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Abstract. We study transitivity conditions on the norm ofJB∗-triples,C∗-algebras,JB-
algebras, and their preduals. We show that, for the predualX of aJBW∗-triple, each one of
the following conditions i) and ii) implies thatX is a Hilbert space. i) The closed unit ball of
X has some extreme point and the norm ofX is convex transitive. ii) The set of all extreme
points of the closed unit ball ofX is non rare in the unit sphere ofX. These results are
applied to obtain partial affirmative answers to the open problem whether everyJB∗-triple
with transitive norm is a Hilbert space. We extend to arbitraryC∗-algebras previously known
characterizations of transitivity [20] and convex transitivity [36] of the norm on commutative
C∗-algebras. Moreover, we prove that the Calkin algebra has convex transitive norm. We
also prove that, ifX is a JB-algebra, and if either the norm ofX is convex transitive or
X has a predual with convex transitive norm, thenX is associative. As a consequence, a
JB-algebra with almost transitive norm is isomorphic to the field of real numbers.

1. Introduction

Throughout this paperX will denote a Banach space,S = S(X) andB = B(X)

will be the unit sphere and the closed unit ball ofX, respectively, andG = G(X)

will stand for the group of all surjective linear isometries onX. We recall that the
norm ofX is said to be transitive if, for everyx, y in S there existsF in G satisfying
F(x) = y. The famous Banach-Mazur “rotation” problem [1] is the following.

Problem 1.1.If X is separable, and if the norm ofX is transitive, isX a Hilbert
space?

Examples of non-Hilbert non-separable Banach spaces with transitive norm
are known [31]. In fact, it follows from some constructive methods in [27] and
[19; Remark, p. 479] (see also [8]) that every Banach space can be isometrically
embedded into a Banach space with transitive norm. On the other hand, it is worth to
mention that Problem 1.1 has an affirmative answer if the assumption of separability
of X is strengthened to the one thatX is finite-dimensional [31]. In this case, the

Partially supported by DGICYT Grant PB95-1146 and Junta deAndalucía Grant FQM 0199.

J. Becerra Guerrero, A. Rodriguez Palacios: Universidad de Granada, Facultad de Ciencias,
Departamento de Análisis Matemático, 18071 Granada, Spain. e-mail: apalacio@ugr.es;
julio.bg@ugr.es

Mathematics Subject Classification (2000):46B04, 46C15, 46L05, 46L70



112 J. Becerra Guerrero, A. Rodriguez Palacios

answer remains affirmative if the requirement of transitivity of the norm ofX is
relaxed to that of almost transitivity or even convex transitivity (precise definitions
of these two concepts will be given in Sections 2 and 3, respectively). The reader is
referred to the book of S. Rolewicz [31] and the recent survey paper of F. Cabello
[9] for a comprehensive view of known results and fundamental questions related
to the Banach–Mazur rotation problem.

A big part of the literature dealing with transitivity conditions of the norm
centers its attention in the study of such conditions on the Banach spacesCK

0 (L)

(of all continuousK-valued functions which vanish at infinity on the locally com-
pact Hausdorff topological spaceL) andLK

1 (0, µ) (of all µ-integrableK-valued
functions on the localizable measure space(0, µ)). HereK denotes eitherR or C.
Today such classical Banach spaces have a wider understanding in the setting of
C∗-algebras (or even their non associative generalisations, theJB∗-triples) andJB-
algebras. Indeed, theCC

0 (L)-spaces are nothing but the commutativeC∗-algebras,
and theLC

1 (0, µ)-spaces are precisely the preduals of commutativeW ∗-algebras.
Analogously, theCR

0 (L)-spaces and theLR
1 (0, µ)-spaces coincide with the asso-

ciativeJB-algebras and the preduals of associativeJBW -algebras, respectively.
Motivated by the ideas in the above comment, we study in this paper tran-

sitivity conditions on the norm ofJB∗-triples,JB-algebras, and their preduals.
Sometimes, in the wider setting we are considering, questions and results attain
a better formulation. For instance, the Wood conjecture [36] thatL is a singleton
wheneverCC

0 (L) has transitive norm becomes a particular case of the more am-
bitious one that complex Hilbert spaces are the uniqueJB∗-triples with transitive
norm (Problem 2.1), and the result in [20] thatL is a singleton wheneverCR

0 (L) has
transitive norm follows from the more general fact thatR is the uniqueJB-algebra
whose norm is transitive (Corollary 5.4). The remaining part of the paper flows
between Problem 2.1 and Corollary 5.4 just mentioned.

Sections 2 and 3 deal with transitivity conditions on the norm ofJB∗-triples
and preduals ofJBW ∗-triples. It seems that the first work in this field is the one
of S. K. Tarasov [35], where it is shown that the Banach–Mazur rotation problem
has an affirmative answer in the class ofJB∗-triples. We rediscover this result,
and prove that Problem 1.1 also answers affirmatively in the class of preduals of
JBW ∗-triples (Corollary 2.5). We also prove that, ifX is the predual of aJBW ∗-
triple, and if either the set of all extreme points ofB is non rare inS or B has some
extreme point and the norm ofX is convex transitive, thenX is a Hilbert space
(Theorems 3.2 and 3.1). These results allow us to improve Tarasov’s theorem, by
showing that Problem 1.1 has an affirmative answer in the class of non associative
generalisations of complexL1-preduals (namely, the class of Banach spaces whose
duals are preduals ofJBW ∗-triples).

Of course, the results forJB∗-triples reviewed above apply toC∗-algebras,
with the added value thatC is the uniqueC∗-algebra which is also a Hilbert space.
Nevertheless,C∗-algebras have their own philosophy (consisting mainly in their
order structure), and, with that philosophy, transitivity conditions on the norm get
specially nice formulations. We devote Sect. 4 of the paper to this matter. We
obtain characterizations of transitivity and convex transitivity of the norm of aC∗-
algebra which extend previously known ones in [20] and [36], respectively, for
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the commutative case. Moreover, we prove that the norm of the Calkin algebra is
convex transitive, thus providing the first known example of a non commutative
C∗-algebra whose norm is convex transitive.

