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Abstract

We prove that a complex Banach space X is a Hilbert space if (and only if) the Banach
algebra L(X) (of all bounded linear operator on X ) is unitary and there exists a conjugate-
linear algebra involution • on L(X) satisfying T • = T −1 for every surjective linear iso-
metry T on X . Appropriate variants for real spaces of the result just quoted are also proven.
Moreover, we show that a real Banach space X is a Hilbert space if and only if it is a real
J B∗-triple and L(X) is w′

op-unitary, where w′
op stands for the dual weak-operator topology.

1. Introduction

Unitary elements of a norm-unital normed (associative) algebra A are defined as those
invertible elements u of A satisfying ‖u‖ = ‖u−1‖ = 1. By a unitary normed algebra we
mean a norm-unital normed algebra A such that the convex hull of the set of its unitary
elements is norm-dense in the closed unit ball of A. In the sequel we will denote by UA the
set of unitary elements of A. Relevant examples of unitary Banach algebras are all unital
(complex) C∗-algebras and the real or complex discrete group algebras �1(G) for every
group G. The reader is referred to [1, 2, 7, 9, 10, 12, 25] for a full view of the theory of
unitary normed algebras. We remark that unital C∗-algebras and discrete group algebras,
as well as those unitary Banach algebras which are finite-dimensional or commutative and
semisimple, satisfy Property (S):

(S) There exists an algebra involution on the algebra, which is linear in the real case and
conjugate-linear in the complex one, and maps each unitary element to its inverse.
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We could expect all semisimple unitary Banach algebras to satisfy Property (S). Indeed, ac-
cording to [1], such a conjecture is equivalent to the one that every group G is “good” (which
means that all primitive ideals of the complex Banach ∗-algebra �1(G) are ∗-invariant).

If X is a complex Hilbert space, then the algebra L(X) (of all bounded linear operators
on X ) is a C∗-algebra, and hence it is unitary. It seems to be an open problem whether
or not all complex Banach spaces X such that L(X) is unitary are in fact Hilbert spaces.
Some partial affirmative answers to this problem have been given in [7]. The present paper
provides the reader with some new partial affirmative answers to this problem, formulates
the actual variant of the problem for real spaces, and gives partial affirmative answers to
such a variant.

We prove that a complex Banach space X is a Hilbert space if (and only if) L(X) is unit-
ary and satisfies Property (S) (Theorem 2·4). Therefore, according to previous comments,
if every group is good, then all complex Banach spaces X such that L(X) is unitary are
in fact Hilbert spaces. Given a real or complex Banach space X , and a vector space topo-
logy τ on L(X) stronger than the weak-operator topology (in short, wop), let us say that
L(X) is τ -unitary if the τ -closed convex hull of UL(X) is equal to the closed unit ball of
L(X). It seems to be an unsolved problem whether or not L(X) is unitary whenever X is an
infinite-dimensional real Hilbert space. Anyway, we prove that the problem just raised has
an affirmative answer if, in its formulation, unitarity is replaced with wop-unitarity (Corol-
lary 2·6). On the other hand, if X is a complex Banach space such that L(X) is wop-unitary
and satisfies Property (S), then X is a Hilbert space (see again Theorem 2·4). It turns out a
reasonable conjecture that a real Banach space X is a Hilbert space if (and only if) L(X) is
wop-unitary. We prove that a real Banach space X is a Hilbert space if (and only if) L(X) is
wop-unitary, fulfils Property (S), and the involution (say •) given by such a property satisfies
T • ◦ T � 0 for some one-dimensional operator T ∈ L(X) (Theorem 2·7). Moreover, a
variant of this last result, along the line of [15], is proven (Theorem 2·9).

It is shown in [7] that a complex Banach space X is a Hilbert space if (and only if) L(X) is
unitary and, for Y equal to X, X∗ or X∗∗, there exists a biholomorphic automorphism of the
open unit ball of Y which cannot be extended to a surjective linear isometry on Y . We note
that the existence of such a biholomorphic automorphism of the open unit ball of a complex
Banach space Y is easily guaranteed in the case that Y is a (complex) J B∗-triple [18]. We
also note that complex Hilbert spaces are J B∗-triples. Keeping in mind these ideas, we
extend to the setting of real spaces the results of [7] quoted above. Indeed, we prove the
following facts:

(i) a real Banach space X is a Hilbert space if (and only if) L(X) is w′
op-unitary (where

w′
op means the dual weak-operator topology [16]) and X or X∗∗ is a real J B∗-triple

in the sense of [13] (Theorem 3·3);
(ii) a real Banach space X is a Hilbert space if (and only if) L(X) is w′′

op-unitary (where
w′′

op means the second dual weak-operator topology) and X∗ is a real J B∗-triple
(Theorem 3·6).

