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Abstract. We prove that, given a real JB∗-triple X, there exists a nonempty relatively weakly
open subset of the closed unit ball of X with diameter less than 2 (if and) only if the Banach space
of X is isomorphic to a Hilbert space. Moreover we give the structure of real JB∗-triples whose
Banach spaces are isomorphic to Hilbert spaces. Such real JB∗-triples are also characterized in
two different purely algebraic ways.
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1. Introduction

In [25], O. Nygaard and D. Werner discover, perhaps for the first time, how some
of the classical Banach spaces which fail the Radon-Nikodym property actually
fail to fulfil much weaker requirements. Indeed, it is proved in [25] that, if X is an
infinite-dimensional uniform algebra, then X satisfies Property P which follows:

(P) Every nonempty relatively weakly open subset of the closed unit ball of X

has diameter equal to 2.

This applies in particular to infinite-dimensional real or complex C(�)-spaces.
We remark that Property P is fulfilled by every Banach space satisfying the so-
called Daugavet property [32, Lemma 3]. Other Banach spaces enjoying Property
P are all infinite-dimensional complex C∗-algebras, and all JB-algebras whose
Banach spaces are not isomorphic to Hilbert spaces [3]. The proof that infinite-
dimensional complex C∗-algebras satisfy Property P , given in [3], essentially
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relies on the more general fact, also shown in [3], that Property P is fulfilled
by every complex JB∗-triple whose Banach space is not isomorphic to a Hilbert
space. For JB-algebras and complex JB∗-triples the reader is referred to [13]
and [18], respectively.

In the present paper we prove as the main result that every real JB∗-triple
X whose Banach space is not isomorphic to a Hilbert space satisfies Property P
(Theorem 2.3). We note that the class of real JB∗-triples, introduced in [15], con-
tains that of complex JB∗-triples (regarded as real Banach spaces), as well as that
of JB-algebras. It is worth mentioning that the proof of Theorem 2.3 provided
here is independent of the one given in [3] for complex JB∗-triples, and has the
advantage that it works autonomously in all relevant subclasses of the class of
real JB∗-triples. In fact the key tool in the proof of Theorem 2.3 is that every
nonreflexive Banach space X such that X∗ is an L-summand of X∗∗∗ fulfils Prop-
erty P (Proposition 2.1). Thus, since infinite-dimensional complex C∗-algebras
are nonreflexive Banach spaces, and the dual of every complex C∗-algebra X is
an L-summand of X∗∗∗, we are provided with a JB∗-triple-free proof of the main
result in [3] that infinite-dimensional complex C∗-algebras X satisfy Property P .
By the way, as a consequence of Theorem 2.3, every infinite-dimensional real
C∗-algebra fulfils Property P (Corollary 2.6).

Theorem 2.3 also contains a precise description of real JB∗-triples whose
Banach spaces are isomorphic to Hilbert spaces. Indeed, such real JB∗-triples
are nothing other than those which can be written as finite �∞-sums of simple
JB∗-triples which are either finite-dimensional, infinite-dimensional generalized
real spin factors, or of the form L(H, K) for some real, complex, or quatern-
ionic Hilbert spaces H, K with dim(H) = ∞ and dim(K) < ∞. (Here, for H

and K as above, L(H, K) means the real Banach space of all bounded linear
operators from H to K .) We complete the description just reviewed by showing
two different purely algebraic characterizations of real JB∗-triples whose Banach
spaces are isomorphic to Hilbert spaces. Indeed, they are precisely the real JB∗-
triples of finite rank (Theorem 3.1) as well as those real JB∗-triples such that all
single-generated subtriples are finite-dimensional (Theorem 3.8).

To conclude this introduction, let us note that our results include the gener-
alizations to real JB∗-triples of the facts proved by Bunce-Chu [7] and Kaup
[19] concerning the Radon-Nikodym Property and finite rank, respectively, on
complex JB∗-triples.

