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Intermittently and instantaneously perturbed oscillator equations play an impor-
tant role in theory and application. In this paper, we investigate the asymptotic

Ž Ž X ..X Ž .behavior of solutions of the impulsive system f x q f x s 0 for t / t ,b n
XŽ . XŽ . Ž . < < bx t q 0 s b x t , where n s 1, 2, . . . , and f u s u sgn u for b ) 0. In then n n b

Ž . Ž .special case f u s f u , we obtain the so-called half-linear system, which ex-b

hibits similar behavior to the linear case. First, we prove attractivity results, and
Ž Ž X ..X Ž . Ž .then apply our theorems to the nonautonomous equation f x q q t f x s 0,b

Ž .where q t is a step-function. Q 2000 Academic Press

1. INTRODUCTION

Consider the impulsively damped nonlinear system
XXf x q f x s 0, t / t ,Ž . Ž .Ž .b n

x t q 0 s x t ,Ž . Ž .n n 1Ž .
xX t q 0 s b xX t ,Ž . Ž .n n n
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Ž . < < bwhere t ª ` as n ª `, f u s u sgn u for b ) 0, f : R ª R isn b

Ž .continuous, and uf u ) 0 u / 0. For the sake of simplicity, we assume
that f is an odd function.

Ž .Equation 1 with 0 F b F 1 is the impulsive analogue of the dampedn
oscillator equation

XX Xf x q a t h x q f x s 0, 2Ž . Ž . Ž . Ž . Ž .Ž .b

Ž . Ž .where a t G 0 and uh u ) 0 for u / 0. The analogy was investigated in
w x Ž . Ž . Ž . Ž .9, 10 for the case f u s u. The special case h u s f u s f u isb b

Ž . Ž .called the half-linear equation since, if x t is a solution, then cx t is also
a solution. The behavior of the solutions is quite similar to that of a linear

Ž w x. Ž .equation see 8 . Note that a negative b in system 1 results in a beatingn
Ž Ž . w x.effect see the discussion for the case f u s u in 10, 12 , which has nob

continuous analogue.
w xIn this paper, we apply the method used in 9, 16 to obtain attractivity

Ž . Ž . Ž .theorems for 1 . We also consider the important special case f u s f u .a

We will show that the asymptotic behavior of the solutions is completely
different if a - b , a s b , or a ) b. As an application of our results, in
Section 4 we investigate the attractivity properties of the equation

XXf x q q t f x s 0, 3Ž . Ž . Ž . Ž .Ž .b

Ž .where q t is a step-function.

2. DEFINITIONS AND LEMMAS

Ž .We say that the zero solution of 1 is stable if for every « ) 0 there
< Ž . < < XŽ . < < Ž . < < XŽ . <exists d ) 0 such that x 0 q x 0 - d implies x t q x t - « for

Ž .t G 0. The zero solution is asymptotically stable a.s. if there exists d ) 0
< Ž . < < XŽ . < Ž Ž . XŽ .. Ž .such that x 0 q x 0 - d implies lim x t , x t s 0, 0 . Thet ª`

Ž .asymptotic stability is global g.a.s. if d s `.
Throughout the paper, we assume that every solution can be continued

Ž XŽ ..to `. Obviously, the solutions are piecewise differentiable and f x t isb

piecewise continuous and continuous from the left at every t ) 0. We
introduce the functions

y b
bq1< <F y [ yf y y f s ds s y andŽ . Ž . Ž .Hb b b q 10

4Ž .
x

F x [ f s ds,Ž . Ž .H
0
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and investigate the solutions using the energy function

V x , y s F y q F x . 5Ž . Ž . Ž . Ž .

To simplify the formulation of our results, we assume that

lim F u s `. 6Ž . Ž .
uª"`

Ž Ž . XŽ ..It is easy to verify that V x t , x t is constant along the solutions of
the equation without impulses

XXf x q f x s 0. 7Ž . Ž . Ž .Ž .b

Ž .Next, we calculate the change in the energy along the solutions of 1 .
Ž . Ž Ž . XŽ ..Using the notation V t s V x t , x t , we obtain

V t y V t s V t q 0 y V tŽ . Ž . Ž . Ž .nq1 n n n

s F xX t q 0 q F x t q 0Ž . Ž .Ž . Ž .n n

y F xX t y F x tŽ . Ž .Ž . Ž .n n

X < < bq1 Xs yF x t 1 y b s ya F x t , 8Ž . Ž . Ž .Ž . Ž .Ž .n n n n

< < bq1where a [ 1 y b .n n
Ž . < <Note that V t is nonincreasing if b F 1, independently of the sign ofn

Ž .b , and is constant between any t and t . The case b s 0 a s 1 isn n nq1 n n
critical since we lose the uniqueness of the solutions at t from the left.n
Moreover, there exist solutions that are identically zero for t ) t . Ton
guarantee uniqueness, we require the more restrictive condition 0 - b Fn
1, n s 1, 2, . . . .