Incidentally, some of the new techniques developed in this section allows us also to comple-
ment the results of [7] in their original complex setting (see Theorem 3·9).

Notation. Let X be a real or complex normed space. Then the symbol L(X) (respectively,
K(X), or F(X)) will stand for the normed algebra of all bounded (respectively, compact, or
finite-rank) linear operators on X . We denote by BX , SX , and X∗ the closed unit ball, the unit
sphere, and the (topological) dual, respectively, of X . The normed space X will be regarded
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without notice as a subspace of its second dual X∗∗. For a bounded linear mapping T from
X to another normed space Y , we denote by T ∗ : Y ∗ → X∗ the transpose of T .

2. The case that the algebra of operators has an involution

Let X be a Banach space, and let x and f be in X and X∗, respectively. We denote by
x ⊗ f the bounded linear operator on X defined by

(x ⊗ f )(y) := f (y)x

for every y ∈ X .

LEMMA 2·1. Let X be a Banach space, and let α be in X∗∗ such that h ⊗ α = T ∗ for
some h ∈ X∗ \ {0} and T ∈ L(X). Then α lies in X.

Proof. Take x ∈ X such that h(x) = 1. Then, for every g ∈ X∗ we have

g(T (x)) = T ∗(g)(x) = [(h ⊗ α)(g)](x) = α(g)h(x) = α(g).

Therefore, α = T (x) ∈ X .

We recall that an algebra A of linear operator on a vector space X is said to be strictly
dense if for every k ∈ N and arbitrary vectors x1, . . . , xk and y1, . . . , yk where x1, . . . , xk

are linearly independent, there exists T ∈ A such that T (xi) = yi for all i = 1, . . . , k. The
following lemma is proved in [22, theorem 2·5·19] for complex spaces and linear algebra
isomorphisms, but it proof works without changes in the case of real spaces, as well as in that
of complex spaces and conjugate-linear algebra isomorphisms. Indeed, [22, theorem 2·5·19]
is nothing other than an analytic specialization of [14, IV·9 and IV·11].

LEMMA 2·2. Let X and Y be real (respectively, complex) Banach spaces, let
A and B strictly dense Banach algebras of bounded linear operators on X and
Y , respectively, containing some nonzero finite-rank operator, and let φ be a lin-
ear (respectively, conjugate-linear) algebra isomorphism from A onto B. Then
there exists a bicontinuous linear (respectively, conjugate-linear) bijection ψ : X → Y such
that φ(T ) = ψ ◦ T ◦ ψ−1 for every T ∈ A.

Let X and Y be complex Banach spaces, and let ψ : X → Y be a continuous conjugate-
linear mapping. The transpose ψ∗ of ψ is defined as the continuous conjugate-linear map-
ping from Y ∗ to X∗ defined by

ψ∗(g)(x) := g(ψ(x))

for every (g, x) ∈ Y ∗ × X . We note that, if ψ is bijective, then the equality

ψ ◦ (x ⊗ f ) ◦ ψ−1 = ψ(x) ⊗ (ψ−1)∗( f ) (2·1)

holds for every (x, f ) ∈ X × X∗.
The next proposition has a forerunner in [17, lemma 3]. Indeed, it is proved there that,

if X is a complex Banach space, and if there exists a linear anti-automorphism φ of L(X),
then X is reflexive, and there is a bicontinuous linear bijection ψ: X → X∗ such that
φ(T ) = ψ−1 ◦ T ∗ ◦ ψ for every T ∈ L(X).

PROPOSITION 2·3. Let X be a real (respectively, complex) Banach space. Then the fol-
lowing conditions are equivalent:

(i) there exists a linear (respectively, conjugate-linear) algebra involution • on L(X);
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(ii) X is reflexive, and there exists a bicontinuous linear (respectively, conjugate-linear)
bijection ψ: X → X∗ such that ψ∗ = ±ψ (respectively, ψ∗ = ψ).

When the above conditions are fulfilled, then the mappings • and ψ above are related by
means of the equality T • = ψ−1 ◦ T ∗ ◦ ψ for every T ∈ L(X).

