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Abstract

The first part of this review paper is devoted to the simple (un-
damped, unforced) pendulum with a varying coefficient. If the coef-
ficient is a step function, then small oscillations are described by the
equation

ẍ + a2(t)x = 0, a(t) := ak if tk−1 ≤ t < tk, k = 1, 2, . . . .
Using a probability approach, we assume that (ak)∞

k=1 is given, and
{tk}∞

k=1 is chosen at random so that tk − tk−1 are independent random
variables. The first problem is to guarantee that all solutions tend to
zero, as t → ∞, provided that ak ↗ ∞ (k → ∞). In the problem of
swinging the coefficient a2 takes only two different values alternating
each others, and tk − tk−1 are identically distributed. One has to find
the distributions and their critical expected values such that the ampli-
tudes of the oscillations tend to ∞ in some (probabilistic) sense. In the
second part we deal with the damped forced pendulum equation

ẍ + 10−1ẋ + sinx = cos t.
In 1999 J. Hubbard discovered that some motions of this simple physical
model are chaotic. Recently, using also the computer (the method of
interval arithmetic), we gave a proof for Hubbard’s assertion. Here we
show some tools of the proof.
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1. Introduction

The simple mathematical plane pendulum is a mass m attached to a rigid

massless rod with length �. According to Newton’s Second Law, the motion is

described by the nonlinear second order differential equation

ϕ̈ +
g

�
sin ϕ = 0, (1.1)

where ϕ denotes the angle from the direction of the gravity to the rod measured

counterclockwise, and g is the gravitational constant. If friction and drag are taken

into account, then the pendulum is damped, whose motions are described by the

equation

ϕ̈ + bϕ̇ +
g

�
sin ϕ = 0 (b > 0), (1.2)

where the positive constant b is the damping coefficient. We will consider also the

case when an external periodic force also acts:

ϕ̈ + bϕ̇ +
g

�
sin ϕ = A cos κt, (1.3)

where A and κ denotes the amplitude and the frequency of the external force,

respectively.

In this paper we give a brief review on our results obtained for the simple

pendulum with varying length and for the forced damped pendulum. In Section 2

we consider the special case of the linearized version of equation (1.1) when � is a step

function. We use a probability approach. It will be pointed out that limt→∞ ϕ(t) =

0 almost surely provided limt→∞ �(t) = 0. We consider also the problem of swinging,

i.e., the case when � takes only two different values, and the distances between the

consecutive jump points are independent identically distributed random variables

with expected value T . We find the values of T for which the so-called parametric

resonance happens, i.e., the lower equilibrium is unstable in some sense. In Section 3

we show that the motion of the forced damped pendulum (1.3) can be unpredictable

or chaotic.

2. Small oscillations of a pendulum with varying length

“Small oscillations” of the simple pendulum (1.1) are described by the linear

equation

ϕ̈ + ω2
0ϕ = 0,

(
ω0 =

√
g

�

)
. (2.1)

As is well known, all motions are periodic with the same period 2π/ω0. If the length

of the pendulum varies in time (� = �(t)), then (2.1) is of the form

ẍ + a2(t)x = 0, (2.2)
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where a(t) :=
√

g/�(t). At first, imagine the situation when one has to lift a weight

by a pulley and a rope through a gap. Then it can be assumed that � is a decreasing

step function and limt→∞ �(t) = 0. If the gap is narrow, then it is natural to want

all solutions to have the property

lim
t→∞

x(t) = 0, (2.3)

in other words, one has to stabilize the equilibrium x = ẋ = 0 with respect to x. (The

equilibrium is unstable with respect to the vector (x, ẋ) because a is unbounded!)

It can happen that one wants to destabilize the lower equilibrium with respect

to x, e.g., in the problem of swinging (see [1]). The swinger changes the height of

his/her center of gravity periodically (at least nearly periodically). This results in

a periodic change of the length of the corresponding mathematical pendulum. The

goal is to find the values of the period (the values of the approximate period) for

which the zero solution of (2.2) is unstable.