Ž .Using equality 8 repeatedly, we obtain

V t s V 0 y a F xX t 9Ž . Ž . Ž . Ž .Ž .Ý n n
t -tn

and

F xX tŽ .Ž .n
V t s V t q 0 s V t 1 y aŽ . Ž . Ž .n n nž /V tŽ .n

F xX tŽ .Ž .is V 0 1 y aŽ . Ł iž /V tŽ .t -t ii
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Ž .for t F t - t along the solutions of 1 . A lower estimate isn nq1

bq1

V t G V t 1 y a s V 0 1 y a s V 0 b 10Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ł Łn n i iž /
t -t t -ti i

Ž .since b ) 0 here. Using the equality 2 , it is easy to prove the followingn
basic lemma.

Ž .LEMMA 1. If 0 F b F 1, n s 1, 2, . . . , then V t is nonincreasing forn
Ž .e¨ery solution. The zero solution of 1 is stable, e¨ery solution is bounded on

w . Ž XŽ ..t , ` , and lim inf F x t s 0.0 t ª`

If 0 - b F 1, n s 1, 2, . . . , we obtain a Gronwall]Bellman type inequal-n
Ž . Ž . Ž .ity for V t from 2 . Since ln 1 y y F yy for y - 1, we have

F xX tŽ .Ž .i
ln V t s ln V 0 q ln 1 y aŽ . Ž . Ý iž /V tŽ .it -ti

F xX tŽ .Ž .iF ln V 0 y a .Ž . Ý i V tŽ .it -ti

We have thus proved the following lemma.

Ž .LEMMA 2. Suppose that 0 - b F 1, n s 1, 2, . . . . If x t is a solution ofn
Ž .1 , then

F xX tŽ .Ž .i
V t F V 0 exp y a . 11Ž . Ž . Ž .Ý n½ 5V tŽ .nt -tn

Ž . ŽŽ . < <. Ž bq1.Since ln 1 y a G y b q 1 ln b a r 1 y b provided b G b ) 0,n n n
we can formulate the following necessary condition for the attractivity of
the zero solution that is analogous to the case of distributed damping.

Ž .THEOREM 1. Suppose that 0 F b F 1, n s 1, 2, . . . , and let x t be an
Ž .solution of 1 . If either

`

b ) 0, 12Ž .Ł n
ns1

or
`

lim inf b ) 0 and a - `, 13Ž .Ýn n
nª` ns1

Ž .then lim V t ) 0.t ª`
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The theorem is not true if b s 0 for some n since in that case there aren
solutions that are identically zero for t ) t .n

The following lemma is fundamental in the estimation of the energy; it
w xis a consequence of Corollary 2.4 in 4 .

Ž . Ž .LEMMA 3. Let x t be a nonzero solution of 1 and T G 0. Then

tX X b bf x t s f x T b y b f x s ds. 14Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ł ŁHb b i iž /
TTFt -t sFt -ti i

Ž .Remark 1. Clearly, the product in the integrand in 14 can be taken
for s - t - t.i

Remark 2. With the notation

C s, t [ b b ,Ž . Ł i
sFt -ti

Ž .14 can then be written in the form

tX Xf x t s f x T C T , t y C s, t f x s ds. 15Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Hb b
T

Ž .The next lemma classifies the solutions of the impulsive system 1 .

Ž .LEMMA 4. Suppose 0 F b F 1, n s 1, 2, . . . , and let x t be a solutionn
Ž . w .of 1 that is not identically zero on any inter̈ al T , ` , and let s and s be1 2

XŽ . Ž . Ž .˜ ˜consecutï e zeros of x t . Then there exists t g s , s such that x t s 0.1 2
Ž . w .Hence, solutions of 1 are either oscillatory or monotonic on T , ` .

w xThe proof is similar to the proof of Lemma 13 in 9 and so we omit the
details here. As indicated above, if b s 0, then the solution can becomen
zero from t forward. This lemma is not true if b - 0 for some n, sincen n
we can obtain nonoscillatory ‘‘saw-tooth’’ solutions.

To obtain asymptotic stability properties, we investigate the variation of
Ž .V along solutions. It is easy to see from 8 that the critical places for

impulses are the zero positions of the derivative of the solutions. Thus, we
need to formulate conditions that assure that infinitely many t ’s avoidn
these places. Consequently, the key to our method is to estimate these
zeros as well as possible. Hence, knowledge of the oscillatory behavior of

Ž .the solutions of the equation 7 without impulses is essential to our
analysis.