Proof. (i) ⇒ (ii) Let • be the linear (respectively, conjugate-linear) algebra involution
on L(X) whose existence is assumed. Consider the algebras A and B of bounded linear
operators on X and X∗, respectively, given by A := L(X) and B := {T ∗ : T ∈ L(X)},
both endowed with their natural operator norms, and the linear (respectively, conjugate-
linear) algebra isomorphism φ from A onto B defined by φ(T ) := (T •)∗. By Lemma 2·2,
there exists a bicontinuous linear (respectively, conjugate-linear) bijection ψ : X → X∗ such
that

φ(T ) = ψ ◦ T ◦ ψ−1 (2·2)

for every T ∈ A. Let x and f be in X and X∗, respectively. By (2·1) and (2·2), we have

φ(x ⊗ f ) = ψ(x) ⊗ (ψ−1)∗( f ). (2·3)

Since φ(x ⊗ f ) belongs to B, it follows from Lemma 2·1 that (ψ−1)∗( f ) lies in X . Since f
is arbitrary in X∗, and the range of (ψ−1)∗ is X∗∗, we realize that X is reflexive. Now, from
(2·3) and the definition of φ we derive (x ⊗ f )• = (ψ−1)∗( f ) ⊗ ψ(x), and hence

x ⊗ f = (ψ−1)∗(ψ(x)) ⊗ ψ((ψ−1)∗( f ))

(because the mapping • is involutive). Since x and f are arbitrary in X and X∗, respectively,
this implies that all elements in X are eigenvectors of (ψ−1)∗ ◦ ψ , and that all elements of
X∗ are eigenvectors of ψ ◦ (ψ−1)∗, so that there exists in fact a nonzero real (respectively,
complex) number λ satisfying (ψ−1)∗ ◦ ψ = λIX and ψ ◦ (ψ−1)∗ = λ−1 IX∗ , where IX and
IX∗ stand for the identity mapping on X and X∗, respectively. Then, in the real case we have
λ−1(ψ−1)∗ = λ(ψ−1)∗ = ψ−1, and hence ψ∗ = ±ψ . To conclude the proof of the present
implication, let us consider the complex case. Then we have λ−1(ψ−1)∗ = λ(ψ−1)∗ = ψ−1,
and hence |λ| = 1 and ψ∗ = λψ . Taking µ ∈ C with µ2 = λ, we have (µψ)∗ = ψ∗µ =
λψµ = λµψ = µψ . Since (2·2) determines ψ up to a nonzero complex multiple, the proof
is concluded by replacing ψ with µψ .

(ii) ⇒ (i) Assume that Condition (ii) is fulfilled. Then we straightforwardly realize that
the mapping T → T • := ψ−1 ◦ T ∗ ◦ ψ from L(X) to itself becomes a linear (respectively,
conjugate-linear) algebra involution.

Let X be a Banach space. We put GX := UL(X), and note that the elements of GX are
precisely the surjective linear isometries on X . We say that X is almost transitive if, for
every x ∈ SX , GX (x) is dense in SX . We say that X is convex-transitive if, for every x ∈ SX ,
the convex hull of GX (x) is dense in BX . The weak-operator topology on L(X) (denoted by
wop) is defined as the initial topology on L(X) relative to the family of functionals

W := {T → f (T (x)) : (x, f ) ∈ X × X∗}. (2·4)

Now, let τ be a vector space topology on L(X) stronger than wop. Then, since BL(X) is wop-
closed, it is τ -closed, and hence contains the τ -closed convex hull of GX . We say that L(X)

is τ -unitary if the containment just pointed out becomes an equality.

THEOREM 2·4. Let X be a complex Banach space such that there exists a conjugate-
linear algebra involution • on L(X) satisfying T • = T −1 for every T ∈ GX . Then the
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following conditions are equivalent:
(i) L(X) is unitary;

(ii) L(X) is wop-unitary;
(iii) X is convex-transitive;
(iv) X is almost transitive;
(v) X is a Hilbert space.

Proof. (i) ⇒ (ii) Since the weak-operator topology is weaker than the norm topology.
(ii) ⇒ (iii) By the right part of [25, theorem 5] (see Remark 2·10.(b) below).
(iii) ⇒ (iv) Since X is reflexive (by Proposition 2·3), and reflexive Banach spaces are

Asplund spaces, it follows from the assumption (iii) and [5, corollary 3·3] that X is almost
transitive.

(iv) ⇒ (v) By Proposition 2·3, X is reflexive, and there is a bicontinuous conjugate-linear
bijection ψ : X → X∗ satisfying ψ∗ = ψ and ψ−1 ◦ T ∗ ◦ ψ = T −1 for every T ∈ GX .
For x, y ∈ X , put (x |y) := ψ(y)(x). It follows that (·|·) is a continuous nondegenerate
hermitian sesquilinear form on X satisfying

(T (x)|T (x)) = (x |x) (2·5)

for every x ∈ X . By multiplying (·|·) by a suitable real number if necessary, we may assume
that the continuous nondegenerate hermitian sesquilinear form (·|·) satisfies (x0|x0) = 1 for
some x0 ∈ SX . Then, applying (2·5) and the assumption (iv), we derive ‖x‖2 = (x |x) for
every x ∈ X . Therefore X is a Hilbert space.

