ C. The assumptions and
(2.2),(2.3) imply that, for distinct indices j, k and l in N,

{uj, uk, ul} = {uk, uj, uk} = 0, (3.2)
2 {uj, ul, ul} = 2 {ul, ul, uj} = {uj, uj, uj} = uj. (3.3)

Since {a, a, a} is a (possibly infinite) linear combination of these expressions, and
is well defined in A, it follows that {a, a, a} lies in H . Hence H is a subtriple of
A, which proves (1.).

(2.) ⇒ (3.): The equalities (3.2) and (3.3) determine the triple product on
H completely. In particular, for any finite subset F ⊆ C, linF is a JB∗-triple,
and as such is isomorphic to l2(F ). Isomorphic JB∗-triples are also isometrically
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isomorphic as Banach spaces. Hence, for any finite subset F of C, linF is isometric
to the Hilbert space l2(F ). This entails the norm of an arbitrary a ∈ H to be

‖a‖ = ‖
∑

k∈N

αkuk‖ = (
∑

k∈N

|αk|2) 1
2 .

It follows that H ∼= l2(C), proving (3.).

(3.) ⇒ (2.): This is obvious from (3.1).

Suppose that A is a JBW∗-triple and that (1.), (2.) and (3.) hold. Then, for
all elements a and b in H ,

Q(a)(b) = {a, b, a} = 〈a, b〉a ∈ Ca. (3.4)

By separate weak∗-continuity of the triple product, (3.4) is preserved when a

and b are chosen in the weak∗-closure H
w∗

of H . When a and b are linearly
independent, (3.1) and (3.4) also imply that Ca ⊕ Cb is a subtriple of H

w∗
. Up

to triple-isomorphism, there are only two different JBW∗-triples of dimension 2,
namely C2 with the componentwise triple product, and C2 as a Hilbert space.
The former contains elements for which (3.4) does not hold. Therefore Ca⊕ Cb is
(isometrically) equal to the Hilbert space C2. It follows that every two dimensional
subspace of H

w∗
is a Hilbert space. Clearly H

w∗
is complete, hence is itself a

Hilbert space. To see that H = H
w∗

, extend C to an orthonormal basis C ∪ C′

of H
w∗

. For every u ∈ C ∪ C′, the linear functional xu, defined for a ∈ H
w∗

by
(xu ·a) = 〈a, u〉 is weak∗-continuous on H

w∗
. Therefore, xu has a weak∗-continuous

extension x̃u on A. We remark that by [3], x̃u can even be chosen to have the same
norm as xu. However, if u is chosen in C′, then x̃u annihilates H , hence also H

w∗
.

This contradicts the obvious equality (x̃u · u) = 1. Consequently, C′ is empty and
H coincides with H

w∗
. �

The inner derivations of a JB∗-triple A, that is the mappings of the form
D(a, b) − D(b, a) and their exponentials, the inner automorphisms, have been in-
vestigated in numerous works. See e.g. [28], [35]. In the following lemma, a sym-
metry property of the unit sphere S1(H) of the Hilbert space H with respect to
inner automorphisms of the form exp itD(a, a) is established. The result may be
deduced from the general theory of inner automorphisms. Since we need this re-
sult only for the special case of Hilbert spaces, we state it separately and give an
independent, more elementary proof.

Lemma 3.2. Let H be a Hilbert space, equipped with the triple product, given by
(3.1). Let S1(H) and S1(C) be the unit spheres of H and of the complex plane C

respectively. Then, the set

E = {σ exp itD(a, a) : σ ∈ S1(C), a ∈ H, t ∈ R}
consists of linear isometries of H and acts transitively on S1(H).
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Proof. Suppose first that H is two-dimensional. Let Bs = {b1, b2} be the standard
basis of H , coordinatized in the usual way. For any complex number λ of modulus
one, let a = a(λ) be the element of H , defined by

a =
1√
2

(
1
λ

)

.

Denote the operator D(a, a) by Dλ, to indicate its dependence of λ. An elementary
caclulation shows that, with respect to Bs, the operator exp itDλ, is given by

exp itDλ =
1
2

(
eit + eit/2 λ̄(eit − eit/2)

λ(eit − eit/2) eit + eit/2

)

.

In particular, the unit vector b1 is mapped to

(exp itDλ)(b1) = (exp itDλ)
(

1
0

)

=
1
2

(
eit + eit/2

λ(eit − eit/2)

)

. (3.5)

This vector is of norm one, for all reals t. The modulus of its first component is
|eit + e

i
2 t|/2 and attains all values between 0 and 1 when t runs through R. If c

is any vector with components γ1 and γ2, and if c has norm one in H , then |γ2|
equals

√
1 − |γ1|2 and t can be chosen such that

1
2
|eit + eit/2| = |γ1|, and

1
2
|eit − eit/2| = |γ2|. (3.6)

If γ1 = 0, then σ(exp 2πiDλ)b1 equals c, for some σ ∈ S1(C). Otherwise set
λ = γ2(eit + eit/2)/γ1(eit − eit/2). The equations (3.6) and (3.5) imply that

|λ| = 1 =
∣
∣
∣
∣

2γ1

eit + eit/2

∣
∣
∣
∣ , and

2γ1

eit + eit/2
(exp itDλ)

(
1
0

)

= c.

This shows that, exp itDλ acts transitively on S1(H), up to multiplication by a
complex number of modulus one.

