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Abstract. We study the points of strong subdifferentiability for the norm of a real JB∗-
triple. As a consequence we describe weakly compact real JB∗-triples and rediscover the
Banach-Stone Theorem for complex JB∗-triples.

1. Introduction

Let X be a Banach space. The norm of X is said to be strongly-subdifferentiable at
a norm-one point x ∈ X whenever the limit

lim
α→0+

‖x + αy‖ − 1

α

exists uniformly for y in the closed unit ball of X. The points of strong subdiffer-
entiability for the norm of a C∗-algebra were characterized by Contreras, Payá and
Werner in [6]. Recently, Becerra-Guerrero and Rodrı́guez-Palacios have completely
described the points of strong subdifferentiability for the norm of a (complex) JB∗-
triple [3]. In the latter work, the authors show that the norm of a JB∗-triple E is
strongly subdifferentiable at a norm-one point x if and only if 1 is an isolated point
of the triple spectrum of x, if and only if the support tripotent of x in the bidual, E∗∗,
of E lies in E . As a consequence, the authors show that the JB∗-triples whose norms
are strongly subdifferentiable at every point of their unit spheres are precisely the
so-called weakly compact JB∗-triples.

The aim of the present paper is to describe the points of strong subdifferentia-
bility of the norm of a real JB∗-triple (see definition bellow). In our main result
(Theorem 2.4) we prove that the norm of a real JB∗-triple E is strongly subdifferen-
tiable at a norm-one point x if and only if the (unique) norm becoming its complex-
ification a complex JB∗-triple is strongly subdifferentiable at x. As a consequence
we characterize, in Corollary 2.5, the points of strong subdifferentiability for the
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norm of a real JB∗-triple, extending the description provided by Becerra-Guerrero
and Rodrı́guez-Palacios in the complex setting.

In [23] Werner showed that the characterization of the points of strong sub-
differentiability for the norm of C∗-algebra can be applied to obtain an alternative
proof of the non-commutative Banach-Stone Theorem provided by Kadison: “The
linear surjective isometries from a unital C∗-algebras A onto another unital C∗-
algebra B are precisely of the form x �→ u�(x), where u is a unitary element of
B and � is a Jordan isomorphism from A onto B. In the already quoted paper (see
[23, Remarks 3.]) the author establishes without proof that it is possible to extend
the method he applied to the more general setting of JB∗-triples. In the last section
of this paper we include a complete extension of Werner’s method to the setting
of real and complex JB∗-triples and the appropriated version of the Banach-Stone
theorem for JB∗-triples.

2. Main result

Given a Banach space X, we denote by BX, SX, and X∗ the closed unit ball, the
unit sphere, and the dual space of X, respectively.

Let x be a norm one element in a Banach space X. The set D(X, x) of all states
of X relative to x is define by

D(X, x) := {f ∈ SX∗ : f (x) = ‖x‖}.
A JB∗-triple is a complex Banach space E equipped with a continuous triple

product
{., ., .} : E ⊗ E ⊗ E → E

(x, y, z) �→ {x, y, z}
which is bilinear and symmetric in the outer variables and conjugate linear in the
middle one and satisfies:

(a) (Jordan Identity)

L(x, y) {a, b, c} = {L(x, y)a, b, c} − {a, L(y, x)b, c} + {a, b, L(x, y)c} ,

for all x, y, a, b, c ∈ E, where L(x, y) : E → E is the linear mapping given
by L(x, y)z = {x, y, z};

(b) The map L(x, x) is an hermitian operator with non-negative spectrum for all
x ∈ E ;

(c) ‖ {x, x, x} ‖ = ‖x‖3 for all x ∈ E .

Every C∗-algebra is a JB∗-triple with respect to {x, y, z} = 2−1(xy∗z + zy∗x),
every JB∗-algebra is a JB∗-triple with triple product {a, b, c} = (a ◦ b∗) ◦ c + (c ◦
b∗)◦a−(a◦c)◦b∗, and the Banach space B(H, K) of all bounded linear operators
between two complex Hilbert spaces H, K is also an example of a JB∗-triple with
respect to {R, S, T } = 2−1(RS∗T + T S∗R).

Let X be a complex Banach space with a conjugation (conjugate linear isometry
of period two) τ on X. We will denote by Xτ the real Banach subspace of X of all
τ -fixed points in X. In this case we will say that Xτ is a real form of X.
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It is worth mentioning that a real JB∗-triple is a norm-closed real subtriple of a
JB∗-triple [16, Definition 2.1]. Let E be a real JB∗-triple. By [16, Proposition 2.8],
there exists a unique complex JB∗-triple structure on the algebraic complexification
E ⊕ iE (denoted by Ê) and a conjugation τ on E + iE such that E = Êτ := {z ∈
Ê : τ(z) = z}, i.e., every real JB∗-triple is a real form of its complexification, which
is a complex JB∗-triple. Every real C∗-algebra, every real Hilbert space, every com-
plex JB∗-triple (when is regarded as a real Banach space) and the Banach space
of all bounded linear operators between real Hilbert spaces are examples of real
JB∗-triples (cf. [16]).