Finally, in Sect. 5 we show that, ifX is aJB-algebra, and if either the norm of
X is convex transitive orX has a predual with convex transitive norm, thenX is
associative (Theorem 5.3 and Proposition 5.2). Then the result pointed out above
thatR is the uniqueJB-algebra with transitive norm follows from [20].

2. Transitivity conditions on the norm of JB∗-triples: some first observations
and comments

We recall that a complex Banach spaceX is said to be aJB∗-triple if it is equipped
with a continuous triple product{...} which is conjugate-linear in the middle vari-
able, linear and symmetric in the outer variables, and satisfies the following two
conditions.

i) D(a, b)D(x, y) − D(x, y)D(a, b) = D(D(a, b)(x), y) − D(x, D(b, a)(y))

for all a, b, x, y in X, where the operatorD(a, b) : X → X is defined by
D(a, b)(x) := {abx} for all x in X.

ii) For everyx in X, D(x, x) is hermitian with non negative spectrum and satisfies
‖ D(x, x) ‖=‖ x ‖2.

JB∗-triples, introduced by W. Kaup [24], are of capital importance in complex
Analysis because their open unit balls are bounded symmetric domains, and every
bounded symmetric domain in a complex Banach space is biholomorphically equiv-
alent to the open unit ball of a suitableJB∗-triple [25]. Every complex Hilbert space
is aJB∗-triple under the triple product defined by{xyz} := 1

2((x | y)z+ (z | y)x).
Now, it seems reasonable to raise the following problem.

Problem 2.1.If X is aJB∗-triple, and if the norm ofX is transitive, isX a Hilbert
space?

A JBW ∗-triple is aJB∗-triple having a (complete) predual. Such a predual
is unique [2] in the strongest sense of the word: two preduals of aJBW ∗-triple
X coincide when they are canonically regarded as subspaces of the dualX∗ of X.
JBW ∗-triples are very abundant: the bidual of everyJB∗-triple X is a JBW ∗-
triple under a suitable triple product which extends the one ofX [14]. The fact that
every complex Hilbert space is the predual of aJBW ∗-triple could invite us to
consider the following question.

Question 2.2.If X is the predual of aJBW ∗-triple, and if the norm ofX is transitive,
is X a Hilbert space?

Contrarily to what happens in relation to Problem 2.1 (which, as far as we
know, remains unanswered), it is known that, without additional assumptions, the
answer to Question 2.2 can be negative. To explain our assertion by an example,
let us recall that everyC∗-algebra is aJB∗-triple under the triple product{xyz} :=
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1
2(xy∗z + zy∗x). As a consequence, the classical Banach spacesC0(L) (of all
continuous complex-valued functions which vanish at infinity on a locally compact
Hausdorff topological spaceL) andL∞(0, µ) (of all essentially bounded locally
µ-measurable complex-valued functions on a localizable measure space(0, µ)) are
JB∗-triples andJBW ∗-triples, respectively, in a natural way. The easiest known
counter-example to Question 2.2 is the following (see [31; Proposition 9.6.7] and
[19]). Let 0 be the disjoint union of an uncountable family of copies of the closed
real interval[0, 1], and letµ be the measure on0 whose measurable sets are those
subsetsA of 0 whose intersection with each such copy is measurable relative to the
Lebesgue measure, withµ(A) equal to the sum of the measures of that intersections.
Then the Banach spaceX := L1(0, µ) is the predual of aJBW ∗-triple, is not a
Hilbert space, and has transitive norm.

The following lemma becomes a common tool to provide partial affirmative
answers to Problem 2.1 and Question 2.2.

Lemma 2.3. Let X be a JB∗-triple such that for all x in X the equality
{xxx} =‖ x ‖2 x holds. ThenX is a Hilbert space.

Proof. It is enough to show that the square of the norm ofX is a real-quadratic
mapping, a fact that is shown to be true by arguing as in the proof of [30; Lemma 1].
ut

Recall that the Banach spaceX is said to be smooth at a pointe of S if there
is a uniquef in S(X∗) satisfyingf (e) = 1, and thatX is called smooth if it is
smooth at every point ofS. Note that, ifL is a locally compact Hausdorff topological
space, and ifC0(L) is smooth, thenL is a singleton (otherwise, by Uryson’s lemma,
C0(L) would contain an isometric copy of the non-smooth complex Banach space
`2∞). Now let X be aJB∗-triple. Since, fore in S, the smallest closed subtriple
of X containinge is isometrically isomorphic to aJB∗-triple of the formC0(L)

for someL as above [24], it follows that, ifX is smooth, then every elemente in
S is a tripotent (i.e.,{eee} = e), and therefore the equality{xxx} =‖ x ‖2 x is
true for everyx in X. In this way, by applying Lemma 2.3, we re-encounter the
known result [35] that complex Hilbert spaces are nothing but smoothJB∗-triples.
Then, as noticed also in [35], Mazur’s theorem on the abundance of smooth points
in every separable Banach space (see for instance [31; Proposition 9.4.3]) implies
that separableJB∗-triples with transitive norm are Hilbert spaces (a joint partial
affirmative answer to Problems 1.1 and 2.1). These results in [35] will be improved
in Sect. 3 (see Corollaries 3.5 and 3.6).

Now assume thatX is the predual of aJBW ∗-triple. Given an elemente in S,
among the elementsf in S(X∗) satisfyingf (e) = 1 we can find tripotents ofX∗
(for instance, the so-called support ofe [18; p. 75]). It follows that, ifX is smooth,
then every element inS(X∗) which attains its norm is a tripotent. Since the norm
attaining elements ofS(X∗) are dense inS(X∗) (by the Bishop-Phelps theorem [4;
p. 7]), and the set of all tripotents ofX∗ is closed inX∗, we actually have that, if
X is smooth, then every element inS(X∗) is a tripotent. Now Lemma 2.3 gives
us the following geometric characterization of complex Hilbert spaces among the
preduals ofJBW ∗-triples.