The operators D(a, a) and exp itD(a, a) are defined on any Hilbert space, in fact,
on any JB∗-triple containing the element a. In the case when H is of arbitrary
dimension, and b and c are any two elements of H such that ‖b‖ = ‖c‖, the
above arguments can applied to the subspace lin{b, c} which is also a subtriple of
H . Hence, there exist elements t of R, σ of S1(C), and a of lin{b, c}, such that
σ(exp itD(a, a))b = c, and σexp itD(a, a) is an isometry of the whole space
H . �

The two foregoing lemmas can be combined as follows.

Theorem 3.3. Let C be a collinear system in a JB∗-triple A, such that the subspace
H = linC

n
is a subtriple of A. Then,

(1.) The subtriple H is a Hilbert space with orthonormal basis C, and the triple
product on H given by (3.1) conicides with the restriction of the triple product
of A to H.
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(2.) The set E = {σ exp itD(a, a) : σ ∈ S1(C), a ∈ H} consists of linear
isometric triple isomorphisms on the whole space A and acts transitively on
the unit sphere S1(H) of H.

(3.) Either |C| ≤ 2, or, for any three distinct elements u, v, w of C, the product
{u, v, w} vanishes.

If A is a JBW∗-triple, then H is also weak∗-closed in A, and therefore, is a JBW∗-
subtriple of A.

Proof. For any element a of H , the linear mapping exp(itD(a, a)) is defined on
the whole space A, and, by (A4), is an isometry on A. The remaining assertions
follow from Lemma 3.1 and Lemma 3.2. �

4. Contractive projections

By a projection we always mean a linear mapping P on a vector space E which
is such that P 2 = P . When E is endowed with a norm ‖.‖, and if P is such that,
for all elements x of E, ‖Px‖ ≤ ‖x‖, then P is said to be contractive. In this case,
the range P ∗E∗ of the adjoint projection P ∗ is isometrically isomorphic to the
dual (PE)∗ of the range PE of P . Observe also that, if P and S are continuous
projections on E, such that PE = SE and P ∗E∗ = S∗E∗, then P and S coincide.
The set of all bounded linear mappings on E is denoted by B(E). For an arbitrary
set K, let Kf denote the set of all finite subsets of K, partially ordered by set-
inclusion. Given a family {Pk}k∈K of projections, or of general elements in B(E),
the formal sum

∑
k∈K Pk is said to be convergent in the strong operator topology

or SOT-convergent in B(E) if there exists an element P of B(E) such that, for
each x of E, the net {∑k∈F Pkx : F ∈ Kf} converges to Px in norm.

A pair of elements x, y in E is said to be L-orthogonal, denoted x�y, if ‖x±y‖
equals ‖x‖ + ‖y‖. The L-complement F � of a non-empty subset F of E is defined
to be the set

F � = {y ∈ E : x � y ∀x ∈ F}.
A contractive projection P on E is said to be a GL-projection if the L-complement
(PE)� of its range PE is a subset of its kernel kerP . The set of all GL-projections
on E is denoted by GL(E).

The results of [27] and [34] show that the range PA of a contractive projection
P on a JB∗-triple A is itself a JB∗-triple when equipped with the restricted triple
product {. . .}PA, defined for elements a, b and c in PA by

{a, b, c}PA = P{a, b, c}. (4.1)

When A is a JBW∗-triple with predual A∗, and if P is the adjoint P = R∗ of a
contractive projection R on A∗, then PA is a JBW∗-triple with product given by
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(4.1). Further algebraic relations, referred to as conditional expectation formulas
hold.

P{Pa, Pb, Pc} = P{Pa, b, P c}, (4.2)
P{Pa, Pb, Pc} = P{a, Pb, Pc}. (4.3)

The equality (4.2) was proved in [27], and (4.3) was proved in [20]. As shown
next, the conditional expectation formulas provide some interesting connections
between contractive projections and norm-closed subtriples of JB∗-triples.

Theorem 4.1. Let A be a JB∗-triple, and let P be a contractive projection on A.
Then, the following conditions are equivalent.

(1.) The range PA of P is a subtriple of A.

(2.) For each element b in PA, the operator Q(b) on A commutes with P .

(3.) For each element b in PA, the operator D(b, b) on A commutes with P .

(4.) For elements a and b in PA, the operator D(a, b) on A commutes with P .

Proof. Suppose that PA is a subtriple of A. Consider elements b of PA and a of
A. Then, by (4.2),

Q(b)Pa = {b, Pa, b} = {Pb, Pa, Pb}
= P{Pb, Pa, Pb} = P{Pb, a, P b}
= P{b, a, b}
= PQ(b)a,

which proves (2.). Conversely, if b lies in PA and P commutes with Q(b) then

P{b, b, b} = PQ(b)b = Q(b)Pb = Q(b)b = {b, b, b}.
It follows that, for all elements b of PA, the product {b, b, b} lies in PA which is
therefore a subtriple of A.

The equivalence of (1.), (3.) and (4.) can be derived in a similar way using (4.3). �

The following results relate collinear systems in a JB∗-triple A with contractive
projections on A.

Lemma 4.2. Let {u1, ..., un} be a collinear system in a JB∗-triple A, For k =
1, ..., n, let Pk be a contractive projection onto the one-dimensional subspace Cuk

of A, and define the linear map P by P =
∑n

k=1 Pk. Then, for j �= k, the product
PjPk vanishes, and P is a projection.

