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Abstract. We study transitivity conditions on the norm #B*-triples, C*-algebras,J B-
algebras, and their preduals. We show that, for the preXiwdla / B W *-triple, each one of

the following conditions i) and ii) implies tha& is a Hilbert space. i) The closed unit ball of

X has some extreme point and the nornXos convex transitive. ii) The set of all extreme
points of the closed unit ball of is non rare in the unit sphere of. These results are
applied to obtain partial affirmative answers to the open problem whether &8rriple

with transitive norm is a Hilbert space. We extend to arbiti&fyalgebras previously known
characterizations of transitivity [20] and convex transitivity [36] of the norm on commutative
C*-algebras. Moreover, we prove that the Calkin algebra has convex transitive norm. We
also prove that, iiX is a J B-algebra, and if either the norm of is convex transitive or

X has a predual with convex transitive norm, thers associative. As a consequence, a
J B-algebra with almost transitive norm is isomorphic to the field of real numbers.

1. Introduction

Throughout this papeX will denote a Banach spacg,= S(X) andB = B(X)
will be the unit sphere and the closed unit balofrespectively, and = G(X)
will stand for the group of all surjective linear isometries ¥nWe recall that the
norm of X is said to be transitive if, for every, y in S there existg in G satisfying
F(x) = y. The famous Banach-Mazur “rotation” problem [1] is the following.

Problem 1.1.1f X is separable, and if the norm &f is transitive, isX a Hilbert
space?

Examples of non-Hilbert non-separable Banach spaces with transitive horm
are known [31]. In fact, it follows from some constructive methods in [27] and
[19; Remark, p. 479] (see also [8]) that every Banach space can be isometrically
embedded into a Banach space with transitive norm. On the other hand, itis worth to
mention that Problem 1.1 has an affirmative answer if the assumption of separability
of X is strengthened to the one thdtis finite-dimensional [31]. In this case, the
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answer remains affirmative if the requirement of transitivity of the nornx o
relaxed to that of almost transitivity or even convex transitivity (precise definitions
of these two concepts will be given in Sections 2 and 3, respectively). The reader is
referred to the book of S. Rolewicz [31] and the recent survey paper of F. Cabello
[9] for a comprehensive view of known results and fundamental questions related
to the Banach—Mazur rotation problem.

A big part of the literature dealing with transitivity conditions of the norm
centers its attention in the study of such conditions on the Banach s@%(:é&;
(of all continuousK-valued functions which vanish at infinity on the locally com-
pact Hausdorff topological spade andL]f(F, w) (of all u-integrableK-valued
functions on the localizable measure spécgu)). HereKK denotes eitheR or C.
Today such classical Banach spaces have a wider understanding in the setting of
C*-algebras (or even their non associative generalisations Rtidriples) and/ B-
algebras. Indeed, tI(%l(L)—spaces are nothing but the commutatiVealgebras,
and theL‘lC(F, wn)-spaces are precisely the preduals of commutatiVealgebras.
Analogously, the(,’g%(L)—spaces and the]f(l“, w)-spaces coincide with the asso-
ciative J B-algebras and the preduals of associafiveW -algebras, respectively.

Motivated by the ideas in the above comment, we study in this paper tran-
sitivity conditions on the norm o B*-triples, J B-algebras, and their preduals.
Sometimes, in the wider setting we are considering, questions and results attain
a better formulation. For instance, the Wood conjecture [36] thiata singleton
wheneverCé)C(L) has transitive norm becomes a particular case of the more am-
bitious one that complex Hilbert spaces are the unigjBé-triples with transitive
norm (Problem 2.1), and the result in [20] tHais a singleton Whenevé%Q(L) has
transitive norm follows from the more general fact tRas the unique/ B-algebra
whose norm is transitive (Corollary 5.4). The remaining part of the paper flows
between Problem 2.1 and Corollary 5.4 just mentioned.

Sections 2 and 3 deal with transitivity conditions on the nornd 8f-triples
and preduals of BW*-triples. It seems that the first work in this field is the one
of S. K. Tarasov [35], where it is shown that the Banach—Mazur rotation problem
has an affirmative answer in the classJaB*-triples. We rediscover this result,
and prove that Problem 1.1 also answers affirmatively in the class of preduals of
J BW*-triples (Corollary 2.5). We also prove thatXfis the predual of & BW*-
triple, and if either the set of all extreme points®fs non rare inS or B has some
extreme point and the norm &f is convex transitive, theX is a Hilbert space
(Theorems 3.2 and 3.1). These results allow us to improve Tarasov’s theorem, by
showing that Problem 1.1 has an affirmative answer in the class of non associative
generalisations of compldx; -preduals (namely, the class of Banach spaces whose
duals are preduals ofBW*-triples).

Of course, the results faf B*-triples reviewed above apply t6*-algebras,
with the added value thét is the uniqueC*-algebra which is also a Hilbert space.
NeverthelessC*-algebras have their own philosophy (consisting mainly in their
order structure), and, with that philosophy, transitivity conditions on the norm get
specially nice formulations. We devote Sect. 4 of the paper to this matter. We
obtain characterizations of transitivity and convex transitivity of the norm@f-a
algebra which extend previously known ones in [20] and [36], respectively, for
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the commutative case. Moreover, we prove that the norm of the Calkin algebra is
convex transitive, thus providing the first known example of a non commutative
C*-algebra whose norm is convex transitive.