(v) ⇒ (i) This is well known.

It is worth mentioning that Theorem 2·4 contains the known fact that complex Banach
spaces X such that L(X) is a C∗-algebra (for some involution) are Hilbert spaces [11].

PROPOSITION 2·5. Let H be a real Hilbert space. Then BK(H) is contained in the norm-
closed convex hull of GH .

Proof. It is enough to show that BF(H) is contained in co(GH ). Let T = ∑n
i=1 xi ⊗ yi be

in BF(H) (where, for x, y ∈ H , x ⊗ y denotes the operator z → (z|y)x). Let H1 stand for
the linear hull of {x1, . . . , xn, y1, . . . , yn}, and let H2 be the ortogonal of H1 in H . Then T
is diagonal relative to the decomposition H = H1 ⊕ H2, and the restriction of T to H2 is
zero. Now, let A denote the set of those elements in L(H) which are diagonal relative to the
decomposition H = H1 ⊕ H2, and whose restrictions to H2 are real multiples of the identity
operator on H2. Then A is a subalgebra of L(H) isometrically isomorphic to L(H1) ⊕∞ R.
Since L(H1) is unitary (by [2, remark 2·9]), it follows from [2, proposition 2·8] that A is
unitary. Since T lies in BA, we deduce that T ∈ co(UA). Finally, note that, since the identity
mapping on H belongs to A, we have UA ⊆ GH .

Let X be a Banach space. The ultraweak-operator topology on L(X) (denoted by wop)
is defined as the initial topology on L(X) relative to the family of all functionals in the
norm-closed linear hull in (L(X))∗ of the set W defined by (2·4). It is well known that,
if X is reflexive, then the Banach space L(X) can be naturally identified with (X⊗̂π X∗)∗

(where ⊗̂π denotes the complete projective tensor product) in such a way that wop becomes
the natural weak∗ topology (i.e., the weak topology on L(X) relative to the duality with its
predual X⊗̂π X∗) [8, proposition 42·13].

COROLLARY 2·6. Let H be a real Hilbert space. Then L(H) is wop-unitary.
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Proof. Keeping in mind Proposition 2·5, and the fact that the ultraweak-operator topology
on L(H) is weaker that the norm topology, we deduce that the wop-closed convex hull of GH

contains BK(H). On the other hand, since (K(H))∗ = H⊗̂π H , and (H⊗̂π H)∗ = L(H), and
the weak∗ topology on L(H) coincides with wop, we have that BK(H) is wop-dense in BL(H)

(by Goldstine’s theorem).

THEOREM 2·7. Let X be a real Banach space such that there exists a linear algebra
involution • on L(X) satisfying T •

0 ◦ T0 � 0 for some one-dimensional operator T0 =
x0 ⊗ f0 ∈ L(X), and T • = T −1 for every T ∈ GX . Then the following conditions are
equivalent:

(i) L(X) is wop-unitary;
(ii) L(X) is wop-unitary;

(iii) X is convex-transitive;
(iv) X is almost transitive;
(v) X is a Hilbert space.

Proof. (i) ⇒ (ii) Since the weak-operator topology is weaker than the ultraweak-operator
topology.

The implications (ii) ⇒ (iii) and (iii) ⇒ (iv) in the present theorem are the same as the
corresponding ones in Theorem 2·4, and are proved in the same way.

(iv) ⇒ (v) By Proposition 2·3, X is reflexive, and there is a bicontinuous linear bijection
ψ : X → X∗ satisfying ψ∗ = ±ψ and T • = ψ−1 ◦ T ∗ ◦ ψ for every T ∈ L(X). Assume
that ψ∗ = −ψ . Then, for every x ∈ X we have ψ(x)(x) = 0, and hence

T •
0 ◦ T0 = ψ−1 ◦ (x0 ⊗ f0)

∗ ◦ ψ ◦ (x0 ⊗ f0) = ψ−1 ◦ ( f0 ⊗ x0) ◦ ψ ◦ (x0 ⊗ f0)

= (ψ−1( f0) ⊗ ψ∗(x0)) ◦ (x0 ⊗ f0) = ψ(x0)(x0)(ψ
−1( f0) ⊗ f0) = 0,

which is not possible. Therefore we have that ψ∗ = ψ . For x, y ∈ X , put (x |y) := ψ(y)(x).
It follows that (·|·) is a continuous nondegenerate symmetric bilinear form on X satisfying
(T (x)|T (x)) = (x |x) for all x ∈ X and ∈ GX . Then, that X is a Hilbert space follows from
the assumption (iv) as in the proof of the implication (iv) ⇒ (v) in Theorem 2·4.