Proof. Clearly,
∑n

k=1 Pk is a continuous linear mapping on A. Consider two dis-
tinct indices k and j in {1, ...., n}. By Lemma 3.1, H = Cuk ⊕ Cuj is a Hilbert
space. The restrictions Pk|H and Pj |H of Pk and Pj to H are orthogonal orthopro-
jections on H . Therefore, the products PkPj and PjPk vanish on A. This implies
that

∑n
k=1 Pk is a projection. �
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Theorem 3.3 and Theorem 4.1 can be combined to obtain an algebraic criterion for
contractivity of the continuous projection described in Lemma 4.2. The corollary
below serves as a key ingredient in the proof of the main theorems in the next
section.

Corollary 4.3. Under the conditions of Lemma 4.2, suppose that lin{u1, ..., un} is
a subtriple of A. Then the projection P is contractive if and only if it commutes
with D(uj , uk), for all j, k = 1, ...., n.

Proof. If lin{u1, ..., un} is a subtriple and P =
∑n

k=1 Pk is contractive, then by
Theorem 4.1 P commutes with D(uj , uk).

Conversely, suppose that P and D(uj , uk) commute. By linearity and conti-
nuity, P commutes also with D(b, b) and with exp itD(b, b), for all elements b of
H . From Theorem 3.3 it follows that, for all a ∈ A and a fixed j ∈ {1, ..., n}, there
exist elements b of H and t of R such that the isometry φ = exp itD(b, b) of A
satisfies,

φP (a) = Pφ(a) ∈ PjA = Cuj .

Therefore, PjφP (a) = φP (a). Moreover, from Lemma 4.2 it can be seen that
PjP = Pj . It follows that for all a ∈ A,

‖P (a)‖ = ‖φP (a)‖ = ‖PjφP (a)‖ = ‖PjPφ(a)‖ = ‖Pjφ(a)‖
≤ ‖φ(a)‖ = ‖a‖.

Hence, P is contractive. �

5. Normal contractive projections

Attention is now turned to the case when A is a JBW∗-triple. The set GL(A∗) of
GL-projections on the predual A∗ of A will be a valuable tool. Several characteri-
zations of GL(A∗) can be given in terms of the support space s(PA∗) of the range
PA∗ of P . Theorem 4.6 in [11] states that, for a contractive projection P on A∗,
the following conditions are equivalent

P ∈ GL(A∗), (5.1)
s(PA∗) = P ∗A, (5.2)
s(PA∗) ⊇ P ∗A, (5.3)
s(PA∗) ⊆ P ∗A. (5.4)

In fact, the condition s(PA∗) ⊆ P ∗A forces P to be in GL(A∗), even when P is
any projection defined on A∗ [12]. Moreover, for any contractive projection Q on
A∗, the subspace s(QA∗) is a subtriple of A, and there exists a unique element
P in GL(A∗) such that PA∗ = QA∗ [11]. The Hahn-Banach theorem implies the
existence of a contractive projection onto any one-dimensional subspace of A∗. The
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corresponding unique GL-projection can be explicitly described as follows [12] [25].
Given an element x �= 0 of A∗, define the mapping Px : A∗ → A∗ by

z �→ Px(z) =
(ex · z)
‖x‖ x. (5.5)

Then, Px is an element of GL(A∗), and it is easy to see that the adjoint P ∗
x of Px

on A is given by P ∗
x a = (a · x)ex. For x = 0, the mapping Px is defined to be the

zero-projection on A∗.

Corollary 5.1. Let (xk)k∈K a family of elements of the predual A∗ of a JBW∗-triple
A, such that the corresponding support tripotents ek form a collinear system. Then,
for distinct indices j and k in K,

(ej · xk) = δj,k‖xk‖.
Proof. Let Pk be the unique element of GL(A∗) with range Cxk. Observe that
(ej ·xj) = ‖xj‖, by definition of ej. For j �= k the desired equality follows either by
combining Lemma 4.2 with Equation (5.5), or from the Peirce rules which imply
that (ej · xj) = (P1(ek)ej · P2(ek)∗xk) = 0. �

It is now possible to address the main problem of this article. First, in The-
orem 5.2, we focus on the properties and the explicit description of the various
projections involved. The properties (2.) and (4.) given therein, are obtained from
the connection between GL-projections, support spaces and support tripotents.

Theorem 5.2. Let A be a JBW∗-triple with predual A∗, and let {xk}k∈K be a
family of non-zero elements of A∗, such that the corresponding support tripotents
form a collinear system {ek}k∈K . Let the subspaces H and G of A and A∗ be
defined by H = lin{ek : k ∈ K}w∗

and G = lin{xk : k ∈ K}n
respectively. For k

in K, let Pk be the GL-projection onto Cxk, described by (5.5). Then, the following
conditions are equivalent.

(1.) There exists a contractive projection P on A∗ with range G.

(2.) For any finite subset F of K, the projection PF =
∑

k∈F Pk on A∗ is con-
tractive. In this case, PF is also the unique element of GL(A∗) with range
lin{xk : k ∈ F}.

(3.) The formal sum
∑

k∈K Pk is SOT-convergent in B(A∗) and is a contractive
projection on A∗.

(4.) The formal sum
∑

k∈K Pk is SOT-convergent in B(A∗) and is the unique
GL-projection on A∗ with range G.

(5.) When x is a nonzero element of G such that x =
∑

k∈K αkxk, and
∑

k∈K |αk|2 = ||x||2, then the support tripotent ex of x is

ex =
∑

k∈K αkek

(
∑n

k=1 |αk|2) 1
2
.
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All the sums converge in norm in the corresponding spaces.