Transitivity of the norm on Banach spaces 115

Proposition 2.4.LetX be the predual of aJBW ∗-triple. If X is smooth, thenX is
a Hilbert space.

Proposition 2.4 provides us with the following joint partial affirmative answer
to Problem 1.1 and Question 2.2.

Corollary 2.5. Let X be the predual of aJBW ∗-triple. If X is separable, and if
the norm ofX is transitive, thenX is a Hilbert space.

Recall that the norm of the Banach spaceX is called almost transitive if there
exists a dense subsetD of S such that, for everyx, y in D, we can findF in G
satisfyingF(x) = y. It is well-known and easy to see that the norm ofX is almost-
transitive if and only if, for everye in S the orbitG(e) := {F(e) : F ∈ G} is
dense inS. Now assume thatX is aJB∗-triple. Since elements ofG preserve the
triple product ofX [24; Proposition 5.4], it follows from Lemma 2.3 that, ifX has
a non-zero tripotent, and if the norm ofX is almost transitive, thenX is a Hilbert
space. As a consequence, we have the following affirmative answer to a natural
variant of Problem 2.1.

Corollary 2.6. Let X be aJBW ∗-triple with almost transitive norm. ThenX is a
Hilbert space.

As happens in relation to every mathematical problem which seems to be diffi-
cult to answer, it would be convenient to provide us with some non trivial reformu-
lations of Problem 2.1. We will obtain such reformulations as a consequence of the
following theorem of F. Cabello. Given a subcategoryJ of Banach spaces (see [33;
p.161, Definition 9.13]), aJ -space will mean an object ofJ , and aJ -subspace
of aJ -spaceX will be a closed subspaceY of X which is aJ -space such that the
inclusionY ↪→ X is aJ -morphism.

Theorem 2.7.[8] Let J be a subcategory of Banach spaces satisfying the following
two conditions:

a) Given aJ -spaceX and a separable subspaceZ of X, there is aJ -subspace of
X which is separable and containsZ.

b) Given aJ -spaceX and an increasing sequence{Yn} of J -subspaces ofX, the
closure of∪n∈NYn in X is aJ -space.

Then there exists a non-Hilbert separableJ -space with almost transitive norm
whenever there is some non-HilbertJ -space with transitive norm.

The fact pointed out above that one-generated closed subtriples of aJB∗-triple
areJB∗-triples leads easily to see that all closed subtriples of aJB∗-triple also are
JB∗-triples. This well-known result is the key tool in verifying that, ifJ denotes
the category ofJB∗-triples, thenJ satisfies conditions a) and b) in Theorem 2.7.
On the other hand, the class ofJB∗-triples is closed under ultraproducts [14], and
it is folklore that, if a Banach spaceX has almost transitive norm, then every non
trivial (Banach) ultraproduct ofX has transitive norm (see for instance [19; Remark,
p. 479]). Therefore we have
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Proposition 2.8.The following assertions are equivalent:

i) EveryJB∗-triple with transitive norm is a Hilbert space.
ii) EveryJB∗-triple with almost transitive norm is a Hilbert space.
iii) Every separableJB∗-triple with almost transitive norm is a Hilbert space.

3. Transitivity conditions on the norm of JB∗-triples: the main results

In this section we will provide affirmative answers to natural variants of Question
2.2: we will assume that the Banach spaceX in that question is in fact the predual
of an “atomic”JBW ∗-triple, but the requirement that the norm ofX is transitive
will be substantially relaxed. Recall that the norm of the Banach spaceX is called
convex transitive if for everye in S we havecoG(e) = B, whereco means closed
convex hull.

Theorem 3.1.Let X be the predual of aJBW ∗-triple. Assume thatB has some
extreme point, and that the norm ofX is convex transitive. ThenX is a Hilbert
space.

Proof. The convex transitivity of the norm ofX and the existence of extreme points
of B imply that X is the closed linear hull of the set of all extreme points inB,
i.e., theJBW ∗-triple X∗ is (purely) atomic. Then, by [18; Lemma 2.11] there
exists a contractive conjugate-linear mappingπ : X → X∗ whose value at each
extreme pointe of B is the supports(e) of e. From the obvious uniqueness of
such a mappingπ it follows that, forF in G, we haveπ ◦ F = (F ∗)−1 ◦ π . As a
consequence, the equivalent norm. on X defined by x :=‖ x ‖ + ‖ π(x) ‖
satisfies F(x) = x for all x in X andF in G. Since the norm ofX is convex
transitive, it follows from [12; Theorem 5] that. is a positive multiple of‖ . ‖
on X, and therefore we have‖ x ‖=‖ π(x) ‖ for all x in X. On the other hand,
by [18; Remark 2.8 and the proof of Theorem 1], for everyx in X there exist
(possibly finite) sequences{λn} of positive numbers and{en} of extreme points of
B such that‖ x ‖ = ∑

n λn , the tripotentss(en) are pair-wise orthogonal
(i.e., D(s(en), s(em)) = 0 whenevern 6= m), andx = ∑

n λnen (conditions
which imply ‖ π(x) ‖ = Maxn{λn}). Since we proved thatπ is an isometry, it
follows that every element inS must be an extreme point ofB. Therefore we have
{π(x)π(x)π(x)} =‖ x ‖2 π(x) for all x in X, soπ(X) is aJB∗-subtriple ofX∗
(by polarization law [7; p. 251]), and Lemma 2.3 applies.ut

It follows from Theorem 3.1 that, ifX is aJB∗-triple, and if the norm ofX∗ is
convex transitive, thenX is a Hilbert space. Recall that a subsetR of a topological
spaceT is said to be rare inT if the interior of the closure ofR in T is empty.

