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We present a robust, distributable method for computing minimum free energy paths of large
molecular systems with rugged energy landscapes. The method, which we call harmonic Fourier
beads �HFB�, exploits the Fourier representation of a path in an appropriate coordinate space and
proceeds iteratively by evolving a discrete set of harmonically restrained path points—beads—to
generate positions for the next path. The HFB method does not require explicit knowledge of the
free energy to locate the path. To compute the free energy profile along the final path we employ an
umbrella sampling method in two generalized dimensions. The proposed HFB method is anticipated
to aid the study of rare events in biomolecular systems. Its utility is demonstrated with an
application to conformational isomerization of the alanine dipeptide in gas phase. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2363379�

I. INTRODUCTION

Elucidating rare events, specifically, chemical and con-
formational reorganizations of molecules that require activa-
tion energies in excess of the thermally available kBT value is
essential for understanding the mechanics of complex bio-
molecular systems. Typically, reactant and product states,
pertinent to the event in question, are known experimentally,
but the underlying transitions remain unresolved. These
large-scale and long-time conformational transitions are dif-
ficult to study experimentally and require state-of-the-art
methods to be employed in computational pursuit.1,2

The most prominent computational methods that attempt
to delineate transition paths between given reactant and
product states are the nudged elastic band,3 line integral,4–8

and action based methods9–12 as well as conjugate peak
refinement,13 transition path sampling,14,15 and finite tem-
perature string16–18 methods. Except for transition path sam-
pling and finite temperature string methods, the majority of
these approaches relies on gradient-based optimization tech-
niques that require smooth potential energy surfaces to de-
lineate adiabatic transition paths. However, the dynamics of
the molecular machines is governed by the free energy that,
unlike the potential energy, is not readily available from
computer simulations. Therefore, mapping out the transition
paths on the free energy surface constitutes a challenge.

Another challenging task is to compute the free energy
profile along a given transition path. One common way is to
perform constrained dynamics that can then be used to com-
pute the mean forces along the path using either vectorial
constraints in the reaction coordinate space or hyperplanes
orthogonal to the path.19–22 Subsequently, the free energy
profile can be computed from the corresponding mean forces

along the path. However, practical application of these ap-
proaches requires performing complex numerical proce-
dures, particularly in the former case, and is not guaranteed
to give reliable free energy estimates.22–25 Another alterna-
tive is to use an umbrella sampling procedure along the re-
action coordinate to obtain the free energy profile.26 How-
ever, for biomolecular systems with multidimensional
reaction coordinates, umbrella sampling requires substantial
sampling in each coordinate dimension and this limits the
scope of the method to low dimensional reaction coordinates.
In either case, both constrained dynamics and umbrella sam-
pling procedures require a predefined reaction coordinate
that accurately describes the transformation in question.
However, in large complex molecular systems the reaction
coordinate is often difficult to obtain, which further limits the
scope of the referred procedures.

In the present paper we provide a simple, robust ap-
proach to tackle the study of rare events in complex molecu-
lar systems, namely, computing minimum free energy paths
and the corresponding free energy profiles. In the core of our
approach is a novel method that we call the harmonic Fourier
beads �HFB� method.

In what follows, we first describe our HFB method as it
pertains to computing minimum free energy paths, and then
demonstrate how it can be used to compute the correspond-
ing free energy profiles. Finally, to demonstrate the utility of
the HFB method we apply it to study conformational rear-
rangement of the simplest proteinlike prototype, namely, the
alanine dipeptide in gas phase. Future applications of the
method to investigate dynamics of larger biological mol-
ecules is forthcoming.

II. METHODOLOGY

The HFB method we present here has some similarities
with the recently proposed finite temperature string �FTS�
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method.16,27 To provide a basis for comparison with the FTS
method, we first describe in detail our method and then dis-
cuss its advantages over the FTS method.