Ž .Every nonzero solution of 7 is periodic, and the trajectory is a level
curve of V in the plane. Since f and f are odd, the length of the timeb

Ž . XŽ . Ž . XŽ .intervals on which x t x t G 0 or x t x t F 0 are equal. For a solution
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Ž . Ž Ž . XŽ ..x t with V x t , x t ' r, denote the distance between two consecutive
XŽ . Ž . Ž .zeros of x t , i.e., the halfperiod, by D r . In the case f u s u, theb

w xbehavior of the solutions was investigated, for example, in 19 . The
Ž .quantity D r can be expressed in the form

dx d¨y1 1Ž .F r
D r s 2 s 2 r ,Ž . H Hy1 y1 y1F r y F x f F r 1 y ¨ F r¨Ž . Ž . Ž .Ž . Ž .Ž0 0

16Ž .

Ž . y1 y1where u s r y F x , ¨ s urr, and F and F are the inverses of F and
w .F on 0, ` , respectively. In the special case where f is a homogeneous

function of order a , we obtain that

d¨11rŽaq1.y1rŽ bq1.D r s 2 r .Ž . H y1 y1f F 1 y ¨ F ¨Ž . Ž .Ž .0

Ž . Ž .If f x s f x , thena

Ž . 1rŽaq1.y1rŽ bq1.D r s ra , b

1rŽ1qb . Ž Ž .. Ž Ž ..2b G 1r 1qa G br 1qb
= Ž . Ž .ar 1qa 1r 1qbŽ . Ž . ŽŽ . Ž ..1qa 1qb G 1q2bqab r 1qaqbqab

\ M r1rŽaq1.y1rŽ bq1. , 17Ž .a , b

Ž .and if, moreover, a s b , then D r is the constanta , b

2a 1rŽ1qa .G 1r 1 q a G ar 1 q aŽ . Ž .Ž . Ž .
D sa 1 q a

2a 1rŽ1qa . p
s .

1 q a sin pr 1 q aŽ . Ž .Ž .

In particular, D s p for a s 1.a

Ž . Ž .If a ) b , then lim D r s `, and if a - b , then lim D rr ª 0 a , b r ª 0 a , b

w xs 0. The case a s b is called halflinear 8 , so we may refer to the other
cases as super- and sub-half-linear, respectively. In general, we do not
make a homogeneity assumption on f. Hence, we introduce the notation

D0 s lim inf D r and D` s lim inf D r . 18Ž . Ž . Ž .
rª`rª0

It is easy to see that the oscillatory properties of the small solutions
essentially depend on the nonlinearity of f and f . The following lemma isb
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fundamental in our paper since it shows that the above properties of Eq.
Ž . Ž .7 are inherited by system 1 .

Ž . Ž . Ž .LEMMA 5. Let x t be a solution of 1 such that lim V t s r ) 0.t ª`

Then for any « ) 0 and d ) 0 with d - r there exists T ) 0 such that if
Ž Ž .. Ž Ž .. Ž Ž ..T - t - t , F x t s F x t s r y d , and F x t - r y d for t g1 2 1 2

Ž .t , t , then1 2

dxy1Ž .F ryd
t y t G .H2 1 y1y1 F 1 q « r y F xŽ . Ž .Ž . Ž .yF ryd

Ž . � 4̀ Ž .In particular, if x t is oscillatory and s is a sequence of zeros of x t ,˙n ns1
then

lim inf s y s G D r .Ž . Ž .nq1 n
nª`

Ž . Ž . Ž .Proof. Let x t be a solution of 1 for which lim V t s r ) 0. Lett ª`

« ) 0 be given and choose T such that

r F F xX t q F x t - r 1 q «Ž . Ž . Ž .Ž . Ž .

for t ) T. Then

Xy1 y1F r y F x t - x t - F r 1 q « y F x t ,Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .

so

X Xx t x tŽ . Ž .
- 1 - .y1 y1F r 1 q « y F x t F r y F x tŽ . Ž . Ž .Ž . Ž .Ž . Ž .

Ž Ž .. Ž Ž ..Let 0 - d - r and let T - t - t with F x t s F x t s r y d and1 2 1 2
Ž Ž .. Ž . XŽ .F x t - r y d for t g t , t . It follows from Lemma 4 that x t does1 2