2. The main result

Let X be a real or complex Banach space. We denote by SX, BX, and X∗ the unit
sphere, the closed unit ball, and the (topological) dual, respectively, of X. We
denote by w the weak topology of X, and by w∗ the weak∗ topology of X∗. We
always see X as a subspace of its bidual X∗∗ via the canonical injection, and, given
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a subspace P of X, we denote by P ◦ the polar of P in X∗.Also, for a bounded linear
operator T on X, we denote by T ∗ the transpose operator on X∗. An L-projection
(respectively, M-projection) on X is a linear projection (say π ) on X satisfying
‖x‖ = ‖π(x)‖ + ‖x − π(x)‖ (respectively, ‖x‖ = max{‖π(x)‖, ‖x − π(x)‖})
for every x ∈ X. A subspace P of X is said to be an L-summand (respectively,
M-summand) of X if it is the range of an L-projection (respectively, M-pro-
jection) on X, and an M-ideal of X if P ◦ is an L-summand of X∗. The Banach
space X is said to be L-embedded (respectively, M-embedded) whenever X is
an L-summand (respectively, an M-ideal) of X∗∗. According to [14, Proposition
III.1.2], X is M-embedded if and only if the Dixmier projection on X∗∗∗ is an
L-projection. Consequently, if X is M-embedded, then X∗ is L-embedded. The
converse is not true. Indeed, in the case that X is a complex C∗-algebra, X∗ is
always L-embedded, whereas X is M-embedded if and only if it is a c0-sum of
algebras of all compact operators on suitable complex Hilbert spaces (see [14]).

Proposition 2.1. Let X be a Banach space such that X∗ is L-embedded. If there
exists a nonempty relatively w-open subset of BX with diameter less than 2, then
X is reflexive.

Proof. We have X∗∗∗ = (X∗ ⊕ N)�1 for some subspace N of X∗∗∗, and hence
X∗∗∗∗ = ((X∗)◦ ⊕ N◦)�∞ . Assume that there is a nonempty relatively w-open
subset U of BX with diam(U) < 2. Then U contains a set V of the form

{x ∈ BX : |fi(x − x0)| < 1 ∀i = 1, ..., n},
for suitable x0 ∈ BX, n ∈ N, and f1, ..., fn ∈ X∗. Put

V ∗∗ := {z ∈ BX∗∗ : |fi(z − x0)| < 1 ∀i = 1, ..., n}.
Since V ∗∗ is relatively w∗-open in BX∗∗ , and BX is w∗-dense in BX∗∗ , the set V

(= V ∗∗ ∩ BX) is w∗-dense in V ∗∗. Therefore V − V is w∗-dense in V ∗∗ − V ∗∗,
and consequently , by the lower w∗-semicontinuity of the norm of X∗∗, we have
diam(V ∗∗) = diam(V ) ≤ diam(U) < 2. In the same way, the set

V ∗∗∗∗ := {β ∈ BX∗∗∗∗ : |fi(β − x0)| < 1 ∀i = 1, ..., n}
has diameter less than 2. Write x0 = u + v with (u, v) ∈ (X∗)◦ × N◦. We claim
that B(X∗)◦ + v is contained in V ∗∗∗∗. Indeed, for α ∈ B(X∗)◦ , α + v belongs
to BX∗∗∗∗ because X∗∗∗∗ = ((X∗)◦ ⊕ N◦)�∞ , and, on the other hand, for every
i = 1, ..., n we have fi(α +v −x0) = fi(α −u) = 0 because (α −u, fi) belongs
to (X∗)◦ × X∗. Keeping in mind that diam(V ∗∗∗∗) < 2, it follows from the claim
just shown that diam(B(X∗)◦) = diam(B(X∗)◦ + v) < 2. Therefore X is reflexive.


�
We recall that a complex JB∗-triple is a complex Banach space X with a

continuous triple product {...} : X × X × X → X which is linear and symmetric
in the outer variables, and conjugate-linear in the middle variable, and satisfies:
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1. For all x in X, the mapping y → {xxy} from X to X is a hermitian operator
on X and has nonnegative spectrum.

2. The main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z} + {xy{abz}}
holds for all a, b, x, y, z in X.

3. ‖{xxx}‖ = ‖x‖3 for every x in X.

Concerning Condition (1) above, we also recall that a bounded linear operator T

on a complex Banach space X is said to be hermitian if ‖ exp(irT )‖ = 1 for
every r in R. Following [15], we define real JB∗-triples as norm-closed real sub-
triples of complex JB∗-triples. Here, by a subtriple we mean a subspace which
is closed under triple products of its elements. A triple ideal of a real or complex
JB∗-triple X is a subspace M of X such that {XXM} + {XMX} ⊆ M . We say
that the JB∗-triple X is simple if there are not triple ideals of X others than {0}
and X. Real JBW ∗-triples were first introduced as those real JB∗-triples which
are dual Banach spaces in such a way that the triple product becomes separately
w∗-continuous (see [15, Definition 4.1 and Theorem 4.4]). Later, it was shown in
[23] that the requirement of separate w∗-continuity of the triple product is super-
abundant. We will apply without notice that the bidual of every real JB∗-triple
X is a JBW ∗-triple under a suitable triple product which extends the one of X

[15, Lemma 4.2].
The next proposition becomes the real variant of [2, Proposition 3.4].