By a real or complex JBW∗-triple we mean a real or complex JB∗-triple which is
also a dual Banach space whose triple product is separately weak∗-continuous [16,
§4]. By [20] and [1] we know that the assumption of the separate weak∗-continuity
is redundant. The bidual E∗∗ of every real or complex JB∗-triple is a JBW∗-tri-
ple with triple product extending the product of E (cf. [8] and [16, Lemma 4.2],
respectively).

Let U be a real or complex JB∗-triple and let e be a tripotent in U (i.e. {e, e, e} =
e). It is known that U admits the following decomposition in terms of the eigen-
spaces of L(e, e),

U = U0(e) ⊕ U1(e) ⊕ U2(e),

where Uk(e) := {x ∈ U : L(e, e)x = k
2x} is a subtriple of U (k : 0, 1, 2). The

natural projection of U onto Uk(e) will be denoted by Pk(e). This decomposition
is the so-called Peirce decomposition with respect to the tripotent e and the natu-
ral projections are the so-called Peirce projections. The following rules, known as
Peirce rules, are also satisfied

{Uk(e), Ul(e), Um(e)} ⊆ Uk−l+m(e),

{U0(e), U2(e), U} = {U2(e), U0(e), U} = 0,

where Uk−l+m(e) = 0 whenever k − l + m 
= 0, 1, 2.
A tripotent e in a real or complex JB∗-triple U is called minimal whenever

U1(e) = Re, where U1(e) = {x ∈ U : Q(e)(x) = x}.
Let E be a real JB∗-triple with complexification Ê and let e be a tripotent in

E. It is clear that the Peirce projections of E with respect to e coincide with the
restrictions to E of the Peirce projections of Ê with respect to e. Therefore, the
following result follows from [14, Lemma 1.3 and Lemma 1.6].

Lemma 2.1. Let e be a tripotent in a real JB∗-triple E. Then we have

(a) ‖P2(e)(x) + P0(e)(x)‖ = max{‖P2(e)(x)‖, ‖P0(e)(x)‖}, for all x ∈ E;
(b) ‖P2(e)

∗(f ) + P0(e)
∗(f )‖ = ‖P2(e)

∗(f )‖ + ‖P0(e)
∗(f )‖, for all f ∈ E∗.

(c) If x is a norm-one element in E with P2(e)(x) = e, then P1(e)(x) = 0, thus
x = e + P0(e)(x).

Let X be a complex Banach space with a conjugation τ on X. Then τ can be
extended to a conjugation τ̃ on X∗ in the following way
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τ̃ : X∗ → X∗

τ̃ (f )(x) = f (τ(x)) (f ∈ X∗).

In this case, it is also known that (X∗)τ̃ is isometric to (Xτ )∗ via f �→ f |Xτ .
Under this identification, X∗ admits the decomposition X∗ = (Xτ )∗ + i(Xτ )∗. Let
x ∈ SXτ ⊂ SX and f ∈ D(X, x). Then

τ̃ (f )(x) = f (τ(x)) = f (x) = 1,

which shows that τ̃ (f ) ∈ D(X, x). Therefore τ̃ (D(X, x)) = D(X, x) and hence
D(Xτ , x) = D(X, x)τ̃ .

Having in mind that every tripotent in a real JB∗-triple is clearly a tripotent
in its complexification and the strong subdifferentiability at a norm-one point
is inherited by real subspaces, the next corollary is a consequence of Theorem
[3, Theorem 2.7].

Corollary 2.2. Let E be a real JB∗-triple. Then the norm of E is strongly subdiffer-
entiable at every tripotent in E.

Let x be a norm-one element in a real or complex JBW∗-triple U . The set
D(U, x) ∩ U∗ is a (possibly empty) proper closed face of BU∗ , and therefore, by
[11, Theorem 3.7 and Lemma 2.1], there exists a unique tripotent u (possibly equal
to zero) in U so that D(U, x) ∩ U∗ = D(U, u) ∩ U∗. Such a tripotent is called the
support tripotent of x and will be denoted by u(U, x). Let E be a real JBW∗-triple
and let x ∈ SE . As we have seen above, E = Êτ where Ê is the complexification
of E and τ is a conjugation on Ê. By [9, Lemma 3.4], u(Ê, x) is the limit in the
weak∗-topology of the sequence (x2n+1), where x2n+1 is inductively defined by
x3 = {x, x, x} and x2n+1 = {

x, x2n−1, x
}
. Since the canonical conjugation on Ê is

weak∗-continuous and preserves the triple product we have τ(u(Ê, x)) = u(Ê, x).
Now, [11, Theorem 3.7] ascertains that u(E, x) = u(Ê, x).