Ž .not change sign on t , t . Hence, integrating the above inequality, we1 2
obtain

dxy1Ž .F ryd
t y t G .H2 1 y1y1 F r 1 q « y F xŽ . Ž .Ž . Ž .yF ryd

XŽ .If s and s are zeros of x t such that s - t - t - s , then1 2 1 1 2 2

dxy1Ž .F rs y s G ,H2 1 y1y1 F r 1 q « y F xŽ . Ž .Ž . Ž .yF r

since s , s are independent of d .1 2
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Ž . � 4Now, let x t be oscillatory and let s be a sequence of the zeros ofn
XŽ .x t . Then letting n ª `, we have

dxy1Ž .F rlim inf s y s G .Ž . Hnq1 n y1y1 F r 1 q « y F xnª` Ž . Ž .Ž . Ž .yF r

Since « is arbitrary, we have

lim inf s y s G D r .Ž . Ž .nq1 n
nª`

In addition, we can obtain the upper estimate

dxy1Ž .F ryd
t y t - - D r .Ž .H2 1 y1y1 F r y F xŽ .Ž . Ž .yF ryd

Ž . Ž .Note that the property lim inf s y s G D r in Lemma 5 isnª` nq1 n
Ž . Ž w x.called D r -discreteness see 14 .

3. ASYMPTOTIC STABILITY

Before stating our main theorem, we formulate a simple result that
shows we cannot expect to prove results on the asymptotic behavior of
solutions without taking into account the properties of f and f . Similarly,b

Ž . Ž .although lim F u s lim F u s `, the globality of the asymp-uª "` uª "`

totic stability cannot be expected either.

� Ž .THEOREM 2. Let t s np, 0 F b F 1, and let D s r : D r s prk,n n 0
4 Ž . Ž Ž ..k s 1, 2 . . . . The solutions of 1 with the initial conditions F x t s r g1

XŽ .D , x t s 0 are periodic.0 1

The proof of Theorem 2 is obvious. The following corollary is a simple,
but important, consequence of Theorem 2.

COROLLARY 3. Let 0 F b F 1 and t s np with p ) 0.n n

Ž . Ž .a If lim D r s 0, then the zero solution cannot be asymptoti-r ª 0
cally stable.

Ž . Ž .b If lim D r s 0, then the asymptotic stability cannot be global.r ª`

The following property was first formulated for the special case of
Ž . Ž .system 1 with f u s u. It is useful in determining the value ofb

Ž .lim V t as Theorem 4 below shows.t ª`
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Ž .Condition Attr L . Suppose that there exists a number L G 0 and a
�w x4sequence of intervals s , s q i such that s ª ` as n ª `, i ) 0,n n n n n

s G s q i , andnq1 n n

lim sup i F L. 19Ž .n
nª`

Let the impulses satisfy the following properties:

lim inf b ) 0; 20Ž .Ł j
nª` s -t -s qin j n n

� 4For every sequence u with s F u F s q in n n n n

`

a m t , u s `, 21Ž . Ž .Ý Ý k k nž /
ns1 s Ft Fs qin k n n

Ž . � < <1q Ž1r b .4where m t, u s min 1, t y u .

Ž .The difference in the inequalities in the range of the product in 20 and
Ž .the sum in 21 is essential as we will see later in formulating some special

Ž . Ž .cases. The condition Attr L can be formulated without 20 , but in that
case, the definition of m is somewhat more complicated. Our main resultn
is the following.

Ž .THEOREM 4. Suppose that 0 F b F 1, n s 1, 2, . . . , and Attr L holdsn
Ž . Ž . Ž .for some L G 0. Let x t be a solution of Eq. 1 for which lim V t s r.t ª`

Ž .Then either r s 0 or D r F L.

Now we consider some special cases and applications of the above
results. We will prove Theorem 4 at the end of this section. Success in

� 4 � 4applying Theorem 4 depends on how the sequences s and i aren n
Ž .chosen. Then, if condition Attr L is satisfied, the attractivity of the zero

Ž .solution depends on the local and global properties of D r . Here, we
formulate corollaries for some important cases. The following conditions

Ž .imply Attr L . Let s s t and s q i s t .n k n n k qln n n

Ž . � 4 � 4Condition Attr1 L . Let a subsequence t of t and the sequence ofk nn
� 4positive integers l satisfy the following properties:n

lim sup t y t F L, 0 F L - `; 22Ž .Ž .k ql kn n n
nª`

lim inf b ) 0; 23Ž .Ł j
nª` t -t -tk j k q ln n n

`
1q1rb

t y t min a , a s `. 24. Ž .� 4Ž .Ý k ql k k k qln n n n n n
ns1
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Ž . Ž .Note that condition 24 in Attr1 L means that the impulses at t andk n

t are significant, and the impulses between them can be neglected ink qln n

estimating V. In the special case l ' 1, we have the following condition.n

Ž . � 4 � 4Condition Attr2 L . Let a subsequence t of t satisfy the condi-k nn

tions

lim sup t y t F L, 0 F L - `, 25Ž .Ž .k q1 kn n
nª`

`
1q1rb � 4t y t min a , a s `. 26Ž .Ž .Ý k q1 k k k q1n n n n

ns1

This last condition formulates a very useful strategy that can be used in
applications, that is, the strategy of ‘‘twin-effects.’’ The effect working at a
time t has to be repeated at t q d . This strategy guarantees that we avoid
problems occurring from a wrong choice of t .