A. The Fourier representation of the path

The Fourier representation of the path—Fourier path—is
a key ingredient of the HFB method. The Fourier path de-
scribes a curve in a multidimensional coordinate space that is
a function of a single progress variable �� �0;1� and con-
nects a reactant R��=0� and a product R��=1�, each com-
prising N atoms. The functional form of the Fourier path
includes a linear part in � that corresponds to a trivial line
interpolation between the reactant and the product, and the
nonlinear part—the Fourier series—that describes the non-
trivial features of the path:9

qi��� = qi�0� + �qi�1� − qi�0��� + �
n=1

P

bn
i sin�n��� . �1�

In Eq. �1� qi is the ith component of the configuration vector
R= �q1 , . . . ,q3N�, also called a bead, describing the positions
of all N atoms in Cartesian space, �bn

i �n=1 , P
i=1 , 3N are the ampli-

tudes of the corresponding Fourier basis functions, and P is
the series truncation index that controls the path fidelity. The
Fourier path is therefore fully defined by the two end points
and a set of the Fourier amplitudes.

B. Generating a Fourier path

To generate a Fourier path we compute the Fourier am-
plitudes by performing Fourier transform of a discrete set of
total K initial beads �Rk

init�k=1 , K that progresses from the re-
actant to the product. The coordinates of the beads are pre-
pared for the Fourier transform according to the following
procedure.8

First, a subset of atoms �say, S�N� that is representative
of the reaction coordinate space �RCS� of interest is chosen.
The remaining atoms �N−S� comprise the spectator coordi-
nate set �SCS� that is orthogonal to the RCS. For example, to
describe the conformational rearrangements of the 22 atom
�N=22� alanine dipeptide �see Fig. 1�, we choose the five
backbone atoms �S=5� depicted in bold in Fig. 1 that define
the � and � dihedral angles for the RCS, leaving 17 atoms
�N−S=17� in the SCS. The coordinates of the individual
beads are then translated into the center of mass of the RCS,

and then rotated to superpose the RCS of all the consecutive
beads onto the RCS of the reactant. The resulting sequence
of aligned structures �R��k�= �q1��k� , . . . ,q3N��k��
=Wk,1Rk

init�k=1 , K is then used to compute the Fourier path am-
plitudes according to Eq. �2� on an even-spaced grid with
�k= �k−1� / �K−1� using a simple trapezoid rule.28 Here Wk,1

is the 3�3 matrix describing the alignment transformation
of the Cartesian coordinates of bead k onto bead 1 �the reac-
tant�,

bn
i = 2�

0

1

�qi��� − qi�0� − �qi�1� − qi�0����sin�n���d� .

�2�

Note that only the first P�K amplitudes and only for the
atoms in the RCS need to be determined.

Once the Fourier amplitudes are computed, the beads are
redistributed along the path curve according to a chosen met-
ric. In the present paper we use arc length as the metric. The
redistribution, therefore, ensures that the arcs between the
adjacent beads in the RCS are of equal length. This is done
by computing the length of the path curve as a function of
��L���� using an analytical expression for the differential
line segment and then finding the values of � that split the
curve in RCS into segments of equal length by simple brack-
eting and bisection.28 The solution vector, ��k

eql�k=1 , K, along
with the set of Fourier amplitudes are then used in Eq. �1� to
generate the corresponding Cartesian coordinates of the ref-
erence beads �R��k

eql��k=1 , K for the subsequent evolution of
the path �the “eql” superscript indicates that the values cor-
respond to the points on the Fourier path that split the path
curve in RCS into segments of equal length, or, simply, re-
distributed points�.