2.1. Increasing coefficient a

Consider equation (2.2) and suppose that a: [0,∞) → [0,∞) is non-decreasing

and a(t) ↗ ∞ as t → ∞. By the Polya–Sonin theorem the solutions are not

periodic any more, they oscillate, the amplitudes of the oscillations decrease, and

the frequencies increase. We are concerned to guarantee that the amplitudes tend

to zero, as t → ∞, i.e., (2.3) is satisfied. H. Milloux [4] proved that such a (non-

trivial) solution always exists, provided a is differentiable. We extended this result

to step function coefficients [14]. The Armellini–Tonelli–Sansone theorem (see, e.g.,

[13]) says that all solutions satisfy (2.3) if a(t) ↗ ∞ “regularly”, as t → ∞, which

briefly means that the growth of the function a cannot be located to a set of small

measure.

Equation (2.2) with a step function coefficient a2 often serves as a mathemat-

ical model in applications [21]. For example, functions in the problems of lifting a

weight and swinging mentioned in the Introduction may be step functions. In this

section we restrict ourselves to this kind of coefficients.

Given two sequences of positive numbers (ak)∞

k=1, (tk)∞

k=1 (tk ≤ tk+1, k =

1, 2, . . .) and t0 := 0, we consider the second order linear differential equation

ẍ + a2(t)x = 0, a(t) := ak if tk−1 ≤ t < tk, k = 1, 2, . . . . (2.4)

A function x: [0,∞) → R is called a solution of (2.4) if it is continuously differentiable

on [0,∞) and it solves the equation on every (tk−1, tk) for k = 1, 2, . . ..

There are different approaches to study equation (2.4). It is possible to apply

the results of the general theory to this special case [11], [15], [16], [25]. Á. Elbert

[7], [8], [9] initiated the method of step-by-step integration. We suggested a new
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geometric approach [14], [19], [18], [17], [20], [12]. Introducing the new state variable

y := ẋ/ak we rewrote equation (2.4) into the 2-dimensional system

ẋ = aky, ẏ = −akx if tk−1 ≤ t < tk, k = 1, 2, . . . . (2.5)

The dynamics turns the x-y plane uniformly around the origin. Since ẋ(t) has to

be continuous, the initial value y(tk) on the interval [tk, tk+1) is defined by

y(tk) :=
ak

ak+1
y(tk − 0), k = 1, 2, . . . , (2.6)

which means a contraction along the y-axis of measure ak/ak+1 at t = tk.

Let us turn to the stabilization of the origin with respect to x. First of all, one

has to observe that the Armellini–Tonelli–Sansone theorem and its improvements do

not work here because the increase of the coefficient a is located to the enumerable

set {tk}∞

k=1. Integrating step-by-step, Á. Elbert [7], [8], [9] obtained a very sharp

(but sophisticated) sufficient condition for the asymptotic stability with respect to

x in a form of the divergence of an infinite series containing ak and τk := tk − tk−1.

It would be very hard to control motions by the use of this formula even if one could

observe and measure the state variables during the motions, what, in general, cannot

be assumed. On the other hand, analyzing this formula (see also counterexamples in

[10], [25], one conjectures that equation (2.2) with coefficient of the property a(t) ↗
∞ (t → ∞) can have solutions not vanishing asymptotically only for exceptional

coefficients a2. For this reason, we formulated the following practical problem [14]:

How often does it happen that all solutions tend to zero? To be more precise, what

is the probability that all solutions tend to zero, provided that the heights of the

steps in the step function a are given, but the distances between the consecutive

time points of jump are independent random variables?

In [17] we answered this question in the case when the differences tk − tk−1

(k = 1, 2, . . .) are totally independent random variables uniformly distributed on

the interval [0, 1]. We proved that if ak ↗ ∞ (k → ∞), then it is almost sure

that all solutions of (2.4) tend to zero as t → ∞. In [19] this result was extended

to non-monotonous sequences (ak)∞

k=1. Recently we could generalize the result to

random sequences {τk = tk − tk−1}∞

k=1 of arbitrary distributions [6].