(v) ⇒ (i) By Corollary 2·6.

COROLLARY 2·8. Let X be a real Banach space such that there exists a linear al-
gebra involution • on L(X) satisfying T •

0 ◦ T0 � 0 for some one-dimensional operator
T0 ∈ L(X), and T • = T −1 for every T ∈ GX . If L(X) is unitary, then X is a Hilbert space.

Let A be a norm-unital normed algebra. We say that A is maximal if, whenever ||| · ||| is
an equivalent norm on A converting A into a norm-unital normed algebra and satisfying
UA ⊆ U(A,|||·|||), we have that UA = U(A,|||·|||). In general, maximality and unitarity of A are
independent conditions. However, it is well known that, in the case that A = L(X) for
some normed space X , unitarity is strictly stronger than maximality (see for example [1,
remark 2·6·(d)]). An involution ∗ on A is said to be proper if x∗x � 0 for every x ∈ A \ {0}.
A joint variant of Theorems 2·4 and 2·7 is the following result in the spirit of [15].

THEOREM 2·9. Let X be a real (respectively, complex) Banach space. Then the following
assertions are equivalent:

(i) L(X) is maximal, and there exists a proper linear (respectively, conjugate-linear)
algebra involution • on L(X) such that T • = T −1 for every T ∈ GX ;

(ii) X is a Hilbert space.
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Proof. (i) ⇒ (ii) Let ψ be the linear (respectively, conjugate-linear) bijection from X to
X∗ given by Proposition 2·3 because of the existence of the involution • on L(X), and for
x, y ∈ X put (x |y) := ψ(y)(x). We know that (·|·) is a symmetric or antisymmetric bilinear
form (respectively, a hermitian sesquilinear form) on X satisfying

(T (x)|y) = (x |T •(y)) (2·6)

for every T ∈ L(X) and all x, y ∈ X , and that for (x, f ) ∈ X × X∗ we have

(x ⊗ f )• ◦ (x ⊗ f ) = (x |x)(ψ−1( f ) ⊗ f ). (2·7)

Now, the assumption that the involution • is proper, together with (2·7), gives (x |x) � 0
for every x ∈ X \ {0} (which implies in the real case that (·|·) cannot be antisymmetric).
It follows from the connectedness of X \ {0} (the case X = R is trivial) and the continuity
of the mapping x → (x |x) from X to R that, by multiplying (·|·) by a suitable real number
if necessary, there is no loss of generality in assuming that (·|·) is an inner product on X
satisfying (x0|x0) = 1 for some prefixed x0 ∈ SX . Let | · | denote the pre-Hilbertian norm
associated to (·|·). We claim that | · | and ‖ · ‖ are equivalent norms on X . Indeed, for every
x ∈ X we have

|x |2 = ψ(x)(x) � ‖ψ(x)‖‖x‖ � ‖ψ‖‖x‖2,

and hence | · | �
√‖ψ‖‖ · ‖ on X . Moreover, for x ∈ X we can find f ∈ SX∗ with

f (x) = ‖x‖, so that

‖x‖ = f (x) = (x |ψ−1( f )) � |x ||ψ−1( f )| � |x |√‖ψ‖‖ψ−1( f )‖
� |x |√‖ψ‖‖ψ−1‖‖ f ‖ = |x |√‖ψ‖‖ψ−1‖,

and therefore ‖ · ‖ �
√‖ψ‖‖ψ−1‖| · | on X . Now that the claim has been proved, we

invoke the assumption that T • = T −1 for every T ∈ GX , together with (2·6), to realize that
GX ⊆ G(X,|·|). In this way, denoting by ||| · ||| the operator norm on L(X) corresponding to
the norm | · | on X , it turn out that ||| · ||| is an equivalent algebra norm on L(X) converting
L(X) into a norm-unital normed algebra and satisfying UL(X) ⊆ U(L(X),|||·|||). It follows from
the assumption that L(X) is maximal that UL(X) = U(L(X),|||·|||), or equivalently GX = G(X,|·|).
Since (X, | · |) is almost transitive, and x0 belongs to SX � S(X,|·|), it follows that | · | = ‖ · ‖
on X .

(ii) ⇒ (i) This is well known. Indeed, the maximality of L(X), for a Hilbert space X ,
follows from the almost transitivity of X , together with [24, theorem 9·6·3] and [25, lemma 1
and theorem 1].

It follows from the above proof that a real (respectively, complex) Banach space is
isomorphic to a Hilbert space if (and only if) there exists a proper linear (respectively,
conjugate-linear) algebra involution • on L(X). The real case of this fact is one of the main
results in [15].

Remark 2·10. (a) For a Banach space X over K = R or C, consider the following condi-
tions:

(i) X is a Hilbert space;
(ii) L(X) is unitary.