Finally, in Sect. 5 we show that, K is aJ B-algebra, and if either the norm of
X is convex transitive oX has a predual with convex transitive norm, thens
associative (Theorem 5.3 and Proposition 5.2). Then the result pointed out above
thatR is the unique/ B-algebra with transitive norm follows from [20].

2. Transitivity conditions on the norm of JB*-triples: some first observations
and comments

We recall that a complex Banach spatés said to be a B*-triple if it is equipped

with a continuous triple produdt..} which is conjugate-linear in the middle vari-
able, linear and symmetric in the outer variables, and satisfies the following two
conditions.

i) D(a,b)D(x,y) — D(x,y)D(a,b) = D(D(a, b)(x),y) — D(x, D(b, a)(y))
for all a, b, x, y in X, where the operatob(a,b) : X — X is defined by
D(a, b)(x) := {abx} for all x in X.

ii) Foreveryxin X, D(x, x) is hermitian with non negative spectrum and satisfies
I DCx,x) = x |12

J B*-triples, introduced by W. Kaup [24], are of capital importance in complex
Analysis because their open unit balls are bounded symmetric domains, and every
bounded symmetric domain in a complex Banach space is biholomorphically equiv-
alentto the open unit ball of a suitahbid&*-triple [25]. Every complex Hilbert space

is aJ B*-triple under the triple product defined byyz} := %((x | Mz+(z | ¥)x).

Now, it seems reasonable to raise the following problem.

Problem 2.1.1f X is aJ B*-triple, and if the norm o is transitive, isX a Hilbert
space?

A JBW*-triple is aJ B*-triple having a (complete) predual. Such a predual
is unique [2] in the strongest sense of the word: two preduals.bB & *-triple
X coincide when they are canonically regarded as subspaces of th& taalX.
J BW*-triples are very abundant: the bidual of everg*-triple X is a JBW*-
triple under a suitable triple product which extends the onk fff4]. The fact that
every complex Hilbert space is the predual of BW*-triple could invite us to
consider the following question.

Question 2.2If X isthe predual of d BW*-triple, and ifthe norm oX is transitive,
is X a Hilbert space?

Contrarily to what happens in relation to Problem 2.1 (which, as far as we
know, remains unanswered), it is known that, without additional assumptions, the
answer to Question 2.2 can be negative. To explain our assertion by an example,
let us recall that everg*-algebra is a B*-triple under the triple produdkyz} :=
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%(xy*z + zy*x). As a consequence, the classical Banach spégds) (of all
continuous complex-valued functions which vanish at infinity on a locally compact
Hausdorff topological spack) and L, (", u) (of all essentially bounded locally
u-measurable complex-valued functions on alocalizable measure@hace are
J B*-triples andJ BW*-triples, respectively, in a natural way. The easiest known
counter-example to Question 2.2 is the following (see [31; Proposition 9.6.7] and
[19)]). LetT" be the disjoint union of an uncountable family of copies of the closed
real interval0, 1], and letu be the measure dnwhose measurable sets are those
subsetsA of I whose intersection with each such copy is measurable relative to the
Lebesgue measure, with( A) equal to the sum of the measures of that intersections.
Then the Banach spacé := L1(T', u) is the predual of & BW*-triple, is not a
Hilbert space, and has transitive norm.

The following lemma becomes a common tool to provide partial affirmative
answers to Problem 2.1 and Question 2.2.

Lemma 2.3. Let X be a JB*-triple such that for allx in X the equality
{xxx} =|| x ||2 x holds. TherX is a Hilbert space.

Proof. It is enough to show that the square of the nornXois a real-quadratic
mapping, a fact thatis shown to be true by arguing as in the proof of [30; Lemma 1].
a

Recall that the Banach spa&eis said to be smooth at a poiatof S if there
is a uniquef in S(X*) satisfying f(e) = 1, and thatX is called smooth if it is
smooth at every point &. Note that, ifL is alocally compact Hausdorff topological
space, and i€p(L) is smooth, thed is a singleton (otherwise, by Uryson’s lemma,
Co(L) would contain an isometric copy of the non-smooth complex Banach space
¢2.). Now let X be aJ B*-triple. Since, fore in S, the smallest closed subtriple
of X containinge is isometrically isomorphic to d B*-triple of the formCo(L)
for someL as above [24], it follows that, iK is smooth, then every elemenin
S is a tripotent (i.e.{eee} = e), and therefore the equalifyxx} =|| x || x is
true for everyx in X. In this way, by applying Lemma 2.3, we re-encounter the
known result [35] that complex Hilbert spaces are nothing but smésthtriples.
Then, as noticed also in [35], Mazur’s theorem on the abundance of smooth points
in every separable Banach space (see for instance [31; Proposition 9.4.3]) implies
that separabld B*-triples with transitive norm are Hilbert spaces (a joint partial
affirmative answer to Problems 1.1 and 2.1). These results in [35] will be improved
in Sect. 3 (see Corollaries 3.5 and 3.6).