C. Evolving the Fourier path

1. Minimum free energy path

The HFB method evolves the Fourier path toward the
minimum free energy path by running independent, short
molecular dynamics �MD� simulations for each bead k with a
corresponding absolute positional harmonic restraint,

V�R;�k
eql� =

f

MS
�
j=1

S 	mj �
i=3j−2

3j

�qi − qi��k
eql��2
 . �3�

For each bead k the restraint is applied with respect to the
corresponding reference bead R��k

eql� and only to the RCS
atoms. In Eq. �3�, f is the force constant and mj and MS are
the mass of the jth atom and the total mass of the atoms in
the RCS. The fact that each bead is evolved completely in-
dependent of all the other beads makes the HFB method
efficiently distributable. Each independent simulation gener-
ates a MD trajectory that is used to compute the dynamics-
averaged coordinates of the corresponding bead. The result-
ing dynamics-averaged coordinates represent the evolved
beads and are used to generate a successive Fourier path.
Normally, one has to wait for all the K MD simulations cor-
responding to the K beads to be completed before generating
the next Fourier path.

FIG. 1. The chemical structure of alanine dipeptide. The essential atoms
comprising the RCS are shown in large bold font. These atoms are used in
the definition of the � and � dihedral angles.
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2. Minimum potential energy path

The Fourier path can also be used to compute the mini-
mum potential energy path. In this case, optimization tech-
niques are used to evolve the beads instead of MD simula-
tions, while keeping the same harmonic restraint �3�. The
final optimized structures, instead of the dynamics-averaged
structures, serve as the evolved beads to generate the next
Fourier path.

3. Convergence of the Fourier path evolution

Regardless of the evolution technique, the coordinates of
the evolved beads will exhibit an offset from the correspond-
ing reference beads used in the harmonic restraint �3� in a
direction orthogonal to the Fourier path until a corresponding
energy valley is reached. The direction and, in particular, the
magnitude of the offset vector depend on the value of the
force constant used in the harmonic restraint �3�.

The convergence of the Fourier path evolution is moni-
tored using the root-mean-square deviation �RMSD� of the

pairwise RMSDs computed in the RCS between the beads in
the newly evolved and the preceding Fourier paths. Other
ways of monitoring convergence of the path will be dis-
cussed elsewhere.29 The final Fourier path, corresponding to
either minimum free energy or minimum potential energy
path, potentially describes a rather complex transformation
in a multidimensional RCS while remaining an analytical
function of a single progress variable �.

D. Computing the free energy profile along a Fourier
path

Once the minimum free energy path is obtained, the free
energy profile underlying the transition between the reactant
and the product along the corresponding Fourier path may be
computed by performing standard umbrella sampling simu-
lations with two simultaneous best-fit RMSD restraints �4�
along the path. Similar to the Fourier path evolution, collect-
ing statistics with umbrella sampling requires running a MD
simulation with the two restraints �4� for each bead,

V�R;�k
eql;�end

eql � =
f

MS
	��

j=1

S

mj �
i=3j−2

3j

�Wk,endqi − qi��end
eql ��2 − RMSD��k

eql;�end
eql ��MS
2

. �4�

Because such a MD simulation for a particular bead is com-
pletely independent of all the other beads, the umbrella sam-
pling procedure is also efficiently distributable. The two re-
straints �4� are applied to each bead in the RCS using the
corresponding reference bead from the optimized Fourier
path to compute the offset values �5� with respect to the
reactant and the product reference bead, respectively:

RMSD��k
eql;�end

eql �

=
��

j=1

S

mj �
i=3j−2

3j

�Weql
k,endqi��k

eql� − qi��end
eql ��2

MS
. �5�

In Eqs. �4� and �5�, “end” designates either the reactant or the
product state; Wk,end is the 3�3 matrix describing the RMSD
best-fit transformation of the Cartesian coordinates of the
current dynamic bead k onto the reference bead end and has
to be recomputed at every dynamics step; Weql

k,end is the cor-
responding transformation for the reference bead k onto the
reference bead end and, hence, has to be computed only once
�recall that eql refers to the structures corresponding to the
reference beads that are equidistant from each other in the
RCS�. Due to the nature of the applied restraints, it is im-
perative to initiate the simulations in the vicinity of the cor-
responding reference bead to ensure a smooth transition and
significant overlap between adjacent beads. In cases where
the density of points used during the path optimization does
not provide the necessary overlap in umbrella sampling,
more beads can be trivially inserted using Eq. �1�.