Ž . Ž . Ž .To prove that Attr1 L implies Attr L , we have only to show that 21 is
w xsatisfied. For any u g t , t , we obtainn k k qln n n

1q1rb 1q1rb
min t y u , 1 a q min t y u , 1 aŽ . Ž .½ 5 ½ 5k n k k ql n k qln n n n n n

1q1rb 1q1rbG min t y u , 1 q min t y u , 1Ž . Ž .½ 5 ½ 5k n k ql nž /n n n

� 4= min a , ak k qln n n

1 1q1rb � 4G t y t min a , aŽ .k ql k k k ql1q1r b n n n n n n2

Ž . Ž .since one of the distances t y u or u y t is greater than ork ql n n kn n n

Ž . � 4equal to t y t r2 and the sequence t y t is bounded.k ql k k ql kn n n n n n

To obtain attractivity criteria, we need to recall that the energy is
Ž . Ž .decreasing along the solutions, so if V 0 s r , then lim V t - r .0 t ª` 0

Hence, r can be compared to a number L for which one of the conditions0
Ž . Ž . Ž .Attr L , Attr1 L , or Attr2 L holds. In this way, we can estimate the

attractivity region. Now, the following theorem easily follows from Theo-
rem 4.

Ž . Ž .THEOREM 5. Assume that Attr L holds for Eq. 1 with L G 0. If
0 F L F D0, then the zero solution is asymptotically stable. If , in addition,
0 F L F D`, then the asymptotic stability is global.

Note that if D0 s 0 and L ) 0, then the above theorem cannot guaran-
tee asymptotic stability. If D` s 0 and L ) 0, then the globality cannot be

Ž . Ž .assured. Choosing f u s f u provides us the appropriate counterexam-a
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Ž .ples. Combining Theorem 5 with condition Attr2 L and Theorem 2, we
obtain the following corollary.

Ž . Ž .COROLLARY 6. Let f u s f u , and t y t s L ) 0, and assumea nq1 n
Ž .that 26 holds with k s n.n

Ž .Case a . a s b. If L - D, then the zero solution is globally asymptot-
ically stable. If L s D, then the zero solution is not asymptotically stable.

Ž .Case b . a ) b. The zero solution is asymptotically, but not globally,
�Ž X . Ž . Ž X . y1Ž .4stable. A region of attractivity is x , x : F x q F x - D L .0 0 0 0

Ž .Case c . 0 - a - b. The zero solution is not asymptotically stable.
Ž . y1Ž .Every solution satisfies the property lim V t - D L .t ª`

Ž .Remark 3. In the half-linear case a s b , if t y t s L ) D , wenq1 n a

Ž .can remove any interval of length D from the intervals t , t . Conse-a n nq1
quently,

t y t mod DŽ .nq1 n a

Ž . Ž . Ž .can be used in conditions Attr1 L and Attr2 L instead of t y t .nq1 n

Ž .Finally, let us prove Theorem 4. In order to make use of 9 , an estimate
of the derivative of a solution is needed. The following lemma is useful in
this regard.

Ž . Ž . Ž .LEMMA 6. Let x t be a solution of 1 for which lim V t s r, andt ª`

let 0 - d - r and 0 - s - s be gï en. The following statements hold.1 2

Ž . Ž Ž .. w x < XŽ . < y1Ž .a If F x t F r y d for t g s , s , then x t G F d .1 2

Ž . Ž Ž .. Ž . XŽ . w xb If F x t ) r y d and x t x t G 0 for t g s , s , then1 2
< Ž XŽ .. < < <f x t G d t y s .b 1 2

Ž . Ž Ž .. Ž . XŽ . w xc If F x t ) r y d and x t x t F 0 for t g s , s , then1 2

t tX bf x t G d C s, t ds s d b ds,Ž . Ž .Ž . ŁH Hb 1 1 jž /
s s s-t -t1 1 j

� < Ž . < Ž . < < < Ž . <4where d s inf f u : F u ) r y d , u - sup x t ) 0.1 t G 0

Ž . yK Ž tys.Remark 4. Observe that if C s, t G Le for t ) s and t, s g
Ž . < Ž XŽ .. < � 4s , s , then f x t G «d min 1, t y s for some 0 - « - 1. The con-1 2 b 1 1
stants L, K, « , and d in the above estimates depend only on d and r.1