Having the above facts in mind, the same arguments given in [3, Theorem 2.5]
can be adapted to obtain the following corollary.

Corollary 2.3. Let E be a real JBW∗-triple, and let x be in SE . The norm is strongly
subdifferentiable at x if and only if D(E, x) ∩ E∗ is weak∗-dense in D(E, x).

We can now establish our main result.

Theorem 2.4. Let E be a real JB∗-triple with complexification Ê and let x be in
SE . Then the norm of E is strongly subdifferentiable at x if and only if the same
conclusion holds for the norm of Ê.

Proof. We have already mentioned that the strong subdifferentiability of the norm at
a norm-one point is inherited by real subspaces. In order to see the other implication
let us suppose that the norm of E is subdifferentiable at x ∈ SE .

Let u = u(E∗∗, x) be the support tripotent of x in E∗∗. Then

D(E, x) = D(E∗∗, u) ∩ E∗.



Subdifferentiability of the norm and the Banach-Stone Theorem 507

Since the norm of E is strongly subdifferentiable at x we deduce that the same
conclusion remains true for the norm of E∗∗ [15, Corollary 2.1], and hence, by
Corollary 2.3, we get

D(E, x)
w∗

= D(E∗∗, x). (1)

By Corollary 2.2 and Corollary 2.3 we also have

D(E∗∗, u) ∩ E∗w∗
= D(E∗∗, u). (2)

It follows by (1) and (2) that D(E∗∗, x) = D(E∗∗, u). By [11, Theorem 3.9] it
follows that x ∈ u+BE∗∗

0 (u). We claim that ‖P0(u)(x)‖ < 1. Otherwise, by Lemma
2.1 and the Hahn-Banach theorem, there exist an element in D(E∗∗, x)\D(E∗∗, u),
which is impossible. Therefore x = u + P0(u)(x) with ‖P0(u)(x)‖ < 1. Finally,
by Peirce rules, x2n+1 = u + (P0(u)(x))2n+1 , thus,

‖x2n+1 − u‖ ≤ ‖P0(u)(x)‖2n+1 → 0.

Therefore u ∈ E. Since u = u(E∗∗, x) = u((Ê)∗∗, x) ∈ E ⊆ Ê, Theorem [3,
Theorem 2.7, (4) ⇒ (1)] implies that the norm of Ê is strongly subdifferentiable
at x. ��

Let x be an element in a complex JB∗-triple E , and denote by E(x) the JB∗-subt-
riple of E generated by x. It is known that there exists a locally compact subset Sx of
(0, +∞) such that Sx ∪{0} is compact and E(x) is JB∗-triple isomorphic to the C∗-
algebra C0(Sx) under a triple isomorphism �, which satisfies �(x)(t) = t (t ∈ Sx)
(cf. [17, 4.8], [18, 1.15] and [14]). The subset Sx is called the triple spectrum of x.
When x is an element in a real JB∗-triple E, the complex triple spectrum of x is
the triple spectrum of x when x is regarded as an element in the complexification,
Ê, of E.

In the case of a real JB∗-triple we can obtain the following characterizations of
the strong subdifferentiability of its norm at a point of the unit sphere, similar to
those obtained for (complex) JB∗-triples in [3, Theorem 2.7].

Corollary 2.5. Let E be a real JB∗-triple. The following assertions are equivalent
for an element x in the unit sphere of E:

(a) The norm of E is strongly subdifferentiable at x,
(b) The norm of the complexification of E is strongly subdifferentiable at x,
(c) 1 is an isolated point of the complex triple spectrum of x,
(d) There exists a unique tripotent u in E such that x ∈ Eu, where

Eu = {y ∈ SE : {u, u, y} = u, {u, y, u} = u and ‖y − u‖ < 1},
(e) u(E∗∗, x) belongs to E,