Theorem 3.2.Let X be the predual of aJBW ∗-triple. Assume that there exists
some non rare set inS consisting only of extreme points ofB. ThenX is a Hilbert
space.
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Proof. The assumption onX implies that theJBW ∗-triple X∗ is atomic. Letπ
be the contractive conjugate-linear mapping fromX to X∗ introduced in the proof
of Theorem 3.1. As we have seen there, givene in S, e is an extreme point ofB
if (and only if) ‖ π(e) ‖= 1. Therefore the setU of all extreme points ofB is
closed inS. Using again the assumption onX, it follows that there existse in S

and 0 < ε < 1 such thatx lies in U wheneverx is in S and‖ x − e ‖< ε.
Let x be inS with ‖ x − e ‖< ε. Thenπ(x) andπ(e) are non orthogonal (since
‖ π(x) − π(e) ‖< 1) minimal tripotents inX∗ (sincex ande are extreme points
of B and [18; Proposition 4] applies). Therefore, by [18; Corollary 2.5 and Lemma
1.1], there existsG in G(X∗) satisfyingG(π(x)) = π(e). Since elements inG(X∗)
arew∗-continuous (a consequence of the uniqueness of the predual ofX∗), we have
G = F ∗ for someF in G, so

π(e) = G(π(x)) = F ∗(π(x)) = π(F−1(x)),

and sox = F(e) (sinceπ is injective). In this way we have shown thatG(e)

contains the set{x ∈ S : ‖ x − e ‖< ε}. Now let x be an arbitrary element
in S. We can find a finite sequencex0, x1, ..., xn in S with x0 = e, xn = x, and
‖ xi − xi−1 ‖< ε for all i = 1, ..., n. Putk := max{i ∈ {1, ..., n} : xi ∈ G(e)}. If
x does not belong toG(e), then we havek < n, there existsF in G with F(xk) = e,
so‖ F(xk+1) − e ‖< ε, and soxk+1 belongs toG(e), a contradiction. Therefore
S = G(e), hence the norm ofX is transitive, and Theorem 3.1 applies.ut

Either from Theorem 3.1 or Theorem 3.2 it follows that, ifX is the predual of a
JBW ∗-triple, if the norm ofX is almost transitive, and ifB has extreme points, then
X is a Hilbert space. We conclude this section with some corollaries to Theorems
3.1 and 3.2. The first one is a direct consequence of Theorem 3.1 and the following
lemma.

Lemma 3.3.Let X be the predual of aJBW ∗-triple. If X∗ has convex transitive
norm, thenX has convex transitive norm too.

Proof. As observed in [12; Lemma 4], a Banach spaceE has convex transitive
norm if and only if, for everye in S(E) andf in S(E∗), we have

sup{| f (F (e)) | : F ∈ G(E)} = 1.

Now, the convex transitivity of the norm ofX∗ implies

sup{| G(f )(e) |: G ∈ G(X∗)} = 1

for everye in S(X) andf in S(X∗). Since elements inG(X∗) are nothing but those
of the formF ∗ for someF in G, we obtain

sup{| f (F (e)) |: F ∈ G} = 1

for everye in S(X) andf in S(X∗), hence the norm ofX is convex transitive. ut
Corollary 3.4. LetX be an atomicJBW ∗-triple with convex transitive norm. Then
X is a Hilbert space.
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As a consequence, ifX is a complex Banach space, and ifX∗∗ is a JB∗-triple
with convex transitive norm, thenX is a Hilbert space. The fact thatL∞([0, 1]) has
convex transitive norm [36] shows that neither the assumption of almost transitivity
of the norm ofX in Corollary 2.6 can be relaxed to that of convex transitivity nor
the assumption thatX is atomic in Corollary 3.4 can be removed.

Corollary 3.5. Assume that the Banach spaceX is smooth and thatX∗∗ is aJB∗-
triple. ThenX is a Hilbert space.

Proof. The assumption thatX is smooth implies that every element inS(X∗) which
attains its norm is an extreme point ofB(X∗). By the Bishop-Phelps theorem and
Theorem 3.2,X∗ is a Hilbert space. ut
Corollary 3.6. Assume that the Banach spaceX is separable, that the norm ofX
is transitive, and thatX∗∗ is aJB∗-triple. ThenX is a Hilbert space.

As commented at the beginning of Sect. 2, Corollaries 3.5 and 3.6 above extend
the results proved in [35] forJB∗-triples to the more general setting of complex
Banach spaces whose biduals areJB∗-triples. In Corollary 3.9 below we will
provide further information about the transitivity of the norm on such spaces. For
the moment, letX be an arbitrary Banach space. Fore in X, we putρ(X, e) :=
max{ρ ≥ 0 : ρB ⊆ coG(e)}.
Lemma 3.7.The functionρ(X, .) is continuous on X. More precisely, foru andv

in X, we have| ρ(X, u) − ρ(X, v) |≤‖ u − v ‖.

Proof. Let u, v be in X. Forf in S(X∗), we have

ρ(X, u) ≤ sup{Re[f (F (u))] : F ∈ G} ≤‖ u− v ‖ + sup{Re[f (F (v))] : F ∈ G},
and hence

ρ(X, u) ≤‖ u − v ‖ + inf { sup{Re[f (F (v))] : F ∈ G} : f ∈ S(X∗) }.
But, by the Hahn–Banach separation theorem, the equality

ρ(X, v) = inf {sup{Re[f (F (v))] : F ∈ G} : f ∈ S(X∗)}
holds. It follows| ρ(X, u) − ρ(X, v) |≤‖ u − v ‖. ut
Proposition 3.8.Assume that the norm ofX is transitive, and that every element
in B(X∗∗) is thew∗-limit of a sequence of elements of B. Then the norm ofX∗ is
convex transitive.