(6.) For all finite subsets F of K, and any element x ∈ lin{xj : j ∈ F} the support
tripotent ex of x lies in lin{ej : j ∈ F}.

If these conditions hold, then H is a subtriple of A, isometrically isomorphic to
a Hilbert space, and is equal to the dual G∗ and to the support space s(G) of G.
Moreover, H and G have orthonormal basis {ek}k∈K and {xk/‖xk‖ : k ∈ K}
respectively.

Proof. (1.) ⇒ (2.): Let P be a contractive projection with range PA∗ = G. By
[12] Theorem 3.1, it can be assumed that P lies in GL(A∗). Then, by (5.1) the
subspaces s(PA∗) and P ∗A of A coincide. Since P is contractive, P ∗A and PA∗
form a dual pair. Denote by H◦ and (H◦)◦ the annihilator and the bi-annihilator of
H in PA∗ and P ∗A respectively. Corollary 5.1 shows that if j �= k then xj ∈ {xk}◦.
Hence,

H◦ ⊆ ({xk}k∈K)◦ =
⋂

k∈K

{xk}◦ = {0}.

Since H is a weak∗-closed subspace of s(PA∗) = P ∗A, it follows that

H = (H◦)◦ = {0}◦ = P ∗A. (5.6)

By [14] Lemma 5.1, H is a subtriple of A, and by Theorem 3.3, H is a Hilbert
space. Therefore, also G is a Hilbert space of the same dimension as H .

Let Kf denote the of all finite subsets of K. For every set F ∈ Kf , let the
projection PF on A∗, be defined by

PF =
∑

k∈F

Pk.

Its range PF A∗ is a subspace of the Hilbert space G = PA∗, with finite dimension
|F |. Hence, PF A∗ is the range of a contractive projection on A∗. As argued before,
there is a unique element QF of GL(A∗) such that

QF A∗ = PF A∗, and Q∗
F A = s(QF A∗) = lin{ek : k ∈ F} = P ∗

F A.

It follows that PF and QF coincide.

(2.) ⇒ (3.): Repeating the above argument with K replaced by F shows
that if PF is contractive, then PF A∗ and P ∗

F A are Hilbert spaces, both having
dimension |F | < ∞. Moreover, PF ∈ GL(A∗), which implies that s(PF A∗) = P ∗

F A.
The restriction Pk|PF A∗ of Pk to PF A∗ is an orthoprojecion on PF A∗. By Lemma
4.2, Pk annihilates xj , if j �= k. It follows that the elements xj and xk are Hilbert-
orthogonal in PF A∗ and that, for all elements x of A∗,

‖
∑

i∈F

Pix‖2 =
∑

i∈F

‖Pix‖2 = ‖PF x‖2 ≤ ‖x‖2. (5.7)

Therefore, {PF x}F∈Kf is a Cauchy net with respect to the norm topology on
A∗, its norm limit exists for every x in A∗, and

∑
k∈K Pk converges in the strong
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operator topology to a linear projection P which, by (5.7), is also contractive. This
also shows that {xk/‖xk‖}k∈K is an orthonormal basis of G.

(3.) ⇒ (4.): Set P =
∑

k∈K Pk. It is clear that P has range G. That P is a
GL-projection is verified as follows. For each k in K, the L-complement (PkA∗)♦

of PkA∗ is a subset of kerPk. It follows that

(PA∗)♦ = (lin
⋃

k∈K

PkA∗
n

)♦ ⊆ (
⋃

k∈K

PkA∗)♦ =
⋂

k∈K

(PkA∗)♦

⊆
⋂

k∈K

kerPk = {x ∈ A∗ : Pk(x) = 0, ∀k ∈ K}

⊆ kerP.

Since P is also assumed to be contractive, it lies in GL(A∗). The uniqueness of P
among the GL-projections with given range is obtained from Corollary 4.7 in [11].
Hence, (3.) implies (4.).

(4.) ⇒ (1.): Since GL-projections are contractive by definition, this implica-
tion is obvious.

(4.) ⇒ (5.): If (4.) holds then, as it has already been shown, {xk/‖xk‖}k∈K

is an orthonormal basis of G. For any x ∈ G there are coefficients αk in C, such
that

x =
∑

k∈K

αk
xk

‖xk‖ , and ‖x‖2 =
∑

k∈K

|αk|2,

Since by (5.1) the support tripotent ex of x lies in the subtriple H = s(PA∗), and
since {ek}k∈K is an orthonormal basis of H , it follows that there are coefficients
βk, (k ∈ K) with

ex =
∑

k∈K

βkek. and
∑

k∈K

|βk|2 = ‖ex‖2 = 1.

Here it is assumed that x is not zero, and hence that ex is not zero. We iden-
tify H and G with l2(K)∗ and l2(K) respectively, with the conventional inner
product 〈(αk)k∈K , (βk)k∈K〉 =

∑
k∈K akβk. Using Corollary 5.1 and the Cauchy-

Bunyakowsky-Schwarz (CBS) inequality,

‖x‖2 = (ex · x)2 = (
∑

k∈K

akβk)2 = 〈(αk)k∈K , (βk)k∈K〉2

≤ (
∑

k∈K

|αk|2)(
∑

k∈K

|βk|2) ≤ ‖x‖2.