Proof. Let Ê denote the complexification of E (which is a complex JB∗-triple)
and let τ the canonical conjugation on Ê satisfying Êτ = E. By Theorem 2.4
we already know that (a) ⇔ (b) and [3, Theorem 2.7, (1) ⇔ (2)] shows the
equivalence (b) ⇔ (c).
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To see (b) ⇒ (d), let us suppose that the norm of the complexification, Ê, of
E is strongly subdifferentiable at x. By [3, Theorem 2.7, (1) ⇔ (3)] there exists
a tripotent u in Ê such that {u, u, x} = {u, x, u} = u and ‖x − u‖ < 1. We
claim that such a tripotent is unique. Indeed, suppose that w is another tripotent
in Ê satisfying {w, w, x} = {w, x, w} = w and ‖x − w‖ < 1. By [14, Lemma
1.6] we have x = u + P0(u)(x) and x = w + P0(w)(x). Moreover, we also have
‖P0(u)(x)‖ = ‖x−u‖ < 1 and ‖P0(w)(x)‖ = ‖x−w‖ < 1. By Peirce rules it may
be concluded that x2n+1 = u+ (P0(u)(x))2n+1 and x2n+1 = w+ (P0(w)(x))2n+1.
Then we conclude that

‖u−w‖ ≤ ‖u−x2n+1‖+‖w−x2n+1‖ ≤ ‖P0(u)(x)‖2n+1+‖P0(w)(x)‖2n+1 → 0,

which shows that u = w. Therefore, there exists a unique tripotent u ∈ Ê such that
satisfying {u, u, x} = {u, x, u} = u and ‖x −u‖ < 1. Since τ is a conjugate-linear
triple isomorphism, it follows that τ(u) is also a tripotent in Ê satisfying the same
conditions of u, thus, by the uniqueness, we have u = τ(u). This shows that u

is a tripotent in E and x ∈ Eu. A similar reasoning to that just developed for the
complexification shows the uniqueness of the tripotent u in E.

(d) ⇒ (e) Let u be a tripotent in E such that x ∈ Eu and let v = u(E∗∗, x)

be the support tripotent of x in E∗∗. By the same reasonings given in the proof of
Theorem 2.4 and the implication (b) ⇒ (d) above it may be concluded that

‖v − u‖ ≤ ‖v − x2n+1‖ + ‖u − x2n+1‖ → 0,

which shows that v = u(E∗∗, x) = u ∈ E.
(e) ⇒ (b)As we have seen in the comments preceding Corollary 2.3, u(E∗∗, x)

= u(Ê∗∗, x), which belongs to E ⊆ Ê by hypothesis. Now [3, Theorem 2.7
(4) ⇒ (1)] ascertains that the norm of Ê is strongly subdifferentiable at x. ��

We recall that a Banach space X is said to be smooth at a norm-one point u

whenever D(X, u) reduces to a singleton, and X is Frechet-smooth at u whenever
exists the limit limα→0

‖u+αx‖−1
α

for every x ∈ X and is uniformly for x ∈ BX.
It is known that X is Frechet-smooth at u if and only if the norm of X is strongly
subdifferentiable at u and X is smooth at u.

The following corollary is an extension to real JB∗-triples of the main result of
[10] (see also [3]) for complex JB∗-triples.

Corollary 2.6. Let E be a real JBW∗-triple and let x ∈ SE . Then E is Frechet-
smooth at x if and only if E is smooth at x.

Proof. Suppose that E is smooth at x and let C denote the real JBW∗-subtriple
of E generated by x. By [5, Theorems 3.3, 3.6 and 3.7] there exist two compact
hyperstonean �1 and �2 such that C is isometric to

C(�1, R) ⊕�∞ C(�2, C)R.

Since C is smooth at x = (x1, x2) (with x1 ∈ C(�1, R) and x2 ∈ C(�2, C)R)
then it is easy to see that C(�1, R) is smooth at x1 and ‖x1‖ = 1 > ‖x2‖ or
C(�2, C)R is smooth at x2 and ‖x2‖ = 1 > ‖x1‖, which implies that C(�1, C)
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is smooth at x1 and ‖x1‖ = 1 or C(�2, C) is smooth at x2 and ‖x2‖ = 1. By [24,
Theorem] we conclude that C(�1, C) (and hence C(�1, R)) is Frechet-smooth at
x1 or C(�2, C) (and hence C(�2, C)R) is Frechet-smooth at x2. It can be easily
seen that C is Frechet-smooth at x. Finally the equivalence (a) ⇔ (d) in Corollary
2.5 shows that E is Frechet-smooth at x. ��
Remark 2.7. It should be noticed that when X is a complex Banach space with a
conjugation τ and x is a norm-one element in Xτ satisfying that Xτ is smooth at
x then X does not need to be smooth at x. For example let Xτ denote the real spin
factor of type IV

n,0
n in the terminology of [19, Theorem 4.1], where we consider

X, the complexification of Xτ , equipped with triple product and norm given by

{xyz} := (x|y)z + (z|y)x − (x|σ(z))σ (y)

and
‖x‖2 := (x|x) +

√

(x|x)2 − |(x|σ(x))|2,
respectively, for all x, y, z in X, where σ(a + ib) = a − ib (a, b ∈ Xτ ) (compare
[18, Theorem 4.1]). It is easy to see that any norm-one element in Xτ is a minimal
tripotent in Xτ and hence Xτ is smooth at such a point. However, every norm-one
point x in Xτ is a tripotent that is not minimal in X (the complexification of Xτ ),
that is, there exist two orthogonal tripotents e and f in X such that x = e + f .
This implies that X is not smooth at x.