Proof. Let f be an element inS(X∗) which attains its norm. By the transitivity of
the norm ofX, for everyx in S, there existsg in the set{F ∗(f ) : F ∈ G} such that
g attains its norm atx. Now, the remaining assumption onX, together with [13;
Lemma I.5.10], leads toco{F ∗(f ) : F ∈ G} = B(X∗), socoG(X∗)(f ) = B(X∗),
and soρ(X∗, f ) = 1. By the Bishop-Phelps theorem and Lemma 3.7, we actually
haveρ(X∗, g) = 1 for everyg in S(X∗), i.e., the norm ofX∗ is convex transitive.
ut
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Corollary 3.9. Assume that the norm ofX is transitive, thatX∗∗ is a JB∗-triple,
and that every element inB(X∗∗) is thew∗-limit of a sequence of elements of B.
ThenX is a Hilbert space.

Proof. Apply Proposition 3.8 and Theorem 3.1.ut
Banach spaces whose biduals areJB∗-triples have been systematically studied in
[17] (see also [11]). However, we have not found in the literature any example
showing that the enlargement of the class ofJB∗-triples provided by such spaces
is strict. In what follows we give such an example.

Example 3.10.Let Y be theC∗-algebra of all compact operators on an infinite-
dimensional complex Hilbert space, so thatY is anM-embedded Banach space [22;
Example III.1.4.(f)] in the sense of [22; Definition III.1.1.(a)]. By [22; Proposition
III.2.10.(b)], there exists a complex Banach spaceX and a surjective linear isometry
F : X∗ → Y ∗ which is not the transpose of a linear isometry fromY ontoX. We
claim thatX cannot be linearly isometric toY . Indeed, ifX is linearly isometric
to Y , thenX is anM-embedded Banach space, and we can argue as in the proof
of [22; Proposition III.2.2] to obtain thatF ∗ = G∗∗ for some linear isometryG
from Y onto X, and henceF = G∗, a contradiction. Now, the situation is that
Y is aJB∗-triple, Y ∗∗ is a Cartan factor,X∗∗ is linearly isometric toY ∗∗, but X
is not linearly isometric toY . It follows from [6; Lemma 3.2] thatX cannot be a
JB∗-triple.

The argument in the above example actually shows that, for every non reflexive
Cartan factorZ, there exists a complex Banach spaceX which is not aJB∗-triple
and satisfiesX∗∗ = Z. Given a non negative integer numbern, we could consider
the classJn of complex Banach spaces whosen-th dual is aJB∗-triple, obtaining in
such a way increasing sequences{J2p−2}p≥1 and{J2p−1}p≥1 of classes of Banach
spaces whose first terms are the one ofJB∗-triples and that of preduals ofJBW ∗-
triples, respectively. However, since for every Banach spaceX, X∗ is the range of
a contractive projection onX∗∗∗, and the class ofJB∗-triples is closed by passing
to ranges of contractive projections ([26], [34]), it follows from Example 3.7 that
the actual situation is the following:

J0 ⊂ J2 = J4 = ... = J2p = ... and J1 = J3 = . . . = J2p−1 = ... .

Therefore, as we have done along this paper, among the classesJn , onlyJ0 , J1 ,
andJ2 deserve to be considered.

4. Transitivity conditions on the norm of C∗-algebras

The results obtained in Sections 2 and 3 forJB∗-triples automatically get a stronger
form when they are applied toC∗-algebras. The reason lies in the folklore fact
that C is the uniqueC∗-algebra whoseC∗-norm derives from an inner product.
(Indeed, from the continuous functional calculus for a single self-adjoint element
of aC∗-algebra, it follows that, ifX is a smoothC∗-algebra, then every norm-one
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elemente in the self-adjoint partXsa of X satisfies eithere2 = e or e2 = −e,
which implies thatS(Xsa) is disconnected, and hence the real Banach spaceXsa is
one-dimensional.) By the folklore result just mentioned, an affirmative answer to
Problem 2.1 would imply the verification of Wood’s conjecture [36] that, ifL is a
locally compact Hausdorff topological space such thatC0(L) has transitive norm,
thenL is a singleton. Actually, if Problem 2.1 had an affirmative answer, then the
natural conjecture thatC is the unique (non necessarily commutative)C∗-algebra
with transitive norm would be right.We note also that the categoryJ of C∗-algebras
is closed under ultraproducts and satisfies conditions a) and b) in Theorem 2.7.

Let us say that aC∗-algebra is proper whenever it is different fromC. It follows
from the above comments that the existence of a properC∗-algebra with transitive
norm is equivalent to the existence of a properC∗-algebra with almost transitive
norm, and implies the existence of a separable properC∗-algebra with almost tran-
sitive norm. Accordingly to previous comments in Sect. 2, a properC∗-algebra
with transitive norm must be non separable, and a properC∗-algebra with almost
transitive norm cannot have non-zero self-adjoint idempotents. In the next proposi-
tion we characterize the transitivity of the norm of aC∗-algebra in purely algebraic
terms. Such a characterization will follow from the Kadison-Paterson-Sinclair de-
termination of surjective linear isometries onC∗-algebras [28], and becomes the
non-commutative generalization of [20; Proposition 4.2]. The reader is referred to
the books [15], [29], and [32] for basic results in the theory ofC∗-algebras.

Let X be aC∗-algebra, and letM(X) denote theC∗-algebra of multipliers of
X. The so called Jordan∗-automorphisms ofX, as well as the operators of left
multiplication onX by unitary elements inM(X), become distinguished examples
of surjective linear isometries onX. Jordan∗-automorphisms ofX are nothing
but linear bijections fromX to X preserving theC∗-involution and the squares.
Consequently, ifPos(X) denotes the set of all positive elements inX, and ifF is
a Jordan∗-automorphism ofX, then we haveF(S ∩ Pos(X)) = S ∩ Pos(X). Let
us denote byU the set of all unitary elements ofM(X), and byG+ the group of
all Jordan∗-automorphisms ofX. The Kadison-Paterson-Sinclair theorem asserts
that every surjective linear isometry onX is the composition of an element ofG+
with the operator of left multiplication by an element ofU . The modulus| x | of
an elementx of X is defined as the unique positive square root ofx∗x.