Now assume thaX is the predual of & BW*-triple. Given an elemergin S,
among the elementg in S(X*) satisfying f (¢) = 1 we can find tripotents oX*
(for instance, the so-called supportedfL8; p. 75]). It follows that, ifX is smooth,
then every element i§(X™*) which attains its norm is a tripotent. Since the norm
attaining elements of (X*) are dense ii§ (X*) (by the Bishop-Phelps theorem [4;
p. 7]), and the set of all tripotents &f* is closed inX*, we actually have that, if
X is smooth, then every element §{X*) is a tripotent. Now Lemma 2.3 gives
us the following geometric characterization of complex Hilbert spaces among the
preduals of/ BW*-triples.
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Proposition 2.4.Let X be the predual of & BW*-triple. If X is smooth, thelX is
a Hilbert space.

Proposition 2.4 provides us with the following joint partial affirmative answer
to Problem 1.1 and Question 2.2.

Corollary 2.5. Let X be the predual of a BW*-triple. If X is separable, and if
the norm ofX is transitive, thenX is a Hilbert space.

Recall that the norm of the Banach spatés called almost transitive if there
exists a dense subsgxt of S such that, for every, y in D, we can findF in G
satisfyingF (x) = y. Itis well-known and easy to see that the nornXaf almost-
transitive if and only if, for every in S the orbitG(e) := {F(e) : F € G}is
dense inS. Now assume thaX is a J B*-triple. Since elements @ preserve the
triple product ofX [24; Proposition 5.4], it follows from Lemma 2.3 thatXf has
a non-zero tripotent, and if the norm &fis almost transitive, theX is a Hilbert
space. As a consequence, we have the following affirmative answer to a natural
variant of Problem 2.1.

Corollary 2.6. Let X be aJ BW*-triple with almost transitive norm. TheX is a
Hilbert space.

As happens in relation to every mathematical problem which seems to be diffi-
cult to answer, it would be convenient to provide us with some non trivial reformu-
lations of Problem 2.1. We will obtain such reformulations as a consequence of the
following theorem of F. Cabello. Given a subcateggref Banach spaces (see [33;
p.161, Definition 9.13]), & -space will mean an object ¢f, and a7-subspace
of a 7-spaceX will be a closed subspadéof X which is a7-space such that the
inclusionY — X is a J-morphism.

Theorem 2.7.[8] Let 7 be a subcategory of Banach spaces satisfying the following
two conditions:

a) Given a7-spaceX and a separable subspa@eof X, there is a7-subspace of
X which is separable and contairs

b) Given a7-spaceX and an increasing sequen¢g,} of 7-subspaces aoX, the
closure ofU,cnY;, in X is a J-space.

Then there exists a non-Hilbert separaljfespace with almost transitive norm
whenever there is some non-Hilbgftspace with transitive norm.

The fact pointed out above that one-generated closed subtriplesRif-&iple

areJ B*-triples leads easily to see that all closed subtriples.bBé-triple also are

J B*-triples. This well-known result is the key tool in verifying that,jif denotes
the category of/ B*-triples, then7 satisfies conditions a) and b) in Theorem 2.7.
On the other hand, the class.bB*-triples is closed under ultraproducts [14], and
it is folklore that, if a Banach spacé has almost transitive norm, then every non
trivial (Banach) ultraproduct of has transitive norm (see for instance [19; Remark,
p. 479)]). Therefore we have
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Proposition 2.8.The following assertions are equivalent:

i) EveryJ B*-triple with transitive norm is a Hilbert space.
i) EveryJ B*-triple with almost transitive norm is a Hilbert space.
iii) Every separablg B*-triple with almost transitive norm is a Hilbert space.

3. Transitivity conditions on the norm of JB*-triples: the main results

In this section we will provide affirmative answers to natural variants of Question
2.2: we will assume that the Banach spaci that question is in fact the predual
of an “atomic” J BW*-triple, but the requirement that the norm Xfis transitive

will be substantially relaxed. Recall that the norm of the Banach sgasealled
convex transitive if for every in S we havecoG(e) = B, whereco means closed
convex hull.

Theorem 3.1.Let X be the predual of & BW*-triple. Assume thaB has some
extreme point, and that the norm &f is convex transitive. TheX is a Hilbert
space.

Proof. The convex transitivity of the norm &f and the existence of extreme points
of B imply that X is the closed linear hull of the set of all extreme pointsBin
i.e., theJ BW*-triple X* is (purely) atomic. Then, by [18; Lemma 2.11] there
exists a contractive conjugate-linear mapping X — X* whose value at each
extreme pointe of B is the support(e) of e. From the obvious uniqueness of
such a mapping it follows that, for F in G, we haver o F = (F*) lon.As a
consequence, the equivalent ndrrhon X defined bx| =|| x || + || = (x) ||
satisfied F(x)] = |x]forall x in X andF in G. Since the norm oX is convex
transitive, it follows from [12; Theorem 5] tht] is a positive multiple of| . ||

on X, and therefore we havex ||=|| 7 (x) | for all x in X. On the other hand,
by [18; Remark 2.8 and the proof of Theorem 1], for everin X there exist
(possibly finite) sequencds, } of positive numbers anft,,} of extreme points of

B suchthat| x | = ), A, , the tripotentss(e,) are pair-wise orthogonal
(i.e., D(s(en), s(em)) = O whenevem # m), andx = > . Aye, (conditions
which imply || #(x) || = Max,{’,}). Since we proved that is an isometry, it

follows that every element i must be an extreme point &f. Therefore we have
{r(x)w(xX)m(x)} =| x |2 7(x) for all x in X, sox(X) is aJB*-subtriple of X*
(by polarization law [7; p. 251]), and Lemma 2.3 applies:

It follows from Theorem 3.1 that, iX is aJ B*-triple, and if the norm of(* is
convex transitive, thel is a Hilbert space. Recall that a subgedf a topological
spacefl is said to be rare iff if the interior of the closure oR in T is empty.