We already know that, if K = C or X is finite-dimensional, then (i) implies (ii). It is also
known that, if X is finite-dimensional, then (ii) implies (i) (see Part (b) of the present re-
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mark), so that (i) is actually equivalent to (ii) in the finite-dimensional setting. However, the
following problems seem to remain still open:

(P1) Does (i) imply (ii) when K = R and X is infinite-dimensional?
(P2) Does (ii) imply (i) when X is infinite-dimensional?

Partial affirmative answers to (P2) are those given by Corollaries 2·8 and 3·7
(for K = R) and Theorems 2·4 and 3·9 (for K = C). Nevertheless, if the answer to (P1)
were completely negative, then Corollaries 2·8 and 3·7 would become only characterizations
of finite-dimensional real Hilbert spaces, and the following problem would merit a special
consideration:

(P3) Is there an infinite-dimensional real Banach space X such that L(X) is unitary?
(b) It is well known that
(�) Convex-transitive finite-dimensional real or complex Banach spaces are Hilbert

spaces
(see [24, theorem 9·7·1 and proposition 9·6·1]). It follows from (�) and Lemma 3·1 below

that, if X is a finite-dimensional real or complex Banach space such that L(X) is unitary,
then X is a Hilbert space. The result just formulated seems to have been stated first in [20].
Our favorite proof consists of putting together (�) and the general fact that, if X is a real or
complex Banach space such that L(X) is unitary (or merely wop-unitary), then X is convex
transitive [9, theorem 6·4] (see also [25, theorem 5]). By the way, in both [9] and [25] it is
claimed that, conversely, if X is a convex-transitive Banach space, then L(X) is wop-unitary.
However, the proof of such a claim contains a gap which seems to us difficult to overcome.
Indeed, wop-continuous linear functionals on L(X) need not be of the form T → f (T (x))

for some (x, f ) ∈ X × X∗. Since Hilbert spaces are convex-transitive, our criticism above
gives special interest to Corollary 2·6.

3. The case of real J B∗-triples

Let X be a Banach space. Following [16], we define the dual weak-operator topology on
L(X) as the initial topology on L(X) relative to the family of functionals

W ′ := {T → α(T ∗( f )) : ( f, α) ∈ X∗ × X∗∗},
and we denote it by w′

op. We also consider the topology w′
op on L(X), defined as the initial

topology on L(X) relative to the family of all functionals in the norm-closed linear hull
of W ′ in (L(X))∗. Since W ⊆ W ′, where W is defined by (2·4), we have wop � w′

op and
wop � w′

op. Moreover, the two inequalities above become equalities whenever X is reflexive.

LEMMA 3·1. Let X be a Banach space such that L(X) is w′
op-unitary. Then, for every f

in SX∗ , we have

co{T ∗( f ) : T ∈ GX } = BX∗ .

Proof. Let f be in SX∗ , let g be in BX∗ , and let −1 < δ < 1. Choose x ∈ BX with
f (x) = δ, and denote by F the operator on X defined by F(y) := g(y)x . Then there exists
a net {Fλ} in the convex hull of UL(X) converging to F in the dual weak-operator topology.
Therefore, {α(F∗

λ ( f ))} converges to α(F∗( f )) = α(δg) for every α ∈ X∗∗. In other words,
{F∗

λ ( f )} converges to δg in the weak topology of X∗, and hence δg belongs to the weak-
closed convex hull of {T ∗( f ) : T ∈ GX }. Letting δ → 1, and keeping in mind that weakly
closed convex subsets of X∗ are norm-closed, the arbitrariness of g in BX∗ yields that

BX∗ ⊆ co{T ∗( f ) : T ∈ GX }.



Banach spaces whose algebras of operators are unitary 105

We recall that a complex J B∗-triple is a complex Banach space X with a continuous triple
product {· · ·} : X × X × X → X which is linear and symmetric in the outer variables, and
conjugate-linear in the middle variable, and satisfies:

(i) for all x in X , the mapping y → {xxy} from X to X is a hermitian operator on X
and has nonnegative spectrum;

(ii) the main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z} + {xy{abz}}
holds for all a, b, x, y, z in X ;

(iii) ‖{xxx}‖ = ‖x‖3 for every x in X .

Concerning Condition (i) above, we also recall that a bounded linear operator T on a
complex Banach space X is said to be hermitian if ‖ exp(irT )‖ = 1 for every r in
R. Following [13], we define real J B∗-triples as norm-closed real subtriples of complex
J B∗-triples. Here, by a subtriple we mean a subspace which is closed under triple
products of its elements. An element e of a real J B∗-triple is said to be a tripotent if
{eee} = e. Real J BW ∗-triples where first introduced as those real J B∗-triples which
are dual Banach spaces in such a way that the triple product becomes separately weak∗-
continuous (see [13, definition 4·1 and theorem 4·4]). Later, it has been shown in [19] that
the requirement of separate w∗-continuity of the triple product is superabundant.