Proposition 4.1.LetX be aC∗-algebra. Then the following assertions are equiv-
alent:

i) The norm ofX is transitive.
ii) G+ acts transitively onS ∩ Pos(X), and every elementx in X has a “polar

decomposition”x = u | x |, whereu is in U .

Proof. Assume that the norm ofX is transitive. Then, forp, q in the setS∩Pos(X)

there existF in G+ andv in U such thatq1/2 = vF (p1/2), and hence we have
q = F(p1/2)v∗vF (p1/2) = (F (p1/2))2 = F(p). ThereforeG+ acts transitively
on S ∩ Pos(X). On the other hand, for everyx in S we can findG in G+ and
u in U such thatx = uG(x∗x), which impliesx∗x = (G(x∗x))2, and hence
G(x∗x) =| x |. Now assume that assertion ii) holds. Forx, y in S, we can write
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x = u | x | andy = v | y | for suitable elementsu, v in U , and there existsF in
G+ such thatF(| x |) =| y |. Then the mappingG : z → vF (u∗z) from X to X is
a surjective linear isometry satisfyingG(x) = y. ut

Now, we pass to provide a characterization ofC∗-algebras with convex transitive
norm, which extends the one in [36; Theorem 3.3] for the commutative case. LetX

be aW ∗-algebra. It is well-known that the predualX∗ of X is anX-bimodule in a
natural way. Indeed, ifv belongs toX, and ifg is in X∗ , then it is enough to define
vg andgv as the (automaticallyw∗-continuous) linear functionals onX given by
(vg)(x) := g(xv) and(gv)(x) := g(vx), respectively, for allx in X.

Lemma 4.2.LetX be aC∗-algebra. Then the set

{uf : f ∈ Pos(X∗) ∩ S(X∗), u ∈ U}
is norm-dense inS(X∗).

Proof. Let h be inS(X∗), and let 0< ε < 2. SinceB(M(X)) is the closed convex
hull of U (by the Russo-Dye theorem [4; Theorem 30.2]), there existsv in U

such that| 1 − h(v) |< ε2

16. By the Bishop-Phelps-Bollobás theorem [4; Theorem
16.1], there are elementsx andg in S(X∗∗) andS(X∗), respectively, satisfying
‖ x − v ‖< ε

2, ‖ g − h ‖< ε
2, andg(x) = 1. Putu := v∗ andf := xg. Then

u belongs toU , f belongs toPos(X∗) ∩ S(X∗) (because, if1 denotes the unit of
X∗∗, then 1= g(x) = (xg)(1) = f (1) ≤‖ f ‖= =‖ xg ‖≤‖ x ‖‖ g ‖= 1), and

‖ h − uf ‖≤‖ h − x∗f ‖ + ‖ (x∗ − u)f ‖=‖ h − g ‖ + ‖ (x∗ − u)f ‖
≤‖ h − g ‖ + ‖ x∗ − u ‖=‖ h − g ‖ + ‖ x − v ‖< ε. ut

LetX be aC∗-algebra.The extreme points of thew∗-compact convex setPos(X∗)∩
B(X∗) are zero and the so called (normalized) pure states ofX. It is well-known
that pure states ofX are extreme points ofB(X∗).

Theorem 4.3.Let X be aC∗-algebra. ThenX has convex transitive norm if and
only if, for every pure stateg of X and every norm-one positive linear functional
f onX, g belongs to thew∗-closure inX∗ of the set{F ∗(f ) : F ∈ G+}.
Proof. Assume thatX has convex transitive norm. Then, by the Hahn-Banach
theorem, for everyϕ in S(X∗) the equality

B(X∗) = w∗
co{G∗(ϕ) : G ∈ G}

holds. Letg be a pure state ofX, andf a norm-one positive linear functional
on X. It follows from [3; Theorem 36.10] thatg belongs to thew∗-closure of
{G∗(f ) : G ∈ G}. Therefore there exist nets{uα} and {Fα} in U and G+,
respectively, such that{f (uαFα(x))} → g(x) for all x in X. Let h be aw∗-cluster
point in B(X∗) of the net{F ∗

α (f )}. To prove thatg belongs to thew∗-closure of
the set{F ∗(f ) : F ∈ G+} it is enough to show thath = g. Let x = x∗ be inX.
Then, by the Cauchy-Schwarz inequality, we have

| f (uαFα(x)) |2≤ f (u∗
αuα)f (Fα(x)2) = f (1)f (Fα(x2)) = F ∗

α (f )(x2) ,
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and henceg(x)2 ≤ h(x2). Note that this inequality implies‖ h ‖= 1. Let {xλ} be
an increasing approximate unit forX bounded by one. Then{xλ} converges to1 in
thew∗-topology ofX∗∗, so 0≤ h((1−xλ)

2) ≤ h(1−xλ)→0, and soh(x2
λ) → 1.

Now, for ρ in R, we have

ρ2 + 2ρg(x) + g(x)2 = lim{g(ρxλ + x)2}

≤ lim{h((ρxλ + x)2)} = ρ2 + 2ρh(x) + h(x2) ,

and therefore 2ρ(g(x)−h(x)) ≤ h(x2)−g(x)2. Sinceρ is arbitrary inR, it follows
g(x) − h(x) = 0, and henceh = g, as required.