Theorem 3.2.Let X be the predual of & BW*-triple. Assume that there exists
some non rare set i consisting only of extreme points Bf ThenX is a Hilbert
space.
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Proof. The assumption oX implies that the/ BW*-triple X* is atomic. Letr
be the contractive conjugate-linear mapping fr&no X* introduced in the proof
of Theorem 3.1. As we have seen there, givan S, e is an extreme point oB

if (and only if) | 7(e) ||= 1. Therefore the sdt/ of all extreme points o is
closed inS. Using again the assumption of it follows that there exists in S
and 0 < ¢ < 1 such thatx lies in U wheneverx isin S and|| x —e ||< e.
Letx be inS with || x — e ||< . Thenz(x) andn (e) are non orthogonal (since
| =(x) — m(e) ||< 1) minimal tripotents inX* (sincex ande are extreme points
of B and [18; Proposition 4] applies). Therefore, by [18; Corollary 2.5 and Lemma
1.1], there exist§&; in G(X*) satisfyingG (r (x)) = m(e). Since elements ig(X™)
arew™*-continuous (a consequence of the uniqueness of the predkid) ofie have
G = F* for someF in G, so

m(e) = G(m(x)) = F*(w(x)) = m(F(x)),

and sox = F(e) (sincer is injective). In this way we have shown théte)
containsthe sefx € S : || x — e ||< €}. Now letx be an arbitrary element
in S. We can find a finite sequenas, x1, ..., x, in S with xg = ¢, x, = x, and

| xi —xi—1ll<eforalli =1, ..,n. Putk :=maxi € {1,...,n} : x; € G(e)}. If

x does not belong tg(e), then we havé < n, there existd in G with F(x;) = e,
so| F(xx+1) — e ||< &, and saxr1 belongs tag(e), a contradiction. Therefore
S = G(e), hence the norm X is transitive, and Theorem 3.1 appliesa

Either from Theorem 3.1 or Theorem 3.2 it follows thatXifs the predual of a
J BW*-triple, if the norm ofX is almost transitive, and B has extreme points, then
X is a Hilbert space. We conclude this section with some corollaries to Theorems
3.1and 3.2. Thefirst one is a direct consequence of Theorem 3.1 and the following
lemma.

Lemma 3.3.Let X be the predual of & BW*-triple. If X* has convex transitive
norm, thenX has convex transitive norm too.

Proof. As observed in [12; Lemma 4], a Banach spdtdas convex transitive
norm if and only if, for every in S(E) and f in S(E*), we have

sup| f(F(e) | : FeG(E) =1
Now, the convex transitivity of the norm &f* implies
sug| G(f)e) |: G e G(XH} =1

for everye in S(X) andf in S(X*). Since elements i@ (X*) are nothing but those
of the form F* for someF in G, we obtain

sup| f(F(e) |: Fegl=1
for everye in S(X) and f in S(X*), hence the norm af is convex transitive. O

Corollary 3.4. LetX be an atomic/ BW*-triple with convex transitive norm. Then
X is a Hilbert space.



118 J. Becerra Guerrero, A. Rodriguez Palacios

As a consequence, X is a complex Banach space, andXif* is a J B*-triple

with convex transitive norm, theXi is a Hilbert space. The fact that, ([0, 1]) has
convex transitive norm [36] shows that neither the assumption of almost transitivity
of the norm ofX in Corollary 2.6 can be relaxed to that of convex transitivity nor
the assumption thaX is atomic in Corollary 3.4 can be removed.

Corollary 3.5. Assume that the Banach spakés smooth and thaX** is a J B*-
triple. ThenX is a Hilbert space.

Proof. The assumption th& is smooth implies that every elementiaX™) which
attains its norm is an extreme point Bf X*). By the Bishop-Phelps theorem and
Theorem 3.2X* is a Hilbert space. O

Corollary 3.6. Assume that the Banach spakds separable, that the norm o&f
is transitive, and tha&** is a J B*-triple. ThenX is a Hilbert space.

As commented at the beginning of Sect. 2, Corollaries 3.5 and 3.6 above extend
the results proved in [35] fo¥ B*-triples to the more general setting of complex
Banach spaces whose biduals drB*-triples. In Corollary 3.9 below we will
provide further information about the transitivity of the norm on such spaces. For
the moment, lefX be an arbitrary Banach space. koin X, we putp(X,e) :=
maxp > 0: pB C coG(e)}.

Lemma 3.7.The functiono (X, .) is continuous on X. More precisely, farand v
in X, we have o(X,u) — p(X,v) || u—v|.

Proof. Letu, v be in X. Forf in §(X*), we have
p(X,u) < sufRe[f(F)]: F € G} <[ u—v | +supRe[f(F())]:F €g},
and hence
p(X,u) <llu—v |l +inf{ sufRe[f(F())]: F € G} : f e S(X")}
But, by the Hahn—-Banach separation theorem, the equality
p(X,v) =inf{supRe[f(F(v)]: F € G} : f € S(X™)}
holds. It follows| o (X, u) — p(X,v) |<|lu—v|. O

Proposition 3.8.Assume that the norm of is transitive, and that every element
in B(X**) is thew*-limit of a sequence of elements of B. Then the norii*ois
convex transitive.