The umbrella sampling procedure with the specified re-
straints �4� for computing the free energy profile reduces the
multidimensional RCS to only two generalized RMSD
coordinates,8

RMSDfit�R;�end
eql �

=
��

j=1

S

mj �
i=3j−2

3j

�Wk,endqi − qi��end
eql ��2

MS
. �6�

Furthermore, this procedure only requires sampling along the
Fourier path projection on the two-dimensional �2D� RMSD
space, and is, therefore, effectively one dimensional. Once
enough statistics are gathered, the free energy strip along the
Fourier path projection is reconstructed using the 2D
weighted histogram analysis method �WHAM�.30,31 If only
the relative free energies between the reactant and product
are of interest, the path along which the free energy profile is
computed does not have to be the minimum free energy path.
Thus, the procedure for computing the free energy profiles
can be applied to any path to yield the corresponding free
energy profile.

For complex paths that encompass multiple intermedi-
ates and transition states the reduced 2D representation may
yield a path curve projection that will cross itself, possibly
multiple times. In such cases, the path should be subdivided
into consecutive segments between the free energy minima
such that the crossings are avoided. The profile of the aver-
aged potential energies over the corresponding evolution tra-
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jectories can be used to pinpoint approximate positions of
suitable free energy minima in this case. An alternative so-
lution for computing the free energy profiles along the self-
crossing paths will be discussed elsewhere.29

E. Practical considerations for the use of the harmonic
Fourier beads method

1. Initializing the Fourier path evolution

To initialize the Fourier path evolution toward the mini-
mum free energy path, different strategies can be employed.
See, for example, recent works that detail generating initial
paths.8,32–34 Alternatively, one can initiate path evolution us-
ing an activated HFB evolution approach. In the activated
HFB evolution the reactant and the product reference beads
are initially connected with a straight line, comprising a total
of K structures; however, only the end point beads and a few
beads immediately adjacent to them that lack steric clashes
are activated for evolution. The activated beads farthest from
each end inward are bridged with a new line segment during
reparametrization to maintain the total number of K beads in
the path. The structures at both ends of the line segment are
considered for activation based on their potential energy. As
more structures become activated, this line segment shrinks
and eventually disappears. Although the beads on the line
segment are not used in the evolution, they ensure that the
distances between the beads remain consistent with the com-
plete path. If the arc length between the adjacent beads be-
comes too large, more beads can be inserted at any redistri-
bution step. The activated HFB evolution achieves the same
goal as the growing string method.17

2. The choice of the force constant and step size

Some consideration for the choice of force constant and
the step size along the offset vector is required to optimize
the performance of the HFB method. If the chosen force
constant is too small, the beads will slide down to the nearest
local minima and the Fourier path for the next step will
comprise local minima interconnected with straight lines,
with no information about the transition states involved. The
choice of a force constant that is too stiff will greatly impede
evolution to the minimum free energy valley. Although em-
ploying relatively stiff force constants permits fairly small
structural changes in the RCS, the resulting offset directions
can be used to generate a new set of structures by stepping a
certain length along each offset vector. We are currently in-
vestigating different options that will allow enhancing the
HFB method performance in the future.29 In this work we
use the evolved, mean bead positions directly as an initial
guess to compute the Fourier amplitudes for a successive
Fourier path. The evolution procedure is iterated until con-
verged, yielding the minimum free energy path.27,29

3. Choosing the best starting structure

For some choices of the RCS/SCS partition, averaging
and redistribution procedures might scramble positions of the
SCS atoms in the newly generated reference beads. Although
scrambling of the SCS atoms does not affect the restraint, it
makes the reference bead a poor starting structure for the

MD simulations in the next evolution step. In such cases, the
best option for starting the next evolution step is to use the
last configuration or, even better, the restart file from the
previous MD trajectory for each bead.