To finish with this section we will describe those real JB∗-triples whose norms
are strongly subdifferentiable at every point of their unit sphere. As in the complex
case, we will show that such real JB∗-triples are well-studied and characterized by
several previous authors (compare [3, Theorem 1.12 and Remmark 2.13]).

Lemma 2.8. Let � be a locally compact Hausdorff space and let τ be a conjuga-
tion on C0(�), the complex C*-algebra of continuous complex-valued functions on
� vanishing at infinity. Then the norm of C0(�)τ is strongly subdifferentiable at
every point of SC0(�)τ if and only if � is discrete.

Proof. Let us assume that the norm of C0(�)τ is strongly subdifferentiable at every
point of SC0(�)τ .

By the classical Stone Theorem there exists a homomorphism σ : � → � and
a continuous function u : � → C with |u(t)| = 1 (t ∈ �) such that

τ(f )(t) = u(t)f (σ (t)),

for all t ∈ �, f ∈ C0(�). Since τ 2 = Id we have

u(t)u(σ (t))f (σ 2(t)) = f (t), (3)

for all t ∈ �, f ∈ C0(�).
Let t0 ∈ � and let f0 ∈ C0(�) satisfying f0(t0) = f0(σ

2(t0)) = 1. By
replacing f0 and t0 in (3) we deduce that

u(t0)u(σ (t0)) = 1.
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Since t0 is arbitrary it follows that

u(t) = u(σ(t)) (t ∈ �) (4)

From (3) and (4) we have σ 2 = Id�.
Suppose first, that t0 is a non-isolated point of �.We assume first that σ(t0) = t0.

Let (Un) be a sequence of compact neighbourhoods of t0 with int (Un) � Un+1,

σ (Un) = Un and, by the continuity of u, we may also assume |u(t) − u(t0)| < 1
n

for all t ∈ Un. Let en ∈ C0(�) with en(t) = 1 for all t ∈ Un and en(t) = 0 for all
t ∈ � \ Un−1. If u(t0) 
= −1 we define x = ∑

n
1

2n 2−1(en + τ(en)) ∈ C0(�). It
is clear that τ(x) = x(∈ C0(�)τ ). We claim that λ = ∑+∞

n=1
1

2n+1 (1 + u(t0)) is a
cluster point of the triple spectrum of x in C0(�). Indeed, for every m ∈ N we can
take tm ∈ Um \ Um+1, then λm := x(tm) = ∑m

n=1
1

2n+1 (1 + u(tm)), is an element
in the triple spectrum of x. We will show that λm converges to λ. For every ε > 0
there exists m0 ∈ N such that for every m ∈ N with m ≥ m0 we have

∣
∣
∣
∣
∣
λ −

m∑

n=1

1

2n+1 (1 + u(t0))

∣
∣
∣
∣
∣
<

ε

2
,

and
∣
∣
∣
∣
∣

m∑

n=1

1

2n+1 (1 + u(t0)) −
m∑

n=1

1

2n+1 (1 + u(tm))

∣
∣
∣
∣
∣
≤
(

m∑

n=1

1

2n+1

)

|u(tm) − u(t0)|

<

(
m∑

n=1

1

2n+1

)

1

m
<

1

m
<

ε

2
.

Therefore, for every m ≥ m0 it follows that |λ − λm| < ε, which shows that λ is a
cluster point of the triple spectrum of x in C0(�).

When u(t0) = −1 we define x = ∑

n
1

2n 2−1(ien + τ(ien)) ∈ C0(�)τ . Fol-
lowing the same method applied in the case u(t0) 
= −1 we can conclude that
λ = ∑+∞

n=1
1

2n+1 i(1 − u(t0)) = i
∑+∞

n=1
1

2n is a cluster point of the triple spectrum
of x in C0(�).