Now assume that, for every pure stateg of X and everyf in the setPos(X∗)∩
S(X∗), g belongs to thew∗-closure of{F ∗(f ) :F ∈G+}. Let . be an equivalent
norm on (the Banach space of)X such thatG ⊆ G(X, . ). Then, forg andf as
above, the dual norm. is constant on{F ∗(f ) : F ∈ G+}, so that our assumption
implies g ≤ f . As a consequence,. is constant (say equal toM) on the set of
pure states ofX. Now, for everyf in Pos(X∗) ∩ S(X∗), the inequalityM ≤ f

holds. But the converse inequality is also true because the set{h ∈ X∗ : h ≤ M}
is w∗-closed and convex and contains all extreme points ofB(X∗)∩Pos(X∗), and
hence, by the Krein-Milman theorem, it also containsB(X∗) ∩ Pos(X∗). Since,
for u in U , the mappingG : x → xu from X to X is an element ofG, for every
f in Pos(X∗) ∩ S(X∗) we have uf = G∗(f ) = f = M. It follows from
Lemma 4.2 that the dual norm. is constant onS(X∗). Therefore the norm. on
X is a positive multiple of the original norm. Finally, the convex transitivity of the
norm ofX follows from the already applied result in [12; Theorem 5].ut

Our concluding goal in this section is to prove that the Calkin algebra [10] has
convex transitive norm. As far as we know, this becomes the first known example
of a non commutativeC∗-algebra whose norm is convex transitive. We recall that
the Calkin algebra is defined as the quotientL(H)/K(H), whereH is an infinite-
dimensional separable complex Hilbert space,L(H) denotes theC∗-algebra of all
bounded linear operators onH , andK(H) stands for the closed ideal ofL(H)

consisting of all compact operators onH .

Lemma 4.4.Let X be aC∗-algebra, letx be inX, and lety, z be inB(M(X)).
Then yxz belongs to the closed convex hull ofG(x).

Proof. The set{t ∈ M(X) : tx ∈ coG(x)} is closed and convex inM(X), and
containsU . By the Russo-Dye theorem, it also containsy. Now the closed convex
set{t ∈ M(X) : yxt ∈ coG(x)} containsU , hence it containsz. ut

In what followsH will denote an infinite-dimensional separable complex Hilbert
space. Forx in L(H), we put‖ x ‖ess :=‖ x + K(H) ‖.

Theorem 4.5.LetX denote theC∗-algebraL(H), and letx be in S. ThencoG(x) =
B if and only if‖ x ‖ess= 1.
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Proof. Let π be a self-adjoint idempotent inX whose range is an infinite-dimen-
sional subspace ofH . Then there existsu in X satisfyingu∗u = 1 anduu∗ = π ,
and hence1 = u∗πu. By Lemma 4.4,1 belongs tocoG(π), and, sinceB = coG(1)

(by the Russo-Dye theorem), we actually haveB = coG(π).
Now, let x be inS ∩ Pos(X) such that‖ x ‖ess= 1. Let 0 < ε < 1. By the

spectral decomposition forx (see for instance [21; Proposition 4.2.3]), there are pair-
wise orthogonal self-adjoint idempotentsπ1, ..., πn inX and real numbersλ1, ..., λn

such that‖ x − ∑n
i=1 λiπi ‖ ≤ ε . We may assume that there exists a positive

integerk ≤ n such thatπ1, ..., πk have infinite-dimensional range,πk+1, ..., πn

have finite-dimensional range, and| λ1 |≥| λj | for all j = 2, ..., k . Then we have

| λ1 |=‖
k∑

i=1

λiπi ‖≥‖ x −
n∑

i=k+1

λiπi ‖ − ‖ x −
n∑

i=1

λiπi ‖

≥ ‖ x ‖ess − ε = 1 − ε.

On the other hand, if we putv := ∑n
i=1 λiπi , then we haveπ1v = λ1π1 , hence,

by Lemma 4.4,λ1π1 belongs tocoG(v). By the first paragraph in the proof, the
inclusionλ1B ⊆ coG(v) holds. With the notation before Lemma 3.7, this means
ρ(X, v) ≥| λ1 |. It follows from Lemma 3.7 that

ρ(X, x) ≥ ρ(X, v)− ‖ x − v ‖≥| λ1 | −ε ≥ 1 − 2ε.

By letting ε → 0, we obtainρ(X, x) = 1, i.e.,B = coG(x).
Now, let x be inS such that‖ x ‖ess= 1. Thenx∗x lies in S ∩ Pos(X) and

‖ x∗x ‖ess= 1. By the second paragraph in the proof, we haveB = coG(x∗x),
and, by Lemma 4.4, alsoB = coG(x). This concludes the proof of the “if” part in
the theorem.

To prove the “only if” part, first note thatK(H) is aG-invariant subspace ofX
(see for instance [22; Proposition III.2.2]), so that, ifY denotes the Calkin algebra,
and ifP : X → Y is the quotient mapping, then everyF in G gives rise to an element
F̂ in G(Y ) satisfyingP ◦ F = F̂ ◦ P . Then it follows easily that, ifx is in S, and if
B = coG(x), thenB(Y ) ⊆ coG(Y )(P (x)), and therefore‖ x ‖ess=‖ P(x) ‖= 1.
ut
Corollary 4.6. The Calkin algebra has convex transitive norm.

Proof. Let us take the notation in Theorem 4.5 and its proof. Lety be in S(Y ).
SinceK(H) is proximinal inX [22; Proposition II.1.1], there existsx in S such
thatP(x) = y, and therefore‖ x ‖ess= 1. By Theorem 4.5, for such anx we have
B = coG(x). Finally, sinceK(H) is G-invariant, the equalityB(Y ) = coG(Y )(y)

holds. ut

5. Transitivity conditions on the norm of JB-algebras

JB-algebras are defined as those Jordan-Banach real algebrasX satisfying
‖ x ‖2≤ ‖ x2 + y2 ‖ for all x, y in X. A natural example of aJB-algebra is



124 J. Becerra Guerrero, A. Rodriguez Palacios

the Banach spaceX of all self-adjoint operators on a complex Hilbert space, when
we define the Jordan productx.y of elementsx, y in X asx.y := 1

2(xy + yx).
Other examples are provided by the real Banach algebrasCR

0 (L), with L a lo-
cally compact Hausdorff topological space. Actually these last Banach algebras are
the unique associativeJB-algebras [21; 3.2.2].JB-algebras are closely related to
JB∗-triples. Indeed, ifX is aJB-algebra, and if we define a triple product onX

by {xyz} := (x.y).z+ (y.z).x − (x.z).y, then(X, {...}) can be regarded as a closed
real subtriple of a suitableJB∗-triple (cf. [21; 3.3.9], [37], and [5]).