4. Avoiding kinks along the path

In the flat regions of the free energy surface the path
curve may develop kinks, especially if the series truncation
index P is close to the number of structures in the path K.
This problem can be resolved by pairwise averaging of the
adjacent reference structures and then reparametrizing the
path curve or, alternatively, by simply decreasing the index
P.

F. Comparison with the FTS method

We are now in a position to compare our HFB method
with the FTS method. In the FTS method a path between a
reactant and a product is represented by a parametric curve in
a multidimensional coordinate space using local piecewise
polynomial basis functions—splines.17 In contrast, our HFB
method employs global sinusoidal Fourier basis functions.9,35

The FTS method interpolates a discrete set of structures be-
tween the reactant and the product to generate the path curve
that is then reparametrized according to a chosen metric. The
HFB method also involves these essential steps, however, the
underlying procedures become particularly trivial in the Fou-
rier basis, as they involve a conventional Fourier transform.

Another advantage of the Fourier representation is that it
provides a systematic way of controlling the fidelity of the
path by controlling the number of the basis functions in the
series. Such a simple control does not increase the complex-
ity of the computer code and enhances the stability of the
HFB method during the evolution stage.

The FTS method evolves its path curve by running con-
strained dynamics in the hyperplanes normal to the curve at
discrete points along it. However, using such constrained dy-
namics often requires additional constraints to further local-
ize sampling in the planes and makes the method fairly un-
stable. To combat the instability, the FTS method
necessitates a curve-smoothing step. In contrast, the HFB
method employs harmonic absolute and/or best-fit RMSD
restraints that avoid the problems associated with the hyper-
planes and thus provides greater robustness. Furthermore,
using the best-fit RMSD restraints, unlike hyperplane con-
straints, allows one to exclude unproductive configurations
associated with rotations and translations of molecules if
necessary.22

Both the FTS and HFB methods accept various path-
ways or even trajectories from a variety of methods as an
initial guess for the path. For example, they can be used to
anneal pathways generated at high temperatures, such as pro-
tein unfolding pathways. Yet if no other alternatives for the
initial path exist, the HFB method can grow the path curve
into an unknown region of configuration space, similar to the
growing string method.17

The HFB method has all the features required for study-
ing rare events in complex systems with rough energy land-
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scapes. It does not require explicit knowledge of the free
energy or that the potential energy surface be smooth; it can
generate an initial path and does not need an a priori defined
reaction coordinate. Furthermore, the HFB method is simple,
flexible, robust, and naturally distributable. These properties
make the HFB method particularly attractive for locating
minimum free energy paths in biomolecular systems.
Complemented with the proposed method for computing the
free energy surface strip in a reduced 2D space of general-
ized RMSD coordinates, our approach provides quantitative
free energy information essential for computing reaction
rates from transition state theory.

Interestingly, after giving the name harmonic Fourier
beads to our method we discovered that a similar name,
bead-Fourier approximation, has been used in the context of
quantum mechanical path integral simulations.36,37 Despite
the similarity of the name and that of the classical isomorph
of the referred method, our method is significantly different
in that we do not approximate the path as a dynamic trajec-
tory as required by the path integral approach. As such we do
not have to couple the evolution of the beads and the curve
together that would make the method impractical for the pro-
posed applications.

In the following paragraphs we illustrate the application
of the HFB/umbrella sampling approach by studying a con-
formational isomerization of the alanine dipeptide in gas
phase.