Proof. Let f be an element it§ (X*) which attains its norm. By the transitivity of
the norm ofX, for everyx in S, there existg in the sef{ F*(f) : F € G} such that

g attains its norm at. Now, the remaining assumption dh together with [13;
Lemma 1.5.10], leads teo{ F*(f) : F € G} = B(X*), s0coG(X*)(f) = B(X*),

and sop(X*, f) = 1. By the Bishop-Phelps theorem and Lemma 3.7, we actually
havep (X*, g) = 1 for everyg in S(X*), i.e., the norm ofX* is convex transitive.

O
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Corollary 3.9. Assume that the norm of is transitive, thatX** is a J B*-triple,
and that every element iIB(X™**) is thew*-limit of a sequence of elements of B.
ThenX is a Hilbert space.

Proof. Apply Proposition 3.8 and Theorem 3.10

Banach spaces whose biduals a#&*-triples have been systematically studied in
[17] (see also [11]). However, we have not found in the literature any example
showing that the enlargement of the clasg/ &*-triples provided by such spaces

is strict. In what follows we give such an example.

Example 3.10Let Y be theC*-algebra of all compact operators on an infinite-
dimensional complex Hilbert space, so tlias anM-embedded Banach space [22;
Example I11.1.4.(f)] in the sense of [22; Definition 111.1.1.(a)]. By [22; Proposition
[11.2.10.(b)], there exists a complex Banach sp&and a surjective linearisometry
F : X* — Y* which is not the transpose of a linear isometry frnonto X. We
claim thatX cannot be linearly isometric tB. Indeed, ifX is linearly isometric
to Y, thenX is anM-embedded Banach space, and we can argue as in the proof
of [22; Proposition 111.2.2] to obtain thaf* = G** for some linear isometrg;
from Y onto X, and henceF = G*, a contradiction. Now, the situation is that
Y is aJ B*-triple, Y** is a Cartan factorX™* is linearly isometric toY **, but X

is not linearly isometric td’. It follows from [6; Lemma 3.2] thaX cannot be a

J B*-triple.

The argument in the above example actually shows that, for every non reflexive
Cartan factoiZ, there exists a complex Banach spacehich is not aJ B*-triple
and satisfie** = Z. Given a non negative integer numbegmve could consider
the clasg7,, of complex Banach spaces whaesth dual is aJ B*-triple, obtaining in
such away increasing sequen¢gs, _»} ,>1 and{J2,_1} ,>1 of classes of Banach
spaces whose first terms are the ond Bf-triples and that of preduals dfB W*-
triples, respectively. However, since for every Banach spacg* is the range of
a contractive projection ok ***, and the class af B*-triples is closed by passing
to ranges of contractive projections ([26], [34]), it follows from Example 3.7 that
the actual situation is the following:

JCh=0Js=..=Tp=...adJ1=T=...=Tp-1=...

Therefore, as we have done along this paper, among the cldssesly Jo , J1 ,
and /7> deserve to be considered.

4. Transitivity conditions on the norm of C*-algebras

The results obtained in Sections 2 and 3f@&*-triples automatically get a stronger
form when they are applied t6*-algebras. The reason lies in the folklore fact
that C is the uniqueC*-algebra whose&*-norm derives from an inner product.
(Indeed, from the continuous functional calculus for a single self-adjoint element
of aC*-algebra, it follows that, ifX is a smoothC*-algebra, then every norm-one
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elemente in the self-adjoint partX,, of X satisfies eithee? = ¢ or e? = —e,
which implies thatS (X, ) is disconnected, and hence the real Banach sfaces
one-dimensional.) By the folklore result just mentioned, an affirmative answer to
Problem 2.1 would imply the verification of Wood'’s conjecture [36] thal, if a
locally compact Hausdorff topological space such thaf.) has transitive norm,
thenL is a singleton. Actually, if Problem 2.1 had an affirmative answer, then the
natural conjecture th&t is the unique (non necessarily commutatiz&}algebra
with transitive norm would be right. We note also that the categboy C*-algebras
is closed under ultraproducts and satisfies conditions a) and b) in Theorem 2.7.
Let us say that @*-algebra is proper whenever it is different fr@nlt follows
from the above comments that the existence of a pr@fieslgebra with transitive
norm is equivalent to the existence of a propegralgebra with almost transitive
norm, and implies the existence of a separable prépeasigebra with almost tran-
sitive norm. Accordingly to previous comments in Sect. 2, a prapealgebra
with transitive norm must be non separable, and a pr@ealgebra with almost
transitive norm cannot have non-zero self-adjoint idempotents. In the next proposi-
tion we characterize the transitivity of the norm af'&-algebra in purely algebraic
terms. Such a characterization will follow from the Kadison-Paterson-Sinclair de-
termination of surjective linear isometries @ri-algebras [28], and becomes the
non-commutative generalization of [20; Proposition 4.2]. The reader is referred to
the books [15], [29], and [32] for basic results in the theorgéfalgebras.
Let X be aC*-algebra, and leM (X) denote theC*-algebra of multipliers of
X. The so called Jordag-automorphisms of, as well as the operators of left
multiplication onX by unitary elements iM (X), become distinguished examples
of surjective linear isometries oK. Jordan«-automorphisms of{ are nothing
but linear bijections fromX to X preserving theC*-involution and the squares.
Consequently, ifPos(X) denotes the set of all positive elementsXinand if F is
a Jordarx-automorphism o, then we haver (S N Pos(X)) = SN Pos(X). Let
us denote by the set of all unitary elements af (X), and byG* the group of
all Jordanx-automorphisms ok . The Kadison-Paterson-Sinclair theorem asserts
that every surjective linear isometry ahis the composition of an element 6f-
with the operator of left multiplication by an element@f The modulug x | of
an elemenk of X is defined as the unigue positive square root™of.