The following lemma becomes a generalization of [6, corollary 2·6] to the real setting.

LEMMA 3·2. Let X be an almost transitive real J BW ∗-triple. Then X is a Hilbert space.

Proof. Keeping in mind that extreme points of the closed unit ball of a real J B∗-triple are
tripotents [13, lemma 3·3], the Krein–Milman theorem and the almost transitivity of X give
us that the set of all nonzero tripotents of X is dense in SX . Since the set of tripotents of X
is closed, we derive that {xxx} = ‖x‖2x for every x ∈ X . Finally, arguing as in the proof of
[23, lemma 1], we realize that X is a Hilbert space.

THEOREM 3·3. Let X be a real Banach space. Then the following assertions are equi-
valent:

(i) X is a real J B∗-triple, and L(X) is w′
op-unitary;

(ii) X is a real J B∗-triple, and L(X) is w′
op-unitary;

(iii) X∗∗ is a real J B∗-triple, and L(X) is w′
op-unitary;

(iv) X∗∗ is a real J B∗-triple, and L(X) is w′
op-unitary;

(v) X is a Hilbert space.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (iv) hold because w′
op � w′

op, whereas the
ones (i) ⇒ (iii) and (ii) ⇒ (iv) follow from the fact that the bidual of every real J B∗-triple
is a real J B∗-triple [13, lemma 4·2].

(iv) ⇒ (v) Since X∗∗ is a real J BW ∗-triple (by assumption), and BX∗ has extreme points
(by the Krein–Milman theorem), it follows from [21, corollary 2·1] that X∗∗ has a “minimal
tripotent” (see [21] for a definition), which is a point of Fréchet-differentiability of the norm
[4, lemma 3·1]. This implies that the norm of X∗∗ is “non rough” (see [5] for a definition).
On the other hand, since L(X) is w′

op-unitary (by assumption), Lemma 3·1 applies, giving
that X∗ is convex-transitive. It follows from the implication (4) ⇒ (1) in [5, theorem 3·2,
remark 4·6] that X is reflexive and almost transitive. By Lemma 3·2, X is a Hilbert space.
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(v) ⇒ (i) Keeping in mind that Hilbert spaces are reflexive, it follows from the assump-
tion (v) and Corollary 2·6 that L(X) is w′

op-unitary. On the other hand, the fact that real
Hilbert spaces are real J B∗-triples is well-known. Indeed, a possible choice of the triple
product {· · ·} is the one given by {xyz} := ((x |y)z + (z|y)x)/2.

Let X be a Banach space. We denote by w′′
op the initial topology on L(X) relative to the

family of functionals

W ′′ := {T → 
(T ∗∗(α)) : (α, 
) ∈ X∗∗ × X∗∗∗},
and by w′′

op the initial topology on L(X) relative to the family of all functionals in
the norm-closed linear hull of W ′′ in (L(X))∗. We have wop � w′

op � w′′
op and

wop � w′
op � w′′

op, with equalities instead of inequalities if X is reflexive.

LEMMA 3·4. Let X be a Banach space such that L(X) is w′′
op-unitary. Then, for every α

in SX∗∗ , we have

co{T ∗∗(α) : T ∈ GX } ⊇ BX .

Proof. Let α be in SX∗∗ , let x be in BX , and let −1 < δ < 1. Choose f ∈ BX∗ with
α( f ) = δ, and denote by F the operator on X defined by F(y) := f (y)x . Then there
exists a net {Fλ} in the convex hull of UL(X) converging to F in the topology w′′

op, and hence
{
(F∗∗

λ (α))} converges to 
(F∗∗(α)) = 
(δx) for every 
 ∈ X∗∗∗. Therefore, {F∗∗
λ (α)}

converges to δx in the weak topology of X∗∗, and hence δx belongs to the weak-closed
convex hull of {T ∗∗(α) : T ∈ GX }. Letting δ → 1, and keeping in mind the arbitrariness of
x in BX , we obtain that

BX ⊆ co{T ∗∗(α) : T ∈ GX }.
Let X be a Banach space. We say that X is L-embedded if there exists a linear projection

p from X∗∗ onto X satisfying

‖α‖ = ‖p(α)‖ + ‖α − p(α)‖
for every α ∈ X∗∗. We note that, in such a case, 1 − 2p is an isometry on X∗∗. It
is known that, if X satisfies the conclusion in Lemma 3·4, and if there exists a lin-
ear projection p from X∗∗ onto X such that 1 − 2p is an isometry, then both X and
X∗ are superreflexive and almost transitive (see the proof of [7, proposition 2·3], and
[7, remark 2·6]). Therefore we have the following.