This shows that equality holds in (CBS), and it follows that there exists a complex
number z such that αk = zβk, for all k ∈ K. Hence,

‖x‖2 = (
∑

k∈K

αkβk)2 = (
∑

k∈K

zβkβk)2 = |z|2,
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and
βk =

αk

|z|2 =
αk

‖x‖2
.

This proves (5.).

(5.) ⇒ (6.) This is trivial.

(6.) ⇒ (2.) When F is a finite subset of K, then by Lemma 4.2,
∑

j∈F Pj

is a projection on A∗ with adjoint
∑

j∈F P ∗
j on A. The assumption implies that

s(
∑

j∈F PjA∗) is a subset of
∑

j∈F P ∗
j A. Theorem 3.18 in [12] shows that

∑
j∈F Pj

lies in GL(A∗), and is therefore contractive. This completes the proof. �

Having explicitly described the GL-projections involved, it is now possible
to turn the attention to algebraic conditions. The case in which the index set K
consists of two elements differes in some details from all other cases and is therefore
treated separately.

Theorem 5.3. Let A be a JBW∗-triple with predual A∗, and let x and y be elements
of A∗ the support tripotents ex and ey of which are collinear. Let Px and Py the
GL-projections onto Cx and Cy defined by (5.5). Then the following conditions
are equivalent.
(1.) There exists a contractive projection P from A∗ onto Cx ⊕ Cy.

(2.) The projection P ∗
x + P ∗

y commutes with D(ex, ey), D(ey, ex), D(ex, ex) and
with D(ey, ey).

(3.) The elements x and y satisfy

2D(ex, ey)∗x = 2D(ex, ex)∗y = y,

2D(ey, ex)∗y = 2D(ey, ey)∗x = x.

In particular, x lies in A1(ey)∗ and y lies in A1(ex)∗.

Proof. (1.) ⇔ (2.): By Lemma 4.2, Px+Py and P ∗
x +P ∗

y are projections. The range
Cex ⊕Cey of P ∗

x + P ∗
y is a subtriple of A. Combining Theorem 5.2 with Corollary

4.3 gives the equivalence of (1.) and (2.), as required.

(2.) ⇔ (3.): To obtain this equivalence, the commutators in (2.) are to be
calculated explicitely. For all elements a of A,

(P ∗
x + P ∗

y )D(ex, ex)a = (x · {ex ex a})ex + (y · {ex ex a})ey

= (D(ex, ex)∗x · a)ex + (D(ex, ex)∗y · a)ey

= (x · a)ex + (D(ex, ex)∗y · a)ey

and

D(ex, ex)(P ∗
x + P ∗

y )a = D(ex, ex)((x · a)ex + (y · a)ey)

= (x · a)ex + (y · a){ex ex ey}
= (x · a)ex +

1
2
(y · a)ey.
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Hence P ∗
x + P ∗

y commutes with D(ex, ex), if and only if

D(ex, ex)∗y =
1
2
y. (5.8)

By Proposition 2.1, the equality (5.8) is equivalent to y lying in the predual A1(ex)∗
of the Peirce space A1(ex) of ex. Exchanging x and y in these calculations shows
that (Px + Py)∗ commutes with D(ey, ey) if and only if x lies in A1(ey)∗, or,
equivalently,

D(ey, ey)∗x =
1
2
x. (5.9)

To obtain the required expressions for D(ex, ey)∗x and D(ey, ex)∗y, observe that,
by the relation ex
ey and the Peirce rules,

D(ey, ex)∗x = D(ex, ey)∗y = 0, (5.10)
{ex, ey, ex} = {ey, ex, ey} = 0. (5.11)

From Equation (5.10) it follows that, for any element a in A,

(Px + Py)∗D(ex, ey)(a) = (Px + Py)∗{ex, ey, a}
= (x · {ex, ey, a})ex + (y · {ex, ey, a})ey

= (x · {ex, ey, a})ex

= (D(ex, ey)∗x · a)ex,

and from (2.1) and (5.11) that

D(ex, ey)(Px + Py)∗(a) = {ex, ey, (Px + Py)∗a}
= (x · a){ex, ey, ex} + (y · a){ex, ey, ey}
=

1
2
(y · a)ex.

This shows that P ∗
x + P ∗

y and D(ex, ey) commute if and only if

D(ex, ey)∗x =
1
2
y. (5.12)

Similarly, D(ey, ex) and (Px + Py)∗ commute if and only if

D(ey, ex)∗y =
1
2
x. (5.13)

The relations (5.8), (5.9), (5.12) and (5.13) provide the equivalence of (2.) and
(3.). This completes the proof. �

In order to pass to arbitrary families of elements in A∗, a careful re-examination
of the above proof is required. In particular, further conditions need to be added
to those in (3.) of Theorem 5.3, and it must be proved that the stated algebraic
criterias imply the convergence of the formal sums as described in Theorem 5.2.



Vol. 58 (2007) Normal Contractive Projections on JBW*-Triples 331

Theorem 5.4. Let A be a JBW∗-triple with predual A∗, and let {xk}k∈K with |K| ≥
3 be a family of elements of A∗, such that the corresponding support tripotents form
a collinear system {ek}k∈K . Let H, G and Pk be defined as in Theorem 5.2. Then,
the following conditions are equivalent.

(1.) There exists a contractive projection on A∗ with range G.

(2.) The formal sum
∑

k∈K P ∗
k is SOT-convergent in B(A) and commutes with

D(ej , ek), for all elements j, k in K.