Let Fk and φk denote the distribution function and the characteristic function

of the random variable τk, respectively, i.e.,

Fk(x) := P(τk ≤ x), φk(t) :=

∫
∞

0

eitx dFk(x),

and suppose that τ1, τ2, . . . , τk, . . . are totally independent.
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Theorem 2.1. If ak ↗ ∞ (k → ∞), and

lim sup
k→∞

|φk(2ak)| < 1, (2.7)

then for every solution x of equation (2.4)

lim
t→∞

x(t) = 0 almost surely.

Let us apply this theorem to the case where τk is uniformly distributed on

[0, Tk]. Then

φk(t) =

√
2
√

1 − cos Tkt

Tkt
(t ≥ 0),

and the stability condition (2.7) has the form

lim sup
k→∞

|φk(2ak)| = lim sup
k→∞

| sin Tkak|
Tkak

< 1. (2.8)

Corollary 2.2. Suppose ak ↗ ∞ (k → ∞), and τk = tk−tk−1 is uniformly

distributed on the interval [0, Tk]. If

lim inf
k→∞

{Tk

2
ak

}
= lim inf

k→∞

{E(τk)ak} > 0

(E{·} denotes the expected value), then limt→∞ x(t) = 0 almost surely. In particular,

if Tk ≥ T∗ > 0 (k = 1, 2, . . .), then the assertion holds.

This is a generalization of the main result in [17], where the tk’s were identi-

cally distributed (Tk = 1, k = 1, 2, . . .).

Applying Elbert’s sufficient condition [7], [8], [9] to the problem of lifting a

weight by a pulley and a rope through a gap, the worker has to keep the members of

the sequence {τkak}∞

k=1 away from the set {jπ}∞

j=0, which is not an easy instruction.

At the same time, Corollary 2.2 yields the simple instruction: “Do not hurry!”.

2.2. The problem of swinging

If the swinger changes the height of his/her center of gravity periodically with

period 2T , then the equation of small oscillations of the equivalent mathematical

pendulum is of the form (2.4) with

t2n = 2nT, t2n+1 = (2n + 1)T, a2n+1 = π + ε, a2(n+1) = π − ε (n = 0, 1, 2, . . .),

where ε > 0 can be arbitrarily small (if the swinger is a child, then ε is small).

This is the Hill–Meissner equation [1], [21]. The problem is to find the values of

T for which the amplitudes of all nontrivial motions tend to infinity as t → ∞ at
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arbitrarily small values of ε (“parametric resonance”). It can be proved [1], [21]

that the appropriate values are T = m/2 (m = 1, 2, . . .).

To make the model more realistic, it is natural to assume that a is not a

deterministic periodic function; namely, the time intervals between the consecutive

jump points are independent identically distributed random variables with expected

value T . This model is of the form (2.4) with

a(t) :=

{
π + ε if t2n ≤ t < t2n+1,

π − ε if t2n+1 ≤ t < t2(n+1)
n = 0, 1, 2, . . . (2.9)

At first we formulate a general instability theorem for equation (2.4), then we apply

the result to the problem of swinging (2.9).

Theorem 2.3. Suppose that (τk = tk − tk−1)
∞

k=1 are independent identically

distributed random variables with expected value T and characteristic function φ.

If

β = β(ε, T, φ) :=−(π2 + ε2){|φ (2(π + ε)) | + |φ (2(π − ε)) |}+

+2επ{1 + |φ (2(π + ε)) ||φ (2(π − ε)) |} > 0,
(2.10)

then for every solution of equation (2.4) with coefficient (2.9) we have

lim
k→∞

E
{

x2(tk) +
(ẋ(tk))2

ak+1

}
= ∞.

The problem of random parametric resonance requires to determine the dis-

tributions (characteristic functions φ) and the expected values T satisfying (2.10).

It is easy to see that φ(2π) = 0 is necessary for (2.10).