Ž . Ž . Ž .Proof. Let x t be a solution of 1 for which lim V t s r ) 0, andt ª`

w xlet r ) d ) 0 and the interval s , s be given.1 2

Ž . Ž Ž .. w x < XŽ . < y1Ž .a If F x t F r y d for t g s , s , we see that x t G F d1 2
Ž Ž .. Ž XŽ ..since F x t q F x t ) r.
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Ž . Ž Ž .. XŽ . Ž . w xb Let F x t ) r y d and x t x t G 0 for t g s , s . Assume1 2
XŽ .that x t G 0. By Lemma 3, we have

s2X X0 F f x s s f x t C t , s y C s, s f x s dsŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Hb 2 b 2 2
t

and so

s C s, sŽ .2 2Xf x t G f x s ds G d s y t ,Ž . Ž . Ž .Ž . Ž .Hb 1 2C t , sŽ .t 2

� < Ž . < Ž . < Ž . <4where d s inf f u : F u ) r y d , u - sup x t ) 0.1 t G 0

Ž . Ž Ž .. Ž . XŽ . w xc Let F x t ) r y d and x t x t F 0 for t g s , s . We can1 2
XŽ . Ž .assume that x t G 0 and x t - 0. Again by Lemma 3, we have

tX Xf x t s f x s C s , t y C s, t f x s dsŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Hb b 1 1
s1

t t
bG d C s, t ds s d b ds.Ž . ŁH H1 1 jž /

s s s-t -t1 1 j

As observed earlier, replacing Ł by Ł does not modify thesF t - t s- t - tj j

integral.

Ž .Proof of Theorem 4. Suppose that Attr L is satisfied with L G 0. Let
Ž . Ž . Ž Ž . XŽ ..x t be a solution of 1 such that lim V x t , x t s r ) 0. Withoutt ª`

wloss of generality, we can assume that for any n ) 0 the intervals s , s qn n
x w xi and s , s q i are disjoint. If this is not the case, but theren nq1 nq1 nq1

w x wexists k such that for every n the intervals s , s q i and s , s0 n n n nqk nqk0 0x Ž .q i are disjoint, then 9 can be written asnqk 0

k X0 a F x tŽ .Ž .n nXV t s V 0 y a F x t s ,Ž . Ž . Ž .Ž .Ý Ý Ýn n k0t -t t -t js1n n

Ž XŽ .. w xand we can estimate the expressions a F x t rk on any s , s q in n 0 n n n
independently of the other intervals.

Ž . w . Ž .We will now show that x t is oscillatory on 0, ` . Suppose x t is
Ž . XŽ . XŽ .nonoscillatory. Since x t and x t are bounded, lim x t s 0. We cant ª`

w x XŽ .apply Lemma 6 on each interval s , s q i to estimate x t for suffi-n n n
XŽ . Ž .ciently large n ) N. It follows from the boundedness of x t and part b

Ž . XŽ .of Lemma 6 that x t x t F 0 for t large enough, so we can assume that
� 4N is chosen large enough for this to be the case. Now, since i isn

Ž .bounded and condition 20 holds, it follows from Remark 4 that
< Ž XŽ .. < � 4 Ž .f x t G « min 1, t y s , for some « ) 0. Then, from 9 , we obtainb 1 n 1
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that

y1V t F V s y a « min 1, F f t y sŽ . Ž . Ž .½ 5Ž .Ý Ýn k 2 b k n
n)N , w xt g s , s qik n n ns qi Ftn n

Ž .for some positive constant « . By the definitions of f and F, 21 implies2 b

that the right hand side tends to y` as t ª `, and so we have a
contradiction.

Ž . w .Now, let x t be oscillatory on some half-ray t , ` . Assume that0
Ž .0 F L - D r . Let

dxy1Ž .F rydX
D r , d , « [ .Ž . H y1y1 F 1 q « r y F xŽ . Ž .Ž . Ž .yF ryd

It follows from the Lebesque dominated convergence theorem that

lim lim D
X r , d , « s D r .Ž . Ž .ž /

«ª0 dª0

XŽ .Hence, there exist d , « , and N such that i - D r, d , « if n ) N, andn
Ž . Ž .V t - r 1 q « if t ) s . We can apply Lemma 6 with this d ) 0. FromN

Ž Ž ..Lemma 5, we know that the lengths of the intervals where F x t F r y d
XŽ .are not smaller than D r, d , « . Hence, there can be at most one zero of

XŽ . w xx t in s , s q i , and there are three possible cases to consider.n n n

Ž . XŽ .Case 1. The interval s , s q i does not contain a zero of x t andn n n
XŽ . Ž . Ž . Ž . Ž .x t x t G 0 for t g s , s q i . Then, parts a and b of Lemma 6n n n

imply that

X y1 < < < <f x t G min f F d , d t y s y i ) « min 1, t y s y i� 4Ž . Ž .Ž . Ž .� 4b b 1 n n 3 n n

for some « ) 0.3

Ž . XŽ .Case 2. The interval s , s q i does not contain a zero of x t andn n n
Ž . XŽ . Ž . Ž . Ž .x t x t F 0 for t g s , s q i . Now, parts a and c of Lemma 6 andn n n
Ž .20 imply that