COROLLARY 3·5. Let X be an L-embedded Banach space over K such that L(X) is w′′
op-

unitary. Then both X and X∗ are superreflexive and almost transitive.

THEOREM 3·6. Let X be a real Banach space. Then the following assertions are equival-
ent:

(i) X is the predual of a real J BW ∗-triple, and L(X) is w′′
op-unitary;

(ii) X is the predual of a real J BW ∗-triple, and L(X) is w′′
op-unitary;

(iii) X is a Hilbert space.

Proof. The implication (i) ⇒ (ii) is clear, whereas the one (iii) ⇒ (i) follows
from Corollary 2·6 and the already commented fact that real Hilbert spaces are real
J B∗-triples.

(ii) ⇒ (iii) Since preduals of real J BW ∗-triples are L-embedded [3, proposition 2·2], the
assumption (ii), together with Corollary 3·5, yields that X∗ is almost transitive. Then, since
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X∗ is a J BW ∗-triple (by assumption), Lemma 3·2 applies, so that X∗ (and hence X ) is a
Hilbert space.

The following corollary follows straightforwardly from Theorems 3·3 and 3·6.

COROLLARY 3·7. Let X be a real Banach space such that L(X) is unitary. If X, X∗ or
X∗∗ is a real J B∗-triple, then X is a Hilbert space.

Remark 3·8. Looking at the proof of Lemma 3·1 (respectively, Lemma 3·4), we realize
that its conclusion remains true if the assumption that L(X) is w′

op-unitary (respectively w′′
op-

unitary) is relaxed to the one that BK(X) is contained in the w′
op- (respectively w′′

op-) closed
convex hull of GX . Then, keeping in mind Proposition 2·5, and arguing as in the proof of
Theorem 3·3 (respectively, Theorem 3·6), we realize that, for a real Banach space X, the
following assertions are equivalent:

(i) X is a real J B∗-triple, and BK(X) is contained in the norm-closed convex hull of GX ;
(ii) X is a real J B∗-triple, and BK(X) is contained in the w′

op-closed convex hull of GX ;
(iii) X∗ a real J B∗-triple, and BK(X) is contained in the norm-closed convex hull of GX ;
(iv) X∗ is a real J B∗-triple, and BK(X) is contained in the w′′

op-closed convex hull of GX ;
(v) X∗∗ is a real J B∗-triple, and BK(X) is contained in the norm-closed convex hull of

GX ;
(vi) X∗∗ is a real J B∗-triple, and BK(X) is contained in the w′

op-closed convex hull of GX ;
(vii) X is a Hilbert space.

Some of the new techniques introduced in the present section allow us to complement
the main results of [7]. Indeed, when the arguments of [7] involve the assumption on a
Banach space X that L(X) is unitary, in fact they only use that such an assumption implies
the conclusion in Lemma 3·4, that such a conclusion implies that of Lemma 3·1, and that
the conclusion of Lemma 3·1 implies that X is convex-transitive [7, lemma 2.1]. Therefore,
keeping in mind Lemmas 3·1 and 3·4, and looking carefully at the arguments in [7], we
obtain Theorem 3·9 immediately below. For a Banach space X , we denote by �X the open
unit ball of X .

THEOREM 3·9. Let X be a complex Banach space X. Then the following assertions are
equivalent:

(i) X is a J B∗-triple, and L(X) is unitary;
(ii) X is a J B∗-triple, and L(X) is w′

op-unitary;
(iii) there exists a nonlinear biholomorphic automorphism of �X and L(X) is unitary;
(iv) there exists a nonlinear biholomorphic automorphism of �X and L(X) is w′

op-
unitary;

(v) X∗ is a J B∗-triple and L(X) is unitary;
(vi) X∗ is a J B∗-triple and L(X) is w′′

op-unitary;
(vii) there exists a nonlinear biholomorphic automorphism of �X∗ and L(X) is unitary;

(viii) there exists a nonlinear biholomorphic automorphism of �X∗ and L(X) is w′′
op-

unitary;
(ix) X∗∗ is a J B∗-triple and L(X) is unitary;
(x) X∗∗ is a J B∗-triple and L(X) is w′

op-unitary;
(xi) there exists a nonlinear biholomorphic automorphism of �X∗∗ and L(X) is unitary;

(xii) there exists a nonlinear biholomorphic automorphism of �X∗∗ and L(X) is w′′
op-

unitary;
(xiii) X is a Hilbert space.
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