Let X be aJB-algebra with a unit1. If u is an element inX satisfyingu2 = 1,
then we say thatu is a symmetry inX. Central symmetries inX are characterized
as the isolated points of the set of all extreme points ofB [23; Proposition 1.3]. It
follows that the orbitG(1) is contained in the centre ofX. Therefore we have

Proposition 5.1.LetX be aJB-algebra with a unit1. If the linear hull ofG(1) is
dense inX (for instance, if the norm ofX is convex transitive), thenX is associative.

JBW -algebras (see [21; 4.1.1] for a definition) can actually be characterized
as thoseJB-algebras which are Banach dual spaces [21; 4.4.16]. IfX is aJBW -
algebra, thenX has a unit [21; 4.1.7], and the product ofX is separatelyw∗-
continuous [21; 4.4.16 and 4.1.6].

Proposition 5.2.LetX be the predual of aJBW -algebra. IfX has no non trivial
G-invariant closed subspaces (for instance, if the norm ofX is convex transitive),
thenX∗ is associative.

Proof. Assume thatX∗ is not associative. Then, denoting by1 the unit ofX∗, the
linear hull ofG(X∗)(1) is notw∗-dense inX∗. Therefore there exists a non-zero
elementx in X such that(G(X∗)(1)(x) = 0. As a consequence, for everyF in
G we have1(F (x)) = 0, and hence the closed linear hull ofG(x) is a non trivial
G-invariant closed subspace ofX. ut

LetX be aJB-algebra. Then the bidualX∗∗ of X is aJBW -algebra containing
X as a subalgebra [21; 4.4.3], and the set

M(X) := {z ∈ X∗∗ : z.X ⊆ X}
is a subalgebra ofX∗∗ [16] called the multiplier algebra ofX. According to the
Kadison type theorem in [23], every surjective linear isometry onX is the compo-
sition of an algebra automorphism ofX with the operator of multiplication by a
central symmetry inM(X). Recall that an elementx in X is said to be positive if
there existsy in X such thaty2 = x.

Theorem 5.3.LetX be aJB-algebra. If there exists a norm-one positive element
p in X such that the convex hull ofG(p) is dense inB (for instance, if the norm of
X is convex transitive), thenX is associative.

Proof. Recall that aJBW -factor is aJBW -algebra with no non trivial central
idempotents, and that a factor representation ofX is an algebra homomorphism
from X to someJBW -factorY , whose range isw∗-dense inY . Assume that there
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exists some norm-one positive elementp in X such thatcoG(p) = B. Since the
family of all factor representations ofX is faithful [21; 4.6.4], to prove thatX
is associative it is enough to show that every factor representation ofX has 1-
dimensinal range. Let8 : X → Y be such a factor representation. By [21; 4.6.2],
we may assume thatY is equal toe.X∗∗ for some minimal central idempotent in
X∗∗, and that8 is nothing but the mappingx → e.x . Letx be inG(p). Then there
exists an algebra automorphismF of X and a central symmetryu in M(X) such
thatx = u.F (p), and hencex = u.q for some norm-one positive elementq in X.
Now 1

2(1 + u) is a central idempotent inX∗∗, so that, sincee is a minimal central
idempotent inX∗∗, we have either(1+u).e = 0 or(1+u).e = 2e, and hence either
8(x) = −e.q or 8(x) = e.q . Sincex is arbitrary inG(p), the above shows that,
if P denotes the set of all positive elements inB(Y ), then8(G(p)) is contained in
P ∪ (−P). SinceP is convex andw∗-compact,co(P ∪ (−P)) is w∗-compact and
hence norm-closed inY . SincecoG(p) = B, it follows that8(B) is contained in
co(P ∪ (−P)). By [21; 3.4.2 and 3.4.3], fory in 8(X) with ‖ y ‖< 1 there exists
x in X satisfying‖ x ‖< 1 and8(x) = y, and therefore the closed unit ball of
8(X) is contained inco(P ∪ (−P)). Since8(X) is w∗-dense inY , we may apply
the Kaplansky density theorem [21; 4.5.12] to obtain thatco(P ∪ (−P)) = B(Y ).
As a consequence, ifz is an extreme point ofB(Y ), thenz lies inP ∪ (−P). Since
such az is a symmetry inY (= e.X∗∗) [23; Lemma 1.2], we have that eitherz = e

or z = −e. It follows from the Krein-Milman theorem thatY = Re. ut
It has been proved recently that, ifL is a locally compact Hausdorff topological

space, and ifCR
0 (L) has almost transitive norm, thenL is a singleton [20; Theorem

3.1]. Therefore we have

Corollary 5.4. R is the uniqueJB-algebra with almost transitive norm.

It follows from Theorem 5.3 and Proposition 5.2 that the question of convex tran-
sitivity of the norm onJB-algebras and preduals ofJBW -algebras reduces to
the consideration of a similar question on the classical Banach spacesCR

0 (L) (for
locally compact Hausdorff topological spacesL) andLR

1 (0, µ) (for localizable
measure spaces(0, µ)), respectively. The reader is referred to [36] for theCR

0 (L)

case. As far as we know, the convex transitivity of the norm forLR
1 (0, µ) spaces

has not been systematically studied. For the particular case of the almost transitivity
of the norm on such spaces, the reader is referred to [19].
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