(3.) For distinct indices j, k, l in K, the following relations hold;

(i) 2D(ej, ej)∗xk = xk, (ii) 2D(ek, ej)∗xk = xk,

(iii) D(ej , ek)∗xl = 0, (iv) {ej, ek, el} = 0.

In particular, xk lies in A1(ej)∗ and H is a subtriple of A that is isometrically
isomorphic to a Hilbert space with orthonormal basis {ek}k∈K .

(4.) For any three distinct indices j, k and l in K, there exists a contractive
projection on A∗ with range lin{xj , xk, xl}.

Proof. (1.) ⇒ (2.): Theorem 5.2 (4.) shows that P =
∑

k∈K Pk lies in GL(A∗). By
(5.1) s(PA∗) and P ∗A coincide, and hence P ∗A is a weak∗-closed subtriple of A.
Theorem 4.1 shows that, for a, b in H , P ∗ commutes with D(a, b).

(2.) ⇒ (3.): Following the strategy used in the proof of Theorem 5.3 we calcu-
late the commutators explicitly. Recall that xj lies in A2(ej)∗ and that D(ej , ej)∗xj

equals xj . Hence, for any element a in A,

(
∑

k∈K

P ∗
k )D(ej , ej)a = (

∑

k∈K

P ∗
k ){ej, ej , a} =

∑

k∈K

(xk · {ej, ej , a})ek

= (xj · {ej, ej , a})ej +
∑

k∈K\{j}
(xk · {ej, ej , a})ek

= (xj · a)ej +
∑

k∈K\{j}
(xk · {ej, ej , a})ek.

The relation ej
ek implies that

D(ej , ej)(
∑

k∈K

P ∗
k )a = D(ej , ej)

∑

k∈K

(xk · a)ek =
∑

k∈K

(xk · a){ej, ej , ek}

= (xj · a){ej, ej , ej} +
∑

k∈K\{j}
(xk · a){ej, ej , ek})

= (xj · a)ej +
∑

k∈K\{j}

1
2
(xk · a)ek.
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Therefore, the operators D(ej , ej) and
∑

k∈K P ∗
k commute if and only if, for all

a ∈ A,
∑

k∈K\{j}

1
2
(xk · a)ek =

∑

k∈K\{j}
(xk · {ej, ej , a})ek. (5.14)

From the linear independence of the set {ek}k∈K and Equation (5.14) we conclude
that (xk · {ej, ej , a}) equals (xk · a)/2, i.e.

D(ej , ej)∗xk =
1
2
xk. (5.15)

Therefore, (3.)(i) holds.

Now assume j and l to be distinct indices in K. Equation (5.10) implies that

(
∑

k∈K

P ∗
k )D(ej , el)a = (

∑

k∈K

P ∗
k ){ej , el, a} =

∑

k∈K

(xk · {ej, el, a})ek

= (xj · {ej, el, a})ej + (xl · {ej, el, a})el +
∑

k∈K\{j,l}
(xk · {ej, el, a})ek

= (xj · {ej, el, a})ej +
∑

k∈K\{j,l}
(xk · {ej, el, a})ek,

and Equation (5.11) implies that

D(ej , el)(
∑

k∈K

P ∗
k )a = D(ej , el)

∑

k∈K

(xk · a)ek

= (xj · a){ej , el, ej} + (xl · a){ej, el, el} +
∑

k∈K\{j,l}
(xk · a){ej , el, ek}

=
1
2
(xl · a)ej +

∑

k∈K\{j,l}
(xk · a){ej, el, ek}.

Hence, D(ej , el) and
∑

k∈K P ∗
k commute if and only if, for all a ∈ A,

(xj · {ej, el, a})ej +
∑

k∈K\{j,l}
(xk · {ej, el, a})ek (5.16)

=
1
2
(xl · a)ej +

∑

k∈K\{j,l}
(xk · a){ej, el, ek}. (5.17)

Choose an index m ∈ K, distinct from j and l, and set a = em. Using again Corol-
lary 5.1, the right hand side (5.17) of the above equation becomes {ej, el, em}.
The Peirce rules show that,

{ej, el, em} ∈ A2(ej) ∩ A0(el) ∩ A2(em). (5.18)

By Equation (5.15), xk lies in A1(ej)∗ ∩ A1(em)∗ when k �= j, m, and xj lies in
A1(em)∗. Therefore, the left hand side (5.16) vanishes, and we obtain,

{ej, el, em} = 0. (5.19)
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This proves (3.)(iv). By inserting (5.19) back into (5.17), the equality (5.17) =
(5.16) simplifies as

(xj · {ej, el, a})ej +
∑

k∈K\{j,l}
(xk · {ej , el, a})ek =

1
2
(xl · a)ej .

The linear independence of {ek}k∈K shows that (xj · {ej, el, a}) = (xl · a)/2, and
(xk · {ej , el, a}) = 0, which implies that

D(ej , el)∗xj =
1
2
xl, and D(ej , el)∗xk = 0.

This proves (3.)(ii) and (3.)(iii). The condition (3.)(iv) implies also that H is a
Hilbert space and a subtriple of A, and that {ek}k∈K is and orthonormal basis of
H .

(3.) ⇒ (1.): It is enough to prove that the condition (2.) of Theorem 5.2
holds. For any finite subset F of K, set HF = lin{ek : k ∈ F}. By Lemma 4.2,
PF =

∑
k∈F Pk is a projection on A∗. Theorem 3.3 and (3.iv) show HF to be

a subtriple of A isomorphic to the Hilbert space with triple product (2.5). Re-
inspecting the relations (5.14), (5.16) and (5.17) shows that, for j, l in F , the
projection P ∗

F =
∑

k∈F P ∗
k commutes with D(ej, el) and with D(ej , ej) on A.