Suppose now that σ(t0) 
= t0. Let (Un) be a sequence of compact neighbour-
hoods of t0 with int(Un) � Un+1, σ (Un) ∩ Un = ∅ and |u(t) − u(t0)| < 1

n
for

all t ∈ Un. Let en ∈ C0(�) with en(t) = 1 for all t ∈ Un and en(t) = 0 for all
t ∈ �\Un−1 and define x = ∑

n
1

2n+1 (en+τ(en)) ∈ C0(�). Clearly τ(x) = x. The

same ideas developed in the case σ(t0) = t0 allow us to assure that λ = ∑+∞
n=1

1
2n+1

is a cluster point of the triple spectrum of x in C0(�).

To finish the proof we claim that if a (norm-one) τ -symmetric element in C0(�)

has a non discrete triple spectrum in C0(�) then the norm of C0(�) is not strongly
subdifferentiable at an element in SC0(�)τ . Indeed, let x be norm-one element in
C0(�) with τ(x) = x and with non-discrete triple spectrum Sx ⊆ [0, 1]. It is
known that the JB∗-subtriple of C0(�) generated by x (denoted by C) is JB∗-triple
isomorphic to the C∗-algebra C0(Sx) under a triple isomorphism �, which satisfies
�(x)(t) = idSx (t) = t (t ∈ Sx). If Sx is not discrete then there exists a non-iso-
lated point α ∈ Sx . The function g(t) := t

t+|t−α| ∈ C0(Sx) has an odd extension
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to Sx ∪ −Sx, and can be approximated uniformly by real linear combinations of
odd powers of t . Since �−1(idSx ) = x is τ -symmetric and � is a triple isomor-
phism then �−1(g) is norm-one and τ -symmetric. It is easy to see that α is the
unique t ∈ Sx satisfying g(t) = 1. Since α is not isolated in Sx it follows by [10,
Lemma 2.2] that the norm of C0(Sx) (and hence the norm of C) is not strongly sub-
differentiable at g (at �−1(g)), which contradicts the assumption since the strong
subdifferentiability is inherited by closed subspaces. ��

Following [4], a real or complex JB∗-triple U is defined to be weakly com-
pact if the operator Q(a) : U → U defined by Q(a)(x) := {a, x, a} is weakly
compact for every a ∈ U and to be compact if Q(a) is compact for all a ∈ U .
Let E be a real JB∗-triple with complexification Ê. Clearly, E is weakly compact
whenever Ê is. On the other side, if E is weakly compact, i.e. Q(a) : E → E is
weakly compact for every a in E, we have Q(a) : Ê → Ê is weakly compact for
every a ∈ E, by [21, Theorem 10]. Let Q(a, b) : Ê → Ê be the mapping given by
Q(a, b)(x) := {a, x, b}. The expression 2Q(a, b) = Q(a+b, a+b)−Q(a)−Q(a)

implies that Q(a, b) : Ê → Ê is weakly compact. Since Ê = E + iE and for
every x, y ∈ E the equality Q(x + iy) = Q(x) − Q(y) + 2iQ(x, y) holds, we
conclude that Ê is weakly compact. Therefore, E is weakly compact if and only if
its complexification is.

Compact and weakly compact complex JB∗-triples were completely described
in [4, §3 and §4]. More recently, in [3, Theorem 2.12 and Remmark 2.13], the
authors show that a complex JB∗-triple is weakly compact if and only if its norm
is strongly subdifferentiable at every point of its unit sphere. Our next goal is to
describe those real JB∗-triples whose norm is strongly subdifferentiable at every
point of its unit sphere.

Theorem 2.9. Let E be a real JB∗-triple. The following assertions are equivalent:

1. The norm of the complexification, Ê, of E is strongly subdifferentiable at every
point of SÊ .

2. The norm of E is strongly subdifferentiable at every point of SE .
3. For every x in E, the complex triple spectrum of x is discrete.
4. Ê is weakly compact.
5. E is weakly compact.

Proof. Since the strong subdifferentiability at a norm-one point is inherited by
subspaces, the implication (1.) ⇒ (2.) is clear.
(2.) ⇒ (3.) Let Ê denote the complexification of E and let τ be the canonical
conjugation on Ê satisfying Êτ = E. By Theorem 2.4 we conclude that the norm
of Ê is strongly subdifferentiable at every point x in SE (‖x‖ = 1 and τ(x) = x).
Let x be a norm-one element in E and let Ê(x) denote the complex JB∗-subtriple
of Ê generated by x. Since τ(x) = x we deduce that τ |Ê(x) is a conjugation on
Ê(x). Since the strong subdifferentiability is inherited by subspaces we conclude
that the norm of Ê(x) is strongly subdifferentiable at every point x ∈ SÊ(x)τ . It
is known that Ê(x) is JB∗-triple isomorphic to the C∗-algebra C0(Sx), therefore
Lemma 2.8 implies that Sx is discrete.
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(3.) ⇒ (4.) Since the implication (3.) ⇒ (2.) follows by Corollary 2.5, we deduce
that (3.) ⇔ (2.). We therefore assume that the norm of E is strongly subdifferen-
tiable at every point of SE .