Proposition 2.2. The predual of every real JBW ∗-triple is L-embedded.

Proof. Let X be a real JBW ∗-triple, and let X∗ stand for the predual of X.
For x, y ∈ X, let L(x, y) and Q(x, y) denote the operators on X defined by
Lx,y(z) := {xyz} and Qx,y(z) := {xzy}, respectively. By standard theory of
duality, the separate w∗-continuity of the triple product of X is equivalent to the
inclusions (Lx,y)

∗(X∗) ⊆ X∗ and (Qx,y)
∗(X∗) ⊆ X∗ for all x, y ∈ X. Therefore

we have (Lx,y)
∗∗((X∗)◦) ⊆ (X∗)◦ and (Qx,y)

∗∗((X∗)◦) ⊆ (X∗)◦ for all x, y ∈ X.
Keeping in mind the separate w∗-continuity of the triple product of X∗∗ and the
w∗-density of X in X∗∗, the above inclusions read as {XX(X∗)◦} ⊆ (X∗)◦ and
{X(X∗)◦X} ⊆ (X∗)◦, respectively. Applying again the separate w∗-continuity of
the triple product of X∗∗ and the w∗-density of X in X∗∗, we deduce

{X∗∗X∗∗(X∗)◦} + {X∗∗(X∗)◦X∗∗} ⊆ (X∗)◦.

Therefore (X∗)◦ is a w∗-closed triple ideal of X∗∗, and hence we have
X∗∗ = (X∗)◦ ⊕ P for a suitable closed triple ideal P of X∗∗ [15, Lemma 4.3].
Now, the abstract �∞-product ((X∗)◦ ×P)�∞ is a real JB∗-triple in a natural way,
and the mapping � : (u, v) → u+v from ((X∗)◦ ×P)�∞ to X∗∗ becomes a linear
bijection preserving triple products. By [15, Theorem 4.8], � is an isometry, that
is X∗∗ = ((X∗)◦ ⊕ P)�∞ . Thus (X∗)◦ is an M-summand of X∗∗, and hence, by
[14, Theorem I.1.9], X∗ is an L-summand of X∗. 
�
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Examples of real JB∗-triples are the spaces L(H, K), for arbitrary real, com-
plex, or quaternionic Hilbert spaces H and K , under the triple product {xyz} :=
1
2 (xy∗z + zy∗x). The above examples become particular cases of those arising by
considering either the so-called complex Cartan factors (regarded as real JB∗-tri-
ples) or real forms of complex Cartan factors [20]. We recall that real forms of
a complex Banach space X are defined as the real closed subspaces of X of the
form Xτ := {x ∈ X : τ(x) = x}, for some conjugation (i.e., conjugate-linear
isometry of period two) on X. We note that, if X is a complex JB∗-triple, then
every real form of X is a real JB∗-triple (since conjugations on X preserve triple
products [18]). Among complex Cartan factors, the so-called complex spin fac-
tors become specially relevant for our present approach. They are built from an
arbitrary complex Hilbert space (H, (·|·)) of hilbertian dimension ≥ 3, by taking
a conjugation σ on H , and then by defining the triple product and the norm by

{xyz} := (x|y)z + (z|y)x − (x|σ(z))σ (y)

and
‖x‖2 := (x|x) +

√
(x|x)2 − |(x|σ(x))|2,

respectively, for all x, y, z in H . Following [24], we say that a real JB∗-triple is
a generalized real spin factor if it is either a complex spin factor (regarded as a
real JB∗-triple) or a real form of a complex spin factor.

Theorem 2.3. Let X be a real JB∗-triple. Then the following assertions are equiv-
alent:

1. There exists a relatively w-open subset of BX with diameter less than two.
2. The Banach space of X is reflexive.
3. X is a finite �∞-sum of closed simple triple ideals which are either finite-

dimensional, infinite-dimensional generalized real spin factors, or of the form
L(H, K) for some real, complex, or quaternionic Hilbert spaces H, K with
dim(H) = ∞ and dim(K) < ∞.

4. The Banach space of X is isomorphic to a Hilbert space.
5. X has the Radon-Nikodym property.

Proof. (1) ⇒ (2).- By Proposition 2.2, X∗ is L-embedded. Then Assertion (2)

follows from the assumption (1) and Proposition 2.1.
(2) ⇒ (3).- By [15, Proposition 2.2], there exists a complex JB∗-triple Y ,

and a conjugation τ on Y such that X = Y τ . Since the Banach space of X is
reflexive (by the assumption (2)), and Y = X ⊕ iX, the Banach space of Y is
reflexive. Then, by the concluding part of the proof of [7, Proposition 4.5], we
have Y = (⊕n

i=1Yi)�∞ where {Yi}i=1,...,n is the family of all minimal triple ideals
of Y , and moreover, for i = 1, ..., n, Yi is either finite-dimensional, an infinite-
dimensional complex spin factor, or of the form L(H, K) for suitable complex
Hilbert spaces H, K with dim(H) = ∞ and dim(K) < ∞. Since τ preserves
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the triple product of Y , and is of period two, the set {1, ...n} must be the disjoint
union of three subsets A, B, C such that Yi is τ -invariant whenever i belongs to
A, and for each i ∈ B there is a unique j ∈ C with τ(Yi) = Yj . It follows that,
putting Zj := (Yj ⊕ τ(Yj ))�∞ whenever j lies in B, each Zj is τ -invariant, and
we have

X = ((⊕i∈AY τ
i )�∞ ⊕ (⊕j∈BZτ

j )�∞)�∞ .

Since, for j ∈ B, the mapping yj → yj + τ(yj ) from Yj (regarded as a real
JB∗-triple) to Zτ

j is a surjective linear isometry preserving triple products, we
can write

X = ((⊕i∈AY τ
i )�∞ ⊕ (⊕j∈BYj )�∞)�∞ .

Now, to conclude the proof it is enough to show that, if there exists i ∈ A such
that Yi is of the form L(H, K) for suitable complex Hilbert spaces H, K with
dim(H) = ∞ and dim(K) < ∞, then Y τ

i is of the form L(H ′, K ′) for suitable
real or quaternionic Hilbert spaces H ′, K ′ with dim(H ′) = ∞ and dim(K ′) < ∞.
But this follows from [20, Theorem 4.1].

(3) ⇒ (4).- This implication is clear.
(4) ⇒ (5) and (5) ⇒ (1).- These implications are true even if X is only

assumed to be an arbitrary Banach space. Indeed, Banach spaces isomorphic to
Hilbert spaces are reflexive, reflexive Banach spaces have the Radon-Nikodym
property, the Radon-Nikodym property implies the existence of “slices” of the unit
closed ball with arbitrarily small diameter, and such slices are w-open relative to
the closed unit ball. 
�

For the determination of finite-dimensional simple real JB∗-triples (including
finite-dimensional simple complex JB∗-triples) and of real forms of complex spin
factors, the reader is referred to [22] and [20], respectively.

The next corollary follows straightforwardly from Propositions 2.2 and 2.1,
and Theorem 2.3. The Banach space appearing in it could be considered as an
arbitrary “nonassociative Lindenstrauss space”.

Corollary 2.4. Let X be a real Banach space such that X∗∗ is a real JB∗-triple
(for some triple product). Then there exists a nonempty relatively weakly open
subset of the closed unit ball of X with diameter less than 2 (if and) only if X is
isomorphic to a Hilbert space.

Let X be a Banach space. For u in SX, we define the roughness of X at u,
η(X, u), by the equality

η(X, u) := lim sup ‖h‖→0
‖u + h‖ + ‖u − h‖ − 2

‖h‖ .

We remark that the absence of roughness of X at u (i.e., η(X, u) = 0) is
nothing other than the Fréchet differentiability of the norm of X at u [10, Lemma
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I.1.3]. Given ε > 0, the Banach space X is said to be ε-rough if, for every u in
SX, we have η(X, u) ≥ ε. We say that X is rough whenever it is ε-rough for some
ε > 0, and extremely rough whenever it is 2-rough.

Invoking the proof of [10, Proposition I.1.11], as is done in the proof of [3,
Corollary 2.7], the following corollary follows from Theorem 2.3.

Corollary 2.5. Let X be the predual of a real JBW ∗-triple. Then X is extremely
rough if (and only if) it is not isomorphic to a Hilbert space.

Despite real C∗-algebras can be defined by different systems of intrinsic axi-
oms (see [16] for a summary), we prefer to introduce them as the norm-closed
self-adjoint real subalgebras of complex C∗-algebras. Since complex C∗-algebras
are complex JB∗-triples under the triple product

{xyz} := 1

2
(xy∗z + zy∗x),

certainly real C∗-algebras are real JB∗-triples.

Corollary 2.6. Let X be a real C∗-algebra. If there exists a non-empty relatively
w-open subset of BX with diameter less than two, then X is finite dimensional.

Proof. By [28, 4.1.13] and [12, 15.4], there exists a complex C∗-algebra Y with
a conjugate-linear ∗-automorphism τ of period two such that X = Y τ . Assume
that there is a non-empty relativey w-open subset of BX with diameter less than
two. Then, by Theorem 2.3, the Banach space of X (and hence that of Y ) is reflex-
ive. Finally, apply that complex C∗-algebras whose Banach spaces are reflexive
actually are finite-dimensional [31]. 
�

Real W ∗-algebras are usually defined as those real C∗-algebras which are dual
Banach spaces in such a way that the product becomes separately w∗-continuous
(see for instance [8]). Nevertheless, the requirement of separate w∗-continuity of
the product is superabundant [16].

Corollary 2.7. Let X be the predual of a real W ∗-algebra. If X is not extremely
rough, then X is finite-dimensional.

3. Algebraic characterizations of real JB∗-triples whose Banach spaces
are isomorphic to Hilbert spaces

In this section we are going to prove two purely algebraic characterizations of real
JB∗-triples whose Banach spaces are isomorphic to Hilbert spaces. To this end,
it seems to us convenient to introduce the appropriate concepts and basic results
at a suitable level of generality. The relevant references in such a level are [17]
and [21].
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From now on, let F be an arbitrary field of characteristic different from 2 and
3. A Jordan algebra over F is a (possibly non associative) commutative algebra
over F satisfying the identity (xy)x2 = x(yx2). An element x in a Jordan algebra
X with a unit 1 is said to be invertible if there exists y ∈ X such that xy = 1 and
x2y = x. A division Jordan algebra is a nonzero unital Jordan algebra whose
nonzero elements are invertible. A Jordan triple over F is a vector space (say
X) over F endowed with a TRILINEAR triple product {...} : X × X × X → X

satisfying the same main identity required in the definition of complex JB∗-
triples. Now, let X be a Jordan triple over F. A tripotent of X is an element
u ∈ X such that {uuu} = σu where σ = σ(u) = ±1. Those tripotents u in
X satisfying σ(u) = 1 are called positive. Given a tripotent u in X, we have
X = X0(u) ⊕ X1(u) ⊕ X2(u), where, for j ∈ {0, 1, 2}, Xj(u) denotes the ei-
genspace of the operator x → σ {u, u, x} corresponding to the eigenvalue 1

2j .
The space X2(u) becomes a Jordan algebra over F with unit u under the product
xy := σ {xuy}, and moreover the operator x → σ {uxu} on X2(u) is a linear alge-
bra involution. The tripotent u is said to be a division tripotent whenever X2(u)

is a division Jordan algebra. Two tripotents u, v of X are called orthogonal if
u ∈ X0(v), or equivalently v ∈ X0(u). By a frame in X we mean a family E of
pairwise orthogonal division tripotents of X such that

⋂
u∈E X0(u) = 0. We say

that X is of finite rank if there exists a finite frame in X.
Now, the first main result of this section reads as follows.

Theorem 3.1. Let X be a real JB∗-triple. Then the Banach space of X is isomor-
phic to a Hilbert space if and only if X is of finite rank.

The proof of Theorem 3.1 above needs further auxiliary notions and results.
Complex JB∗-algebras are defined as those complete normed Jordan com-
plex algebras X endowed with a conjugate-linear algebra involution ∗ satisfying
‖Ux(x

∗)‖ = ‖x‖3 for every x in X, where, for x in X, the operator Ux : X → X is
defined by Ux(y) = 2x(xy)−x2y [34,6,33]. We define real JB∗-algebras as the
norm-closed self-adjoint real subalgebras of complex JB∗-algebras. Real JB∗-
algebras were introduced by K. Alvermann [1] (under the name of J ∗B-algebras),
who provided a system of intrinsic axioms for them. JB-algebras are defined as
those complete normed Jordan real algebras X satisfying ‖ x ‖2≤‖ x2 + y2 ‖ for
all x, y ∈ X [13]. Note that, although complex JB∗-triples are only real Jordan
triples, if u is an (automatically positive) tripotent in a complex JB∗-triple X, then
the Jordan algebra X2(u) is a complex algebra in a natural way, and the canonical
involution of X2(u) becomes conjugate-linear, so that the norm of X converts
X2(u) into a complex JB∗-algebra.

Proposition 3.2. If K is a nonzero real Hilbert space, and if u is any element in
SK , then the Banach space of K , with product and involution defined by

xy := (x|u)y + (y|u)x − (x|y)u
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and

x∗ := 2(x|u)u − x,

respectively, becomes a division real JB∗-algebra (denoted by J (K, u)), whose
unit is precisely u. Moreover, there are no division real JB∗-algebras others than
those constructed above. More precisely, for a nonzero unital real JB∗-algebra
X, the following condition are equivalent:

1. X is a division Jordan algebra.
2. The self-adjoint part Xsa of X reduces to R1.
3. X = J (K, u) for some nonzero real Hilbert space K and some

u ∈ SK .

Proof. Let K be a nonzero real Hilbert space. If the dimension of K is 1 or 2,
then J (K, u) is R or C, so that certainly J (K, u) is a division real JB∗-algebra.
Assume that dim(K) > 2. Let H denote the hilbertian complexification of K , let
σ stand for the natural conjugation

k1 + ik2 → k1 − ik2

on H , and let Y be the complex spin factor built from (H, σ ). Since u is a tri-
potent in Y with Y2(u) = Y , Y becomes naturally a complex JB∗-algebra with
unit u. Since σ is a conjugate linear ∗-automorphism of the complex JB∗-algebra
Y , and J (K, u) = Y σ , we deduce that J (K, u) is a real JB∗-algebra. Moreover,
J (K, u) is a division Jordan algebra because, for x ∈ J (K, u)\Ru, the subalgebra
generated by x is a copy of C.

Now, let X be a unital real JB∗-algebra. We have just proved that Condition
(3) in the statement implies Condition (1).

(1) ⇒ (2).- As a consequence of [13, Proposition 3.8.2], the self-adjoint part
Xsa of X is a JB-algebra. Assume that (2) does not holds, so that there exists
x ∈ Xsa \ R1. Then, since Jordan algebras are power associative [13, Lemma
2.4.5], the closed subalgebra of Xsa generated by x and 1 is a unital associative
JB-algebra, and hence it is of the form CR(�) for some compact Hausdorff topo-
logical space � [13, Theorem 3.2.2], which must have at least two points. Take
y, z ∈ CR(�) \ {0} such that yz = 0. Then we have Uy(z) = 0, which, in view
of [17, Theorem I.13.(2)], implies that y is not invertible in X, and hence that X

is not a Jordan division algebra.
(2) ⇒ (3).- Let Xsk denote the skew part of X. Since the product of two

skew elements of X is self-adjoint, the assumption (2) provides us with a sym-
metric bilinear form (·|·) on Xsk satisfying zt = −(z|t)1 for all z, t ∈ Xsk. Since
X = R1⊕Xsk, we can extend (·|·) to a symmetric bilinear form on X by defining
(1|1) := 1 and (1|z) := 0 for every z ∈ Xsk. Then we have

xy := (x|1)y + (y|1)x − (x|y)1
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and
x∗ := 2(x|1)1 − x

for allx, y ∈ X. Moreover, since, forx ∈ X, the (automatically self-adjoint) subal-
gebra of X generated by x is a real C∗-algebra, and the equality
x∗x = (x|x)1 holds, we deduce that (·|·) is an inner product on X satisfying
(x|x) = ‖x‖2. Thus the Banach space of X is a Hilbert space (say K), and we
have X = J (K, 1). 
�

We note that, if K is a real Hilbert space, and if u, v are in SK , then we have
J (K, u) = J (K, v) structurally. Indeed, taking a surjective linear isometry T on
K with T (u) = v, T becomes an isometric ∗-isomorphism from J (K, u) onto
J (K, v). It it also worth mentioning that the algebras J (K, u) have appeared in the
literature as the solutions to other problems different from the characterization of
division real JB∗-algebras given by Proposition 3.2. Indeed, the algebras J (K, u)

are the unique norm-unital complete normed commutative real algebras whose
Banach spaces are smooth at their unit [29]. They are also the unique unital com-
plete normed Jordan real algebras satisfying ‖x‖‖x−1‖ = 1 for every invertible
element x [5], as well as the unique norm-unital complete normed commutative
real algebras X such that the group of all surjective linear isometries on X acts
transitively on SX [4]. Moreover, such algebras become the natural parameters in
the construction of all one-sided division complete absolute-valued real algebras
[30].

Let u be a tripotent in a real JB∗-triple X. Then the Jordan algebra X2(u),
endowed with its natural involution, is a real JB∗-algebra. Indeed, taking a com-
plex JB∗-triple Y containing X as a closed real subtriple, X2(u) becomes a closed
self-adjoint real subalgebra of the complex JB∗-algebra Y2(u). We denote by
X1(u) the JB-algebra of all self-adjoint elements of the real JB∗-algebra X2(u).
With the convention of symbols just made, the following corollary follows from
Proposition 3.2.

Corollary 3.3. Let u be a tripotent in a real JB∗-triple X. Then u is a division
tripotent if and only if X1(u) = Ru.

Corollary 3.4. Let u be a tripotent in a complex JB∗-triple X. Then u is a division
tripotent if and only if X2(u) = Cu.

Proof. We have X2(u) = X1(u) ⊕ iX1(u), and Corollary 3.3 applies. 
�
Thus, in view of Corollary 3.3 (respectively, 3.4), division tripotents in a real

(respectively, complex) JB∗-triple X coincide with the so-called in the literature
minimal tripotents of X (see for instance [11] and [19]), which are defined as
those tripotents u of X satisfying X1(u) = Ru (respectively, X2(u) = Cu). The
name “minimal” is in agreement with the fact that, in the case that X is actually a
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real or complex JBW ∗-triple, minimal tripotents of X are precisely those tripo-
tents of X which are minimal relative to the order defined in the set of all tripotents
of X by u ≤ v if and only if v = u + w for some tripotent w orthogonal to u [27,
Proposition 2.2]. Now, by arguing as in the proof of [27, Lemma 3.2], we obtain
the following corollary.

Corollary 3.5. Let Y be a complex JB∗-triple with conjugation τ , and let u be
a division tripotent of Y τ . Then u is the sum of at most two orthogonal division
tripotents of Y .

Proof of Theorem 3.1. Assume that the real JB∗-triple X is of finite rank, so
that there exists a finite frame {u1, ..., un} in X. Then, taking a complex JB∗-
triple Y with conjugation τ such that X = Y τ , Corollary 3.5 gives (up to a
rearangement, if necessary) the existence of 1 ≤ m ≤ n and division tripotents
v1, ...vm, w1, ..., wm of Y such that ui = vi + wi and vi is orthogonal to wi for
i = 1, ..., m, whereas uj is a division tripotent of Y whenever j = m + 1, ..., n.
Now it is easily seen that {v1, ...vm, w1, ..., wm, um+1, ..., un} is a frame in Y , and
hence the complex JB∗-triple Y is of finite rank. By [19, Theorem 4.10], Y is a
finite �∞-sum of simple triple ideals which are either finite-dimensional, infinite-
dimensional complex spin factors, or of the form L(H, K) for complex Hilbert
spaces H, K with dim(H) = ∞ and dim(K) < ∞. It follows that the Banach
space of Y (and hence that of X) is isomorphic to a Hilbert space.

To conclude the proof it is enough to show that X is of finite rank whenever
the Banach space of X is isomorphic to a Hilbert space. But, in view of the impli-
cation (4) ⇒ (3) in Theorem 2.3, we are reduced to the case that X is either
finite-dimensional, an infinite-dimensional generalized real spin factor, or of the
form L(H, K) for some real, complex, or quaternionic Hilbert spaces H, K with
dim(H) = ∞ and dim(K) < ∞. In all these cases, we realize that X is of finite
rank by a direct inspection (see [20, Table 1 and Proposition 5.8.(ii)]). 
�

Let X be a Jordan triple over a field F of characteristic different from 2 and
3. We say that X is algebraic if all single-generated subtriples of X are finite-
dimensional over F. If in fact there exists m ∈ N such that all single-generated
subtriples of X have dimension ≤ m, then we say that X is of bounded degree,
and the minimum such an m will be called the degree of X. We define inductively
the odd powers of an element x ∈ X by x1 := x and x2n+1 := {x2n−1xx}.
Lemma 3.6. Let X be a Jordan triple of degree m over a field F of characteristic
different from 2 and 3 containing at least 2m + 3 elements. Then every family of
nonzero pairwise orthogonal positive tripotents of X has at most m elements.