Hence, by Corollary 4.3, PF is contractive, as required.

(3.) ⇔ (4.): This follows from the equivalence of (1.) and (3.) and the fact
that (3.) is formulated in terms of all possible triples (j, k, l) ∈ K × K × K. The
proof is now complete. �

Let {xk}k∈K a family of elements in A∗ such that the corresponding support
tripotents {ek}k∈K form a collinear system. Then {xk}k∈K is said to be projectively
collinear if there exists a contractive projection onto lin{xk : k ∈ K}n

.

Corollary 5.5. Let {xk}k∈K be an arbitrary family of elements of A∗. Then,
{xk}k∈K is projectively collinear if and only if the conditions (3.i)–(3.iv) in The-
orem 5.4 hold for {xk}k∈K and {ek}k∈K . In particular, these conditions are suffi-
cient for {ek}k∈K to be a collinear system.

Proof. The condition (3.i) and Proposition 2.1 imply that xk ∈ A1(el)∗ (k �= l).
By Proposition 3 in [19], ek lies in A1(el) and el lies in A1(ek), i.e. {ek}k∈K is a
collinear system. Theorem 5.4 completes the proof. �

At this stage, two questions have to be clarified. First, is there a non-trivial
example of a projectively collinear system, and, secondly, is there an example
of a family of elements in A∗ with pairwise collinear support tripotent which
is not projectively collinear. A negative answer to either of the questions would
render our main results redundant. The following example answers both questions
affirmatively.
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Example. Let A be the W∗-algebra B(C4), represented by 4 × 4-matrices. Let τ
be the normalized trace on A, and let mx, my and mz be the matrices

mx =







2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0





 , my =







0 0 0 0
0 0 0 0
2 0 0 0
0 2 0 0





 , mz =







2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0







Define the linear functionals x, y and z, for any element a of A with entries aij

(i, j = 1, 2, 3, 4) by

(x · a) = τ(mxa) =
1
2
(a11 + a22),

(y · a) = τ(mya) =
1
2
(a13 + a24),

(z · a) = τ(mza) =
1
4
(2a11 + a21 + a12 + 2a22).

Then the elements u and v of A, given by

u =







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0





 , v =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0





 .

form a collinear pair of tripotents of A and are such that u = ex = ez and v = ey.
The mapping P defined for a linear functional s on A, by s �→ (u ·s)x+(v ·s)y is a
contractive projection and is also the unique GL-projection from A∗ onto Cx⊕Cy,
whereas there is no contractive projection from A∗ onto Cz ⊕ Cy.

Proof. It is obvious that (x · u) = (z · u) = (y · v) = 1, and the norms of
mx, my and mz are, respectively, ‖mx‖ = 2, ‖my‖ = 2, and ‖mz‖ = 3. The
following trace inequality, obtained in [32], is useful in subsequent calculations.
For all elements a, b in a C∗-algebra A and a continuous linear functional τ on A,
the condition

|τ(ab)| ≤ ‖b‖ τ(|a|) (5.20)

holds if and only if τ is a positive normalized trace on A. From (5.20) it follows
that, for all b in A, and m equal to mx, my, or to mz,

|τ(mb)| ≤ ‖b‖ τ(|m|) = ‖b‖,
hence, that x, y and z are of norm one in A∗. Since x attains its norm at u, it
follows that ex ≤ u. In particular, ex lies in A2(u). Clearly, ex is not zero. Consider
any tripotent w of A with w ≤ u. Observe that u is a partial isometry of rank two.
If w is not equal to zero or to u, then w is a partial isometry of rank one, that is
trace(|w|) = 1. Then, by (5.20),

|(x · w)| = |τ(mxw)| ≤ ‖mx‖ τ(|w|) =
1
2
.
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It follows that ex has rank two. This and the condition that ex ≤ u, implies that
ex = u. Similarly, (z · u) = 1 = ‖z‖ implies that ez ≤ u, and if w is as above,

|(z · w)| = |τ(mzw)| ≤ ‖mz‖ τ(|w|) =
3
4
.

Hence ez = ex = u. Also v has rank two. The same arguments as those used above
show that ey ≤ y. And, for any tripotent w with w ≤ v and trace(|w|) = 1,

|(y · w)| = |τ(myw)| ≤ ‖my‖ τ(|w|) =
1
2
.

Hence ey = v. We have shown that the subsets {x, y} and {z, y} satisify the
assumptions of Theorem 5.3.

It can be seen from elementary calculations that for all a ∈ A,

(D(u, u)∗y · a) =
1
4
(a13 + a24) =

1
2
(y · a),

(D(u, v)∗x · a) =
1
4
(a13 + a24) =

1
2
(y · a),

(D(v, u)∗y · a) =
1
4
(a11 + a22) =

1
2
(x · a),

(D(v, v)∗x · a) =
1
4
(a11 + a22) =

1
2
(x · a).