Let z be in E and let E(z) denote the real JB∗-subtriple of E generated by z.
By Zorn’s lemma there is an abelian subtriple C containing E(z) which is maximal
with respect to inclusion. Let Ĉ denote the complexification of C. Since C is abelian
then Ĉ is an abelian JB∗-triple. It is well known that Ĉ is triple isomorphic (and
hence isometric) to C0(�) for some locally compact Hausdorff space �. Since the
strong subdifferentiability is inherited by subspaces it follows that the norm of Ĉ

is strong subdifferentiable at every point in SC , by Theorem 2.4. Now Lemma 2.8
implies that � is discrete and hence there exists a family, {eα}, of mutually orthog-
onal minimal tripotents in C such that every element in C can be approximated
in norm by linear combinations of {eα}. We claim that every eα is also a minimal
tripotent in E. Suppose on the contrary that there exists 0 
= x ∈ E1(eα0) \ Reα0 ,
for some α0. Let C

′
denote the real JB∗-subtriple generated by C and x. Since for

every α 
= β we have eα ⊥ eβ we conclude that C
′

is an abelian real JB∗-triple
containing C which contradicts the maximality of C.

Therefore, every element in E can be approximated in norm by linear combina-
tions of minimal tripotents in E. Since Ê = E + iE we conclude, by [22, Lemma
3.2] (see also [2, Corollary 3.5]), that every element in Ê can be approximated
in norm by linear combinations of minimal tripotents in Ê. By [4, Theorem 3.4,
(i) ⇔ (vi)] it follows that Ê is weakly compact.
As we have seen in the comments preceding this Theorem, (4) ⇔ (5). Finally
(4) ⇔ (1), by [3, Theorem 2.12 and Remmark 2.13]. ��

3. Applications

The aim of this section is to obtain an alternative proof of Kaup’s Banach-Stone
Theorem for JB∗-triples by applying the characterization of the points of strong
subdifferentiability for the norm of a JB∗-triple. This provides a complete proof
to the statement settled by W. Werner in [23, Remarks 3.] and extend the method
developed in the already quoted paper to the more general setting of JB∗-triples.

Having in mind that the bidual of every real or complex JB∗-triple E is a real or
complex JBW∗-triple, and since every tripotent in E is also a tripotent in its bidual,
the proof of the following Lemma could be derived from [11, Lemma 2.1] and [11,
Theorem 3.7] in the complex and real case, respectively.

Lemma 3.1. Let E be a real or complex JB∗-triple, and let e, u be tripotents in E.
If D(E, e) coincides with D(E, u), then e = u.

The following lemma generalizes [23, Lemma 3] to the setting of real and
complex JB∗-triples.

Lemma 3.2. Let E be a real or complex JB∗-triple, let e be a tripotent in E and
a ∈ SE . The following statements hold:
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(a) a ∈ Ee if, and only if, D(E, a) = D(E, e).
(b) If x ∈ Ee satisfies ‖x − b‖ < 1 for all b ∈ Ee then x = e.

Proof. Suppose first that E is a complex JB∗-triple.
(a) (⇒) Suppose a ∈ Ee. In particular we have {e, a, e} = {e, e, a} = e, which
implies P2(e)(a) = e. Since ‖a‖ = 1, [14, Lemma 1.6] assures that P1(e)(a) = 0,
and hence a = e + z0, where z0 ∈ E0(e). Let f ∈ D(E, e). By [14, Proposition
1] we have f = f P2(e) and f (a) = f P2(e)(a) = f (e) = 1. This implies
f ∈ D(E, a), and hence D(E, e) ⊆ D(E, a).

To see the other inclusion, let C be the JB∗-subtriple generated by e and a =
e+ z0 (z0 ∈ E0(e), ‖z0‖ < 1). Since, by the Peirce arithmetic, e and z0 are orthog-
onal and e is a tripotent, it follows that C coincides with Ce ⊕∞ D, where D is
the JB∗-subtriple generated by z0 which is triple isomorphic (and hence isometric)
to C0(Sz0). Therefore, C is triple isomorphic (and hence isometric) to an abelian
C∗-algebra.

According with the notation of [23, Theorem 4] we can see that

a ∈ Ce = Fe,0(C) := {y ∈ SC : ye∗ = ee∗ and ‖y − e‖ < 1}.