X y1 � 4f x t G min f F d , « t y s ) « min 1, t y sŽ . Ž . Ž .Ž . Ž .� 4b b 4 n 5 n

for some « , « , which are independent of n.4 5

XŽ . Ž .Case 3. There is a zero u of x t in s , s q i . Then the intervalsn n n n
Ž . Ž .s , u and u , s q i belong to Cases 1 and 2, respectively.n n n n n

XŽ . XŽ .We note that since x t is continuous from the left, x t s 0 at an
Ž . XŽ .extremum of x t , while x t q 0 s 0 can occur without there being an

extremum since b s 0 is not ruled out for any n.n
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� 4Summarizing the above cases, we see that there is a sequence u withn
s F u F s q i , such that one of the properties u s s , u s s q i ,n n n n n n n n n

XŽ . XŽ .or x u s 0 holds. For x t , we obtainn

X < <f x t G « min 1, t y u� 4Ž .Ž .b 6 n

with « ) 0 independent of n. We then have the estimate6

y1 < <V t F V s y « a min 1, F f t y u ,Ž . Ž . Ž .½ 5Ž .Ý ÝN 7 k b k n
n)N , w xt g s , s qik n n ns qi -tn n

Ž .where « ) 0 is a constant. Then, by the definition of f and F, 217 b

implies that the right hand side tends to y` as t ª `.

Ž Ž X..X Ž . Ž .4. ATTRACTIVITY OF THE EQUATION f x q q t f x s 0b

In this section, we apply the results of the previous section to the
equation

XXf x q q t f x s 0. 27Ž . Ž . Ž . Ž .Ž .b

Ž .The function f satisfies the same general conditions as before, q t is a
Ž . w .nondecreasing step-function such that q t s q if t g t , t , wheren n nq1

0 - q F q and 0 F t - t for every n s 1, 2, . . . , and t ª ` asn nq1 n nq1 n
n ª `. Note that this equation includes the equation

XXp t f x q q t f x s 0Ž . Ž . Ž . Ž .Ž .b

Ž .if p t is also a step-function. Here, we give results which guarantee the
property

lim x t s 0 28Ž . Ž .
tª`

Ž .for the solutions of Eq. 27 .
Since the publication of the famous Armellini]Sansone]Tonelli theo-

w xrem 7, 20 , there have been a large number of papers devoted to this
Ž . Ž w xproblem in the case f u s u see 1, 2, 5, 13, 14, 18 and the referencesb

.contained therein . There have also been some extensions to other more
Ž . Žgeneral systems such as the half-linear case of Eq. 27 see, for example

w x.6 .
Ž .It is known that the condition lim q t s ` is necessary but nott ª`

w xsufficient for the zero solution to be attractive 17 . The Armellini]San-
Ž .sone]Tonelli theorem says that if ln q t grows ‘‘regularly’’ to infinity, then
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Ž Ž . Ž . .the zero solution of the linear equation f u s f u s u is globallyb

attractive. In order to describe the concept of ‘‘regular growth’’ we first
Ž .define the density of the interval system a , b , i s 1, 2, . . . to bei i

Ýn b y aŽ .is1 i i
« s lim sup .

bnª` i

Ž .Then we say that q t ª ` irregularly as t ª `, if for every « ) 0 there
�Ž .4exists a system of intervals a , b of density « , such that the increase ini i

Ž . Ž . Ž . Ž .q t on 0, ` _D a , b is finite; we say that q t ª ` regularly as t ª `,i i i
if it does not grow irregularly.

Ž .The notion of regular growth roughly means that q t cannot tend to
infinity on a set of very small measure. Although this condition is not easy
to verify, and is not very sharp, it has remained a ‘‘milestone,’’ a starting
point, for subsequent results. Several conditions require higher differentia-

Ž .bility of q t to avoid the difficulties due to the concept of the irregular
Ž w x.growth for details and references see 13 . A more natural approach is to

follow and improve the original irregular growth concept. Such results are
called ‘‘sequence-of-intervals criteria,’’ and give finer restrictions on the

Ž .measure and the distribution of the irregularly growing parts of q t . Since
the oscillatory behavior of the solutions is often the main concern, and this
behavior can be investigated easily in the case of linear equations, most

w x Ž .such results are for this case 1, 14, 16, 18, 20 . Equation 27 with
Ž . Ž .f u s u and with a very irregularly growing step-function q t wasb

w x w xtreated in 11 . Hatvani 15 investigated the step-function case of linear
equations from a statistical point of view.