III. COMPUTATIONAL DETAILS

The HFB method was implemented into the c33a2 ver-
sion of the CHARMM program.38 All simulations reported in
this paper were performed with the CHARMM22 all-atom
force field.39 For visualization purposes, the isomerization
pathways of the alanine dipeptide were projected onto the
� /� adiabatic potential energy surface computed as de-
scribed previously.8 Here we only considered the transition
of the alanine dipeptide from the C7eq to the C7ax conforma-
tion in the gas phase. Both electrostatic and van der Waals
�vdW� interactions employ 16 Å cutoffs that are truncated
with switching functions at 18 Å. MD was run with the leap
frog integrator using a 2 fs time step and the velocities were
reassigned from the Boltzmann distribution centered at T
=298 K. All bonds involving hydrogen atoms were con-
strained using SHAKE �Refs. 40–42� with tolerance of 1.0
�10−8 Å.

A. Generating an initial Fourier path and its evolution
toward the minimum free energy path

To initialize the Fourier path between the C7eq and C7ax

conformations of the alanine dipeptide, the intermediate
beads were generated by a linear interpolation in Cartesian
coordinate space. The number of beads K and the Fourier
series truncation index P were set to 32, unless noted other-
wise. To evolve the Fourier path toward the minimum free
energy path, the beads were initially optimized subject to the
harmonic restraint �3� on atoms in the RCS and SCS with a
mass normalized force constant �f /Ms� of 25.0 and
10 kcal/ �g Å2�, respectively. The optimization employed

1000 steps of steepest descent �SD� and subsequently 1000
steps of adaptive basis Newton-Raphson �ABNR� optimiza-
tions. During the minimization process the restraint on the
atoms in the SCS was relaxed from 10.0 to 0.0 kcal/ �g Å2�
in 1.0 kcal/ �g Å2� decrements. The Fourier path evolution
toward the minimum free energy path was run with MD
simulations following the minimization. During the dynam-
ics simulations a harmonic restraint identical to that used in
minimization of the RCS atoms was employed with respect
to the appropriate reference structure. Each bead was equili-
brated for 200 ps, while heating the system to the target tem-
perature T=298.0 K. A production run of 8 ns length fol-
lowed the equilibration.

To evolve the Fourier path toward the minimum poten-
tial energy path rather than the minimum free energy path
only minimization of the beads was performed as described
above, except that the mass normalized force constant on the
RCS atoms was set to 50 kcal/ �g Å2�. In this case the mini-
mized structures were used as evolved beads to generate the
subsequent Fourier path.

The evolution process in the search for either the mini-
mum free energy path or the minimum potential energy path
is iterated until the root-mean-square deviation of the pair-
wise RMSDs in the RCS between the reference structures in
the newly evolved and preceding paths reaches the conver-
gence threshold of 5.0�10−4 Å.

B. Computing the free energy profile along the
Fourier path

To compute the free energy profile along the minimum
free energy path we initially minimized the SCS of the final
reference beads from the optimized Fourier path as described
above, and then equilibrated them for 20 ps using the re-
straint �3� with the corresponding reference bead. We then
reequilibrated each bead for another 10 ps using two re-
straints �4� simultaneously, one with respect to the reactant
and the other with respect to the product. The offset values
�5� for each bead were computed as the RMSD of the refer-
ence bead in each window with respect to the reactant and
the product beads using the Fourier path that corresponds to
the minimum free energy path. These latter restraints were
employed during the production run of 20 ns in each win-
dow. The mass normalized force constants for the restraints
were 25 kcal/ �g Å2�, identical to that used during minimum
free energy path optimization. The coordinates for the sub-
sequent potential of mean force calculations were saved ev-
ery 200 fs. The WHAM �Refs. 30 and 31� was used to obtain
the two-dimensional free energy profile along the final Fou-
rier path.

IV. RESULTS AND DISCUSSIONS

To demonstrate the utility of our method we investigated
the conformational isomerization of the 22-atom alanine
dipeptide �see Fig. 1� in gas phase. Specifically, we located
both the minimum potential energy path and minimum free
energy path between the following conformations: the C7eq

at �−81.4; 70.5� �E=0.0 kcal/mol� and the C7ax at �69.7;
−67.6� �E=2.1 kcal/mol�. The path between the C7eq and
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C7ax used 32 beads. The RCS included only five atoms �S
=5� that define the backbone dihedral angles � and �.