At first let us consider the uniform distribution on the interval [0, 2T ]. (Actu-

ally, this does not seem to be a good tactic for swinging!) The necessary condition

gives

φ(2π) =
1

2Tπ
sin(2Tπ) = 0 =⇒ T =

m

2
(m = 1, 2, . . .),

which coincides with the solution of the problem of the deterministic (periodic)

parametric resonance [1]. However, setting T = m/2 + δ we get

lim
δ→0

β(ε,
m

2
+ δ, φ) = − 2ε2

π2 − ε2
+ O(ε3) < 0,

i.e., (2.10) is not satisfied in accordance with our expectations. But it is rather

surprising that we get the same result for the uniform distribution on the interval

[T −μ, T +μ], with arbitrarily small μ > 0. This means that decreasing the standard

deviation cannot produce random parametric resonance.
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Our next try was the sum of n independent random variables uniformly dis-

tributed on [0, 2T ]. It is interesting that n = 2 already results in parametric reso-

nance. The appropriate values are

T ∈
{n

2
, 2

n

2
, 3

n

2
, . . . , m

n

2
, . . .

}
.

For example, if n = 2, then T ∈ N, and the domain of instability (so-called Arnold’s

tongues) are described by

|T − n| <
n

π

√
ε − n

π
ε + O(ε3/2) (ε → 0)

(compare with [1]).

3. Chaotic motions of the forced damped pendulum

3.1. Description of the chaos

Consider a special case of the forced damped pendulum equation (1.3):

ẍ + 10−1ẋ + sinx = cos t. (3.1)

R. Borelli and C. Coleman [5] observed that numerical solutions of this equation were

very sensitive to the integration method, step-length, and initial conditions near

some points of the plane (x, ẋ). For example, the t-x graphs of the solutions starting

from the points P1(0, 1.98), P2(0, 2.00), and P3(0, 2.01) can be seen on Figure 1.

Figure 1. Sensitivity to initial conditions
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One has to observe that the solutions are asymptotically periodic with period 2π

(period of the external force). This experiment suggests that there exists a stable

2π-periodic motion around the downward position, which ultimately attracts all

three solutions. A superficial observer could think that this 2π-periodic solution

attracts all solutions. But this is not true. J. Hubbard [22] claimed the existence of

uncountably many “strange” motions of the damped forced pendulum (3.1) whose

asymptotic behavior is unpredictable; in other words, these motions are chaotic in

the sense defined via natural mechanical terms in the following way. Let us divide

the time line R into the intervals Ik := [2kπ, 2(k + 1)π] (k ∈ Z), and define εk in

the following way:

εk :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

-1
if the pendulum crosses the bottom position exactly once,

namely clockwise, during Ik;

1
if the pendulum crosses the bottom position exactly once,

namely counterclockwise, during Ik;

0
if the pendulum does not cross the bottom position at all

during Ik.

If something else happens during Ik, then εk is not defined. It is surprising that the

εk’s may be prescribed arbitrarily, independently of one another for both the past

and the future.

Assertion 3.1. (J. Hubbard) Given any bi-infinite sequence of events

{. . . , ε−1, ε0, ε1, . . .} (εk ∈ {−1, 0, 1}, k ∈ Z), called “itinerary”, there exists

a motion of the forced damped pendulum (3.1) that during each time interval

[2kπ, 2(k + 1)π] will “do” εk.

For example, during the motion corresponding to the itinerary {. . . , 0, 0, 0, . . .}
the pendulum never crosses the bottom position. In fact, we can prove [4] that there

exists an unstable 2π-periodic solution around the upper position not touching the

bottom position.