Proof. Assume on the contrary that we can find nonzero pairwise orthogonal
positive tripotents u1, ..., um+1 in X. Since F has at least 2m+3 elements, we can
also find nonzero elements a1, ..., am+1 in F such that a2

1, ..., a
2
m+1 are pairwise
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different. Put x := ∑m+1
i=1 aiui . Since for j = 1, ..., m + 1 we have x2j−1 =

∑m+1
i=1 a

2j−1
i ui , and the matrix (a

2j−1
i )i,j=1,...,m+1 is invertible, the subtriple of X

generated by x contains {u1, ..., um+1}, and hence is of dimension ≥ m + 1. This
contradicts that X is of degree m. 
�

We note that Jordan triples are “power-associative”. Indeed, for an element x

in a Jordan triple X, we have {x2i−1x2j−1x2k−1} = x2(i+j+k)−3 for all i, j, k ∈ N,
and therefore the subtriple of X generated by x is equal to the linear hull of the
set of all odd powers of x. Keeping in mind this fact, the proof of [9, Theorem
1], originally made in the setting of complete normed power-associative algebras,
works almost verbatim in the setting of complete normed Jordan triples. Thus we
have the following lemma.

Lemma 3.7. Let X be an algebraic Jordan triple over R endowed with a complete
norm making the triple product continuous. Then X is of bounded degree.

Now we can prove the concluding main result of the paper.

Theorem 3.8. Let X be a real JB∗-triple. Then the Banach space of X is isomor-
phic to a Hilbert space if and only if X is algebraic.

Proof. Assume that X is algebraic. By Lemma 3.7, X is of bounded degree. Let
m denote the degree of X. We claim that X∗∗ is also of bounded degree (equal
to m). To prove the claim we invoke the so-called strong∗ (in short s∗) topology
of X∗∗ [26, Section 4]. The strong∗ topology of X∗∗ is a locally convex topology
on X∗∗ compatible with the duality (X∗∗, X∗) [26, Corollary 9], and makes the
triple product of X∗∗ jointly continuous on bounded subsets of X∗∗ [26, Theorem
9]. Let x be in BX∗∗ . Since BX is w∗-dense in BX∗∗ , the compatibility of s∗ with
the duality (X∗∗, X∗) gives that BX is also s∗-dense in BX∗∗ , and hence there
is a net {xλ}λ∈� in BX s∗-convergent to x. Since X is of degree m, for λ ∈ �

there exist a0λ, a1λ, ..., amλ ∈ R such that |a0λ| + |a1λ| + ... + |amλ| = 1 and
a0λxλ + a1λx

3
λ + ... + amλx

2m+1
λ = 0. Taking a cluster point (a0, a1, ..., am) of the

net {(a0λ, a1λ, ..., amλ)}λ∈� in R
m+1, and applying the joint s∗-continuity of the

triple product of X∗∗ on bounded sets, we obtain |a0| + |a1| + ... + |am| = 1 and
a0x + a1x

3 + ... + amx2m+1 = 0. Therefore, the subtriple of X∗∗ generated by x

has dimension ≤ m. Since x is arbitrary in BX∗∗ , and X∗∗ contains X, and X is of
degree m, we deduce that X∗∗ is also of degree m. Now that the claim is proved, to
show that the Banach space of X is isomorphic to a Hilbert space we can assume
that X is in fact a JBW ∗-triple of degree m. Then, invoking the Krein-Milman
theorem, and applying [15, Lemma 3.3], we are provided with a tripotent u in X

such that X0(u) = 0. Let u1, ..., uk be nonzero pairwise orthogonal tripotents of
X such that u = u1 + ... + uk. According to Lemma 3.6, we must have k ≤ m.
Therefore, we may choose the family {u1, ..., uk} above of maximum length, and
then each ui becomes a minimal (equivalently, division) tripotent of X (see the
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comments after Corollary 3.4). Now, since u = u1 + ... + uk and X0(u) = 0, we
have ∩k

i=1X0(ui) = 0, so {u1, ..., uk} is a frame in X, and so X is of finite rank.
By Theorem 3.1, the Banach space of X is isomorphic to a Hilbert space.

Now assume that the Banach space of X is isomorphic to a Hilbert space. In
view of the implication (4) ⇒ (3) of Theorem 2.3, to show that X is algebraic
we can additionally assume that X is either a generalized real spin factor or of the
form L(H, K) for some real, complex, or quaternionic Hilbert spaces H, K with
dim(K) < ∞. Then we realize that X is algebraic by a direct inspection. 
�
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