Proposition 4.1.Let X be aC*-algebra. Then the following assertions are equiv-
alent:

i) The norm ofX is transitive.
ii) T acts transitively onS N Pos(X), and every element in X has a “polar
decomposition’x = u | x |, whereu isin U.

Proof. Assume that the norm df is transitive. Then, fop, g inthe setSN Pos(X)
there existF in G andv in U such thay2 = vF(p¥/?), and hence we have
g = F(pY®v*vF(pY?) = (F(pY?))2 = F(p). ThereforeG+ acts transitively
on S N Pos(X). On the other hand, for everyin S we can findG in G* and
u in U such thatr = uG(x*x), which impliesx*x = (G(x*x))?, and hence
G(x*x) =| x |. Now assume that assertion ii) holds. koty in S, we can write
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x=u|x|andy = v | y | for suitable elementsg, v in U, and there exist§ in
Gt suchthatF (| x |) =| y |. Then the mapping : z — vF(u*z) from X to X is
a surjective linear isometry satisfyin@(x) = y. O

Now, we pass to provide a characterizatio@dfalgebras with convex transitive
norm, which extends the one in [36; Theorem 3.3] for the commutative cas¥. Let
be aw*-algebra. It is well-known that the predu#l. of X is anX-bimodule in a
natural way. Indeed, if belongs taX, and ifg is in X, , then it is enough to define
vg andgv as the (automaticallyw*-continuous) linear functionals aX given by
(vg)(x) := g(xv) and(gv)(x) := g(vx), respectively, for alk in X.

Lemma 4.2.Let X be aC*-algebra. Then the set
{uf : f € Pos(X*)NSX*), ueU)
is norm-dense ir§ (X*).

Proof. Leth be inS(X*), and let 0< ¢ < 2. SinceB(M (X)) is the closed convex
hull of U (by the Russo-Dye theorem [4; Theorem 30.2]), there exisits U

suchthai 1 — h(v) |< i—z. By the Bishop-Phelps-Bollobas theorem [4; Theorem
16.1], there are elemenisandg in S(X**) and S(X™), respectively, satisfying

[ x—vl< 5,1l g—hl< 5 andg(x) = 1. Putu := v* and f := xg. Then

u belongs taU, f belongs toPos(X*) N S(X*) (because, il denotes the unit of

X*, then1=g(x) = (x)(D) = f(D =I|l f ==l xg =l x Il ¢ = 1), and
Ih—uf ISlh=x*fl4+1G"—wfl=lh—gl+I & —wfl
Shh—gll+lIx"—ul=lh—gll+lx—vl<e O

Let X be aC*-algebra. The extreme points of tisé&-compact convex sétos (X*)N
B(X*) are zero and the so called (normalized) pure states. df is well-known
that pure states of are extreme points a8 (X*).

Theorem 4.3.Let X be aC*-algebra. ThenX has convex transitive norm if and
only if, for every pure statg of X and every norm-one positive linear functional
f onX, g belongs to thev*-closure inX* of the se{ F*(f) : F € G*}.

Proof. Assume thatX has convex transitive norm. Then, by the Hahn-Banach
theorem, for every in S(X*) the equality

B(X*) = “"co{G*(¢) : G € G)

holds. Letg be a pure state ok, and f a norm-one positive linear functional
on X. It follows from [3; Theorem 36.10] tha¢ belongs to thew*-closure of
{(G*(f) : G e G}. Therefore there exist netfs,} and {F,} in U andG™,
respectively, such thadtf (uy F(x))} — g(x) forall x in X. Leth be aw*-cluster
point in B(X*) of the net{F; (f)}. To prove thafg belongs to thev*-closure of
the sef{ F*(f) : F € G} itis enough to show that = g. Letx = x* be inX.
Then, by the Cauchy-Schwarz inequality, we have

| fuaFa(x) P< fulug) f(Fa(0)?) = f(D) f(Fa(x?) = FX(f)x?) ,
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and hence (x)? < h(x?). Note that this inequality implieg 4 ||= 1. Let{x;} be
an increasing approximate unit férbounded by one. Thefx; } converges td in
thew*-topology ofX**, 50 0< h((1—x3)?) < h(1—x;)— 0, and sdi(x2) — 1.
Now, for p in R, we have

0%+ 20g(x) + g(x)? = lim{g(px; + x)?)

< lim{i((pxs + )2} = p% + 20h(x) + h(x?),

and therefore 2(g(x) —h(x)) < h(x%) —g(x)2. Sincep is arbitrary inR, it follows
g(x) — h(x) =0, and hencé = g, as required.