By Theorem 5.3, the mapping P defined for a linear functional s on A, by s �→
(u · s)x + (v · s)y is a contractive projection and is also the unique GL-projection
from A∗ onto Cx ⊕ Cy. On the other hand,

(D(u, v)∗z · a) =
1
8
(2a13 + a23 + a14 + 2a24), (5.21)

(D(v, v)∗z · a) =
1
8
(2a11 + a12 + a21 + 2a22) =

1
2
(z · a). (5.22)

Equation (5.22) shows that z lies in A1(v), but (5.21) condradicts (3.) in Theorem
5.3. Hence, there is no contractive projection from A∗ onto Cz ⊕ Cy. �

The pair {y, z} in Example 5 shows that in general the condition that
{xk}k∈K be projectively collinear is not necessary for the existence of a normal
contractive projection onto H = lin{ek : k ∈ K}w∗

. Given a normal contractive
projecton R from A onto H , the range R∗A∗ of its pre-adjoint R∗ may be dif-
ferent from G = lin{xk : k ∈ K}n

. In the remainder of this section, we assume
the existence of a normal contractive projection R on A with range RA equal to
the weak∗-closed span of an arbitrary collinear system. We also investigate the
properties of R∗.

A tripotent u in a JBW∗-triple is said to be σ-finite if the following implica-
tion holds. Whenever B is an orthogonal system in U(A) with the property that
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B ≤ u then B is countable. The set of all σ-finite tripotents is denoted by Uσ(A).
The results of [15] and [19], show that

Uσ(A) = {ex : x ∈ A∗}. (5.23)

This characterizes the support tripotents in terms of algebraic criteria, and the next
lemma can established from earlier results. By [11] Corollary 4.8 (iii), a contractive
projection P on A∗ lies in GL(A∗) if and only if

Uσ(P ∗A) = Uσ(A) ∩ s(PA∗). (5.24)

Lemma 5.6. Let A be a JBW∗-triple, and let H be a subtriple of A isometrically
isomorphic as subtriple to a Hilbert space. Denote by S1(H) the unit sphere of H,
a subset of U(A). If S1(H) ∩ Uσ(A) is not empty, then S1(H) ⊆ Uσ(A).

Proof. Since σ-finiteness is an algebraic property, it is preserved under triple au-
tomorphisms of A. By Theorem 3.3, the set of triple automorphisms of A acts
transitively on S1(H). This completes the proof. �

When R is any normal contractive projection on A, denote by R∗ its pre-
adjoint, a contractive projection on A∗. Recall that the range RA of R is a JBW∗-
triple when equipped with the restricted triple product {. . .}RA defined in (4.1).

Theorem 5.7. Let C be a collinear system in the JBW∗-triple A. Denote by HC the
subspace linC

w∗
of A. Let R be a normal contractive projection on A with range

HC and with pre-adjoint R∗. Let P be the unique GL-projection on A∗ such that
PA∗ = R∗A∗. Then, the following results hold,
(1.) There exists a projectively collinear system {xk}k∈K in A∗ such that the range

R∗A∗ of R∗ is the norm closed span of {xk}k∈K .

(2.) The JBW∗-triple HC with the restricted triple product {. . .}RA is isomorphic
to the subtriple H = lin{ek : k ∈ K}w∗

spanned by the support tripotents ek

of xk. In particular, HC is a Hilbert space, isomorphic to H.

(3.) The restrictions R|H and P ∗|HC of R and P ∗ to H and HC are triple iso-
morphisms and inverse of each other.

(4.) When u, v w are distinct elements of C (provided that |C| ≥ 3), then
{u, v, w} lies in kerR.

Proof. By the conditional expectation formulas (4.2) and (4.3), it can be seen that,
for two different elements u and v of C.

{u, u, v}RA = R{u, u, v} =
1
2
Rv =

1
2
v.

Therefore, the relation of collinearity holds also with respect to the restricted
triple product. By [14] Lemma 5.1 and [19] Proposition 2.2, it can be seen that the
triples (RA, {. . .}RA) and (s(R∗A∗), {. . }) are isomorphic. When P is the unique
element of GL(A∗) with PA∗ = R∗A∗, then by [11] Lemma 3.2 (iv), P |RA is a
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triple isomorphism and inverse to R|R∗A. It follows that P ∗C = {P ∗u : u ∈ C} is
a collinear system in the Hilbert space H . Consequently, by Lemma 5.6, P ∗C is a
subset of Uσ(A). From (5.23) and (5.24), it can be seen that, for each u in C the
element P ∗u is the support tripotent of some xu in R∗A∗. This proves (1.), (2.)
and (3.).

For distinct elements u, v and w in C, the above arguments and Theorem
5.4 (3.iv) show that

{P ∗u, P ∗v, P ∗w} = 0.

Since R|P∗A is a triple isomorphism with inverse of P |RA, it follows that R{u, v, w}
is zero, proving (4.). �

The above Theorem can be generalized as follows.

Theorem 5.8. Let Q be a normal contractive projection on a JBW∗-triple A, with
preadjoint Q∗ on A∗. Then QA is isometrically a Hilbert space if and only if Q∗A∗
is the norm-closed span of a projectively collinear system.

Proof. Let P be the uniqe element of GL(A∗) with PA∗ = Q∗A∗. Then, as argued
before, P ∗|QA and Q|P∗A are isometries and inverse of each other, and P ∗A is a
subtriple of A. Applying Theorem 5.7 gives the proof. �

The results presented in this article apply to the more restricted relation of rigid
collinearity [13]. In that case, the exchange automorphisms introduced in [29] can
be used to answer our main question, whether or not a contractive projection with
the prescribed range exists. Details and proofs are part of current investigations,
and will be presented in forthcoming publications.
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