Figure 2 shows the final minimum potential energy path
and minimum free energy path optimized with the HFB
method, starting from a linear interpolation in Cartesian co-
ordinate space. The minimum free energy path converges
within 60 iterations using MD simulations at T=298.0 K and
the mass normalized force constant in the restraint �3� of
25.0 kcal/ �g Å2�. The final free energy minima of the C7eq

and C7ax conformations are at �−82.6; 72.5� and at �69.7;
−69.1�, respectively. The minimum potential energy path
converges in 80 Fourier path evolution steps using optimiza-
tion that corresponds to T=0.0 K and the force con-
stant of 50.0 kcal/ �g Å2�. Stiffer force constants
�75.0–125.0 kcal/ �g Å2�� appeared to produce kinks, but the
string evolved to the same minimum energy valley �results
not shown�. Doubling the number of beads in the path from
32 to 64 and increasing the force constant to
125.0 kcal/ �g Å2� yielded a path practically identical to that
with 32 beads and a force constant of 50.0 kcal/ �g Å2� �re-
sults not shown�. The minimum potential energy path and
minimum free energy path differ only slightly as can be seen
from Fig. 2. Neither path is perpendicular to the adiabatic
constant energy contours. Interestingly, the minimum poten-
tial energy path between the same reactant and product opti-
mized in the “essential” internal coordinate space of � and �
�Ref. 41� is similar to the minimum potential energy path
optimized in the Cartesian RCS in the present paper.

Figure 3 depicts the free energy strip along the minimum
free energy path. As seen from Fig. 3 the path proceeds
through the free energy valley as expected. The relative free
energy of the two minima is 2.5 kcal/mol and the free en-
ergy of the activation is 8.4–8.6 kcal/mol. These values
compare well with the corresponding potential energy profile
values of 2.1 and 8.4 kcal/mol, respectively.

V. CONCLUDING REMARKS

In conclusion, we have presented a novel approach to
computing minimum free energy paths and corresponding
free energy profiles. Our approach features the HFB method
for the minimum free energy path optimization and employs
well-established umbrella sampling in a generalized 2D
space along the optimized path to compute the corresponding
free energy profile. The HFB method includes all the features
required for studying rare events in complex systems with
rough energy landscapes. It does not require an explicit
knowledge of the free energy and that the potential energy
surface be smooth; it can itself generate an initial path and
does not need an a priori defined reaction coordinate.
Complemented with the procedure for computing the free
energy surfaces in the reduced 2D space of generalized
RMSD coordinates, the HFB method provides quantitative
free energy information essential for computing reaction
rates with the transition state theory. Furthermore, the HFB
method is simple, flexible, robust, and naturally distributable.
These properties make the HFB method particularly attrac-
tive for studying biomolecular systems.

The utility of the method has been demonstrated on the
case of a simple proteinlike system—the alanine dipeptide.
Further applications and enhancements of the method are
currently in progress in our laboratory and will be reported
elsewhere.29 We believe that the HFB method will expand
our capabilities in studying rare events in large complex sys-
tems with rugged energy landscapes, and in particular, bio-
molecular systems.
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FIG. 2. The projections of the minimum potential and free energy paths
onto the � /� adiabatic map of the alanine dipeptide. The initial path is
shown as a solid line, whereas the minimum potential and minimum free
energy paths are shown with short- and long-dashed lines, respectively. See
the description in the text for the path optimization details.

FIG. 3. �Color� The free energy strip along the minimum free energy path.
The line with the circles depicts the optimized minimum free energy path in
the generalized RMSD coordinates. Each circle provides the position of the
actual bead used during umbrella sampling simulations. The path corre-
sponds to T=298 K.
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