Therefore, by [23, Lemma 3], we have D(C, e) = D(C, a). Finally, let f in
D(E, a). It is clear that f |C lies in D(C, a) = D(C, e) and hence f (e) = 1.
This assures that D(E, a) ⊆ D(E, e).

(⇐) Suppose now that D(E, a) = D(E, e). By [3, Theorem 2.7] we conclude
that the norm of E is strongly subdifferentiable at every tripotent element of E.
Since the strong subdifferentiability of the norm of E at a norm-one element x

depends only on the set D(E, x) (compare [13, Theorem 1.2 and Proposition 3.1])
it follows that the norm of E is also strongly subdifferentiable at a.

From [3, Theorem 2.7] we conclude that there is a tripotent u in E such that a

lies in Eu. By the first part of the proof we have D(E, u) = D(E, a) = D(E, e).
By Lemma 3.1 we get u = e, which gives a ∈ Ee.

(b) Let C be the JB∗-subtriple generated by e and x = e + z0 (z0 ∈ E0(e),
‖z0‖ < 1). As we have seen in the first part of the proof, C is an abelian C∗-
algebra. By hypothesis we have x ∈ Ce = Fe,0(C) and ‖x − b‖ < 1 for every
b ∈ Ce = Fe,0(C). By [23, Lemma 3 (ii)] we get x = e.

Suppose now that E is a real JB∗-triple. Having in mind that [14, Lemma 1.6,
and Proposititon 1] remain true for real JB∗-triples, the proof of (a) is a repetition
of the one given in the complex case but replacing [3, Theorem 2.7] by Corollary
2.5. To see (b) let Ê denote the complexification of E (which is a complex JB∗-
triple) and let τ denote the canonical conjugation on Ê such that Êτ = E. Suppose
x ∈ Ee satisfies ‖x − b‖ < 1 for all b ∈ Ee.

As we have seen several times x = e + z0, where z0 ∈ E0(e), and clearly
x ∈ Êe. Let c ∈ Êe then c = b1 + ibi for some b1, b2 ∈ E. The equalities
{e, c, e} = {e, e, c} = e = τ(e) give us

{e, b1, e} = {e, e, b1} = e, {e, e, b2} = {e, b2, e} = 0.
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Therefore b1 ∈ E1(e) = Ê1(e) ⊂ Ê2(e) and b2 ∈ E0(e) ⊂ Ê0(e). By [14, Lemma
1.3] it follows

1 = ‖c‖ = ‖b1 + ib2‖ = max{‖b1‖, ‖b2‖},

1 > ‖e − c‖ = ‖e − b1 − ib2‖ = max{‖e − b1‖, ‖b2‖},
and then ‖e − b1‖, ‖b2‖ < 1. It is easy to see that

1 = ‖e‖ = ‖ {e, b1, e} ‖ ≤ ‖b1‖,

which shows b1 ∈ Ee. By hypothesis ‖x − b1‖ < 1. Finally

‖x − c‖ = ‖x − b1 − ib2‖ = max{‖x − b1‖, ‖b2‖} < 1,

for every c ∈ Êe. Now, the proof in the complex case assures that x = e. ��

Corollary 3.3. Let � : E → F be a surjective isometry between two real or
complex JB∗-triples. Then � preserves tripotents.

Proof. Let e be a tripotent in E. By Corollary 2.5, it follows that the norm of E is
strongly subdifferentiable at e. Since the strong subdifferentiability is preserved by
surjective isometries, we can conclude that the norm of F is strongly subdifferen-
tiable at �(e). By Corollary 2.5 (d), there is a (unique) tripotent u in F such that
�(e) ∈ Fu.

Let x ∈ Ee. By Lemma 3.2 (a) we deduce that

D(F, �(x)) = (�∗)−1D(E, x) = (�∗)−1D(E, e) = D(F, �(e)) = D(F, u).

Again Lemma 3.2 (a), implies x ∈ Fu. Therefore �(Ee) ⊆ Fu. Similar arguments
show the reciprocal inclusion and the equality �(Ee) = Fu.

Given y ∈ Fu = �(Ee), there is x ∈ Ee with �(x) = y, thus

‖y − �(e)‖ = ‖�(x) − �(e)‖ = ‖�(x − e)‖ = ‖x − e‖ < 1.

Now, Lemma 3.2 (b), gives us�(e) = u.This shows that�preserves tripotents. ��

It is well known that the fact that any surjective isometry between complex
JB∗-triples preserves tripotents can be applied to give an alternative proof to Kaup’s
Banach-Stone Theorem (see for instance [7] or [12, Proof of Theorem 2.2]).

Corollary 3.4. Let � : E → F be a surjective isometry between two complex
JB∗-triples. Then � is a triple isomorphism.
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