Unlike most earlier results, our method is essentially based on, and
hence the attractivity properties mainly depend on, the nonlinear structure

w xof the functions f and f. Here, we generalize the results proved in 11 tob

Ž .the equation 27 . Using the generalized Liouville transformation, we will
Ž . Ž .transform Eq. 27 to an impulsive system 1 .

Let us apply the transformation

t 1rŽ bq1.t s q u du, 29Ž . Ž .H
0

Ž .to Eq. 27 , and use the notation ‘‘?’’[ drdt . Let T ) 0 be given, and
Ž .apply 29 to the equivalent integral equation

tX Xf x t s f x T y q s f x s ds.Ž . Ž . Ž . Ž .Ž . Ž . Ž .Hb b
T



GRAEF AND KARSAI92

X 1rŽ bq1.Ž .Since x s xq t , we obtain the equation˙

q brŽ bq1. t f x t t s q brŽ bq1. t f x t TŽ . Ž . Ž . Ž .Ž . Ž .Ž . Ž .˙ ˙b b

t
1rŽ bq1.y q s f x s u du.Ž . Ž .Ž .Ž .H

Ž .t T

Ž .Let t be a jump point of q t , d ) 0, t s t q d , and T s t y d . Sincen n n
the integral on the right hand side is continuous, if d ª 0, we obtain the
equality

q brŽ bq1. t q 0 f x t q 0 s q brŽ bq1. t y 0 f x t y 0 ,Ž . Ž . Ž . Ž .Ž . Ž .˙ ˙n b n n b n

Ž . Ž .where t s t t . Thus, we obtain the jump condition for x t at t ,˙n n n
namely,

Ž .br bq1qny1
f x t q 0 s f x t y 0Ž . Ž .Ž . Ž .˙ ˙b n b nž /qn

Ž .1r bq1qny1s f x t y 0Ž .˙b nž /ž /qn

Ž . Ž .due to the form of f . On any interval t , t , the transformation 29b ny1 n

Ž .yields the equation 7 without impulses.
Ž . Ž .Consequently, 29 transforms Eq. 27 into the system with impulse

damping

˙f x qf x s 0, t / t ,Ž . Ž .˙Ž .b n

x t q 0 s x t y 0 , 30Ž . Ž . Ž .n n

Ž .1r bq1qny1
x t q 0 s x t y 0 , n s 1, 2, . . . ,Ž . Ž .˙ ˙n nž /qn

where

tn 1rŽ bq1. 1rŽ bq1.t s q u du and t y t s q t y t .Ž . Ž .Hn nq1 n n nq1 n
0

Using the notation from the previous section, we have

Ž .1r bq1q qny1 ny1
b s and a s 1 y ,n nž /q qn n
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Ž .and it is clear that 0 F b F 1. The energy V defined in 5 for then
Ž .impulsive system 1 has the form

F xX tŽ .Ž .
V t t s F x t q F x t s q F x tŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .˙

q tŽ .

Ž .for the system 27 .
Now, we are ready to apply our results in the previous sections. It

Ž .follows from Theorem 1 that no solution of 27 can tend to zero if

N qny1
lim ) 0, i.e., lim q - `. 31Ž .Ł nqNª` Nª`ns1 n

Ž . Ž .If f u s f u andb

` qny1 s 0, 32Ž .Ł qns1 n

w xthen Atkinson and Elbert 3 show that there exists a solution tending to
zero.

Ž .Using condition Attr1 L , we can formulate an analog of Theorem 4.

� 4 � 4THEOREM 7. Suppose that there exist a subsequence t of t and ak nn
� 4sequence l of positï e integers such that t G t . Assume that then k k qlnq 1 n n

following conditions hold:

k ql y1n n
1rŽ bq1.lim sup q t y t s L - `; 33Ž . Ž .Ý i iq1 i

nª` isk n

qk nlim inf ) 0; 34Ž .
qlª` k ql y1n n

` q qk y1 k ql y11q1rb n n n1r bt y t q min 1 y , 1 y s `. 35Ž .Ž .Ý k ql k kn n n n ½ 5q qk k qlns1 n n n

Ž . Ž . Ž . Ž .Then for e¨ery solution x t of 27 either lim V t s r s 0 or D r F L.t ª`

The sharpness of our results can be shown by choosing p s
1rŽ bq1.Ž .q t y t s const. in Theorem 2. Moreover, from Theorem 5 wen nq1 n

have that if the conditions of Theorem 7 hold and 0 F L F D , then the0
zero solution is asymptotically stable. If, in addition, 0 F L F D , then the`

asymptotic stability is global.
Ž . Ž .Because of the specific importance of the case where f x s f x fora

a ) 0, we formulate a consequence of Corollary 6.
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Ž . Ž . 