In [22] Hubbard did not prove Assertion 3.1. In [4] we give a general theorem

for detecting chaos in systems of differential equations, which can be applied to

prove Assertion 3.1. In the same paper we also prove the existence of exactly two

2π-periodic solutions to (3.1). The application of the general chaos theorem to (3.1)

needs rigorous methods of computations, which is done by interval arithmetic.
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Figure 2a. Backward image of Q0

Figure 2b. Forward image of Q0

Figure 2c. Schematic P (
⋃

k∈Z
Qk) ∩ Q0
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3.2. The tools of the proof of Assertion 3.1

Let x(·; t0, x0, ẋ0) denote the solution of (3.1) satisfying the initial condition

x(t0; t0, x0, ẋ0) = x0, ẋ(t0; t0, x0, ẋ0) = ẋ0. The mapping

P : R2 → R
2, P : (x0, ẋ0) �→ (x(2π; 0, x0, ẋ0), ẋ(2π; 0, x0, ẋ0))

is called the period mapping or Poincaré mapping to equation (3.1). If we

are interested in stability properties of solutions of (3.1), then, instead of the

differential equation (3.1), we can investigate the discrete dynamical system

P k := P ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
k times

: R2 → R
2 (k ∈ Z). (3.2)

An orbit of (3.2) is a bi-infinite sequence {P k(x0, ẋ0)}k∈Z ((x0, ẋ0) ∈ R
2). The

solution x(·; 0, x0, ẋ0) of (3.1) is 2π-periodic if and only if (x0, ẋ0) is a fixed point

of P . A 2π-periodic solution of (3.1) is stable if and only if the corresponding fixed

point of P is stable in the discrete dynamical system (3.2).

We prove [4] that P has exactly two fixed points in the region (0, 2π) ×
(−∞,∞): a sink s0(4.236 . . . , 0.392 . . .) and a saddle u0(2.634 . . . , 0.026 . . .). The

function x �→ sin x is 2π-periodic, so a horizontal 2π-shift of a fixed point of P is a

fixed point, too. This means that we have infinitely many sinks and saddles:

sk := s0 + (2kπ, 0), uk := u0 + (2kπ, 0) (k ∈ Z).

The basins of the sinks are of a very sophisticated structure. They are tangled;

every basin meanders around the plane. To be more precise: the basins seem to

have the Wada property, i.e., every point of the boundary of any basin belongs

to the boundaries of all the others [22]. This is the root of the chaotic behaviour

formulated in Assertion 3.1.

In the proof of Assertion 3.1 we need certain quadrilaterals {Qk}k∈Z around

the saddles: “long” in the unstable and “short” in the stable directions so that there

are so-called “exceptional” orbits of the Poincaré mapping P with the following

properties:

• an exceptional orbit is contained in
⋃

k∈Z
Qk;

• an exceptional orbit visits the quadrilaterals consecutively: if Pn(x0, ẋ0) ∈ Qk

for some k, n ∈ Z, then either Pn+1(x0, ẋ0) ∈ Qk−1 or Pn+1(x0, ẋ0) ∈ Qk or

Pn+1(x0, ẋ0) ∈ Qk+1.

It can be seen that to realize an itinerary (εk)∞

k=1 is equivalent to have an excep-

tional orbit visiting an appropriate sequence of quadrilaterals (Qik
)∞

k=1. In the main

step of the proof of Assertion 3.1 we show that for an arbitrary consecutive order

(Qik
)k∈Z of quadrilaterals there is an exceptional orbit visiting the quadrilaterals

in the prescribed order. To this end we have to know forward images P (Qk) and
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backward images P−1(Qk). Thanks to the horizontal 2π-periodicity of the discrete

dynamical system (3.2) it is enough to know the images P (Q0) and P−1(Q0). For

suitably chosen quadrilaterals the forward image P (Q0) crosses Q−1, Q0, Q1 in long

and thin “vertical strips”, and the backward image P−1(Q0) crosses Q−1, Q0, Q1 in

short and flat “horizontal strips” (see Figure 2). Let us denote these horizontal strips

by R−1, M0, L1, respectively. (P moves R−1 ⊂ Q−1 to the right, it leaves the middle

strip M0 ⊂ Q0 in Q0, and it moves L1 ⊂ Q1 to the left.) The same connection is true

for any triple Qk−1, Qk, Qk+1 (k ∈ Z) with Rk−1 ⊂ Qk−1, Mk ⊂ Qk, Lk+1 ⊂ Qk+1.

Using the method of interval arithmetic we can prove by reliable computer simula-

tions [24] that such {Qk, Rk, Mk, Lk}k∈Z exist.
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