Now assume that, for every pure stgtef X and everyf in the setPos(X*)N
S(X*), g belongs to thev*-closure of{ F*(f): F € G*}. Let].]| be an equivalent
norm on (the Banach space df)such thatg < G(X,].). Then, forg and f as
above, the dual north|is constant o{ F*(f): F € G}, so that our assumption
implies]g| <1 | As a consequenck,] is constant (say equal t#) on the set of
pure states ok. Now, for everyf in Pos(X*) N S(X*), the inequalityM < | 7|
holds. But the converse inequality is also true because thé seX* : || < M}
is w*-closed and convex and contains all extreme poin#@&f*) N Pos(X*), and
hence, by the Krein-Milman theorem, it also contaBis(*) N Pos(X*). Since,
for u in U, the mappingG : x — xu from X to X is an element of, for every
fin Pos(X*) N S(X*) we havduf| = 1G*(f)l = | f] = M. It follows from
Lemma 4.2 that the dual norfn] is constant or§(X*). Therefore the norrh.] on
X is a positive multiple of the original norm. Finally, the convex transitivity of the
norm of X follows from the already applied result in [12; Theorem 5f1

Our concluding goal in this section is to prove that the Calkin algebra [10] has
convex transitive norm. As far as we know, this becomes the first known example
of a non commutativ€*-algebra whose norm is convex transitive. We recall that
the Calkin algebra is defined as the quotient )/ K (H), whereH is an infinite-
dimensional separable complex Hilbert spaceH ) denotes th&€*-algebra of all
bounded linear operators di, and K (H) stands for the closed ideal &f(H)
consisting of all compact operators éh

Lemma 4.4.Let X be aC*-algebra, letx be in X, and lety, z be in B(M (X)).
Then yxz belongs to the closed convex hud} @f).

Proof. The set{r € M(X) : tx € coG(x)} is closed and convex iM(X), and
containslU. By the Russo-Dye theorem, it also contajn®Now the closed convex
set{r € M(X) : yxt € coG(x)} containsU, hence it contains. O

Inwhat followsH will denote an infinite-dimensional separable complex Hilbert
space. Fox in L(H), we put|| x |less:=Il x + K(H) |

Theorem 4.5.Let X denote th&*-algebral (H), and letx be in S. The@oG (x) =
B ifand only if|| x |less= 1.
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Proof. Let & be a self-adjoint idempotent ik whose range is an infinite-dimen-
sional subspace dff. Then there exists in X satisfyingu*u = 1 anduu™* = 7,
and hencd = u*mu. By Lemma 4.4]1 belongs t@oG (), and, sinceB = coG (1)
(by the Russo-Dye theorem), we actually h#ve- coG ().

Now, letx be inS N Pos(X) such that] x |l.;s= 1. Let0< ¢ < 1. By the
spectral decomposition fer(see forinstance [21; Proposition 4.2.3]), there are pair-
wise orthogonal self-adjointidempotents ..., 7, in X and realnumbers, ..., A,
such that] x — Y7 ;A || < e.We may assume that there exists a positive
integerk < n such thatry, ..., 7 have infinite-dimensional rangey1, ..., 7,
have finite-dimensional range, anéy |>| A; |forall j = 2, ..., k. Then we have

k n n
| a =0 ) nm =l e — Y i = llx =Y dim |
i=1 i=1

i=k+1
> [[Xlless — & =1—¢

On the other hand, if we put:= Y "_; A;7; , then we haverjv = 1171, hence,

by Lemma 4.4).171 belongs tacoG(v). By the first paragraph in the proof, the
inclusioni1B C coG(v) holds. With the notation before Lemma 3.7, this means
o(X,v) >| A1 |. It follows from Lemma 3.7 that

p(X,x) = p(X, )= x —v =] Ar]| —e = 1—2e.

By lettinge — 0, we obtaino (X, x) = 1, i.e.,B = coG(x).

Now, letx be inS such that] x |.ss= 1. Thenx*x liesin S N Pos(X) and
| x*x |less= 1. By the second paragraph in the proof, we h&ve- coG(x*x),
and, by Lemma 4.4, alsB = coG(x). This concludes the proof of the “if” part in
the theorem.

To prove the “only if” part, first note thak' (H) is aG-invariant subspace of
(see for instance [22; Proposition 111.2.2]), so that/ ilenotes the Calkin algebra,
andifP : X — Y isthe quotient mapping, then evenyjin G givesrise to an element
Fin G(Y) satisfyingP o F = F o P. Then it follows easily that, if is in $, and if
B =coG(x), thenB(Y) C coG(Y)(P(x)), and thereford| x |.;s=|| P(x) ||= 1.

O

Corollary 4.6. The Calkin algebra has convex transitive norm.

Proof. Let us take the notation in Theorem 4.5 and its proof. y.é&te in S(Y).

SinceK (H) is proximinal in X [22; Proposition 11.1.1], there existsin S such
that P(x) = y, and thereforé| x |.;s= 1. By Theorem 4.5, for such anwe have
B = coG(x). Finally, sinceK (H) is G-invariant, the equalityB(Y) = coG(Y)(y)

holds. O

5. Transitivity conditions on the norm of JB-algebras

J B-algebras are defined as those Jordan-Banach real alg&brsetisfying
| x [I°<|l x2 + y? | for all x,y in X. A natural example of a B-algebra is
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the Banach spack of all self-adjoint operators on a complex Hilbert space, when
we define the Jordan producty of elementsy, y in X asx.y := %(xy + yx).

Other examples are provided by the real Banach algeﬂiﬁas), with L a lo-

cally compact Hausdorff topological space. Actually these last Banach algebras are
the unique associativéB-algebras [21; 3.2.2)] B-algebras are closely related to

J B*-triples. Indeed, ifX is a J B-algebra, and if we define a triple product &n

by {xyz} := (x.y).z+ (y.2).x — (x.2).y, then(X, {...}) can be regarded as a closed
real subtriple of a suitablé B*-triple (cf. [21; 3.3.9], [37], and [5]).

Let X be aJ B-algebra with a unit. If « is an element ifk satisfyingu? = 1,
then we say that is a symmetry inX. Central symmetries iX are characterized
as the isolated points of the set of all extreme point8 ¢23; Proposition 1.3]. It
follows that the orbitG (1) is contained in the centre &f. Therefore we have

Proposition 5.1.Let X be aJ B-algebra with a unitl. If the linear hull ofG(1) is
denseirnX (forinstance, if the norm of is convex transitive), thek is associative.

JBW-algebras (see [21; 4.1.1] for a definition) can actually be characterized
as those/ B-algebras which are Banach dual spaces [21; 4.4.16&].ifaJBW-
algebra, thenX has a unit [21; 4.1.7], and the product &fis separatelyw*-
continuous [21; 4.4.16 and 4.1.6].

Proposition 5.2.Let X be the predual of & BW-algebra. If X has no non trivial
G-invariant closed subspaces (for instance, if the nornx @ convex transitive),
thenX* is associative.

Proof. Assume tha* is not associative. Then, denoting byhe unit of X*, the
linear hull of G(X*)(1) is notw*-dense inX*. Therefore there exists a non-zero
elementx in X such that(G(X*)(1)(x) = 0. As a consequence, for eveFyin

G we havel(F(x)) = 0, and hence the closed linear hull@fx) is a non trivial
G-invariant closed subspace Bf O

Let X be aJ B-algebra. Then the bidual** of X is aJ BW-algebra containing
X as a subalgebra [21; 4.4.3], and the set

M(X):={ze X™ : zX C X}

is a subalgebra ok** [16] called the multiplier algebra aoX. According to the

Kadison type theorem in [23], every surjective linear isometr)as the compo-

sition of an algebra automorphism &f with the operator of multiplication by a
central symmetry il (X). Recall that an elementin X is said to be positive if
there exists in X such thaty? = x.

Theorem 5.3.Let X be aJ B-algebra. If there exists a norm-one positive element
p in X such that the convex hull 6f(p) is dense inB (for instance, if the norm of
X is convex transitive), theK is associative.

Proof. Recall that aJ BW-factor is aJ BW-algebra with no non trivial central
idempotents, and that a factor representatioX aé an algebra homomorphism
from X to someJ BW-factorY, whose range is*-dense iny. Assume that there
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exists some norm-one positive elemenin X such thatoG(p) = B. Since the
family of all factor representations of is faithful [21; 4.6.4], to prove thak

is associative it is enough to show that every factor representatioh lods 1-
dimensinal range. Led : X — Y be such a factor representation. By [21; 4.6.2],
we may assume that is equal toe. X** for some minimal central idempotent in
X**, and thatd is nothing but the mapping — e.x . Letx be inG(p). Then there
exists an algebra automorphisfhof X and a central symmetny in M (X) such
thatx = u.F(p), and henca = u.q for some norm-one positive elementn X.
Now %(1 + u) is a central idempotent iK**, so that, since is a minimal central
idempotent inX**, we have eithe¢l+u).e = 0 or(1+u).e = 2¢, and hence either
®(x) = —e.q or ®(x) = e.q . Sincex is arbitrary inG(p), the above shows that,
if P denotes the set of all positive elementsBi(t'), then® (G(p)) is contained in
P U (—P). SinceP is convex andv*-compactco(P U (— P)) is w*-compact and
hence norm-closed if. SincecoG(p) = B, it follows that® (B) is contained in
co(P U (—P)).By[21; 3.4.2 and 3.4.3], fop in ®(X) with || y ||< 1 there exists
x in X satisfying| x ||< 1 and®(x) = y, and therefore the closed unit ball of
@ (X) is contained irto(P U (— P)). Sinced(X) is w*-dense inY, we may apply
the Kaplansky density theorem [21; 4.5.12] to obtain thdP U (—P)) = B(Y).
As a consequence, ifis an extreme point aB(Y), thenz lies in P U (— P). Since
such & is a symmetry i (= e.X**) [23; Lemma 1.2], we have that eithee= ¢
orz = —e. It follows from the Krein-Milman theorem that = Re. O

It has been proved recently that/ifis a locally compact Hausdorff topological
space, and nzg%(L) has almost transitive norm, thénis a singleton [20; Theorem
3.1]. Therefore we have

Corollary 5.4. R is the unique/ B-algebra with almost transitive norm.

It follows from Theorem 5.3 and Proposition 5.2 that the question of convex tran-
sitivity of the norm onJ B-algebras and preduals dfBW-algebras reduces to

the consideration of a similar question on the classical Banach sﬁ§ces (for
locally compact Hausdorff topological spacg¥ and L]f{(l", w) (for localizable
measure space€$’, u)), respectively. The reader is referred to [36] for G%QL)

case. As far as we know, the convex transitivity of the normlf@(l“, ) spaces

has not been systematically studied. For the particular case of the almost transitivity
of the norm on such spaces, the reader is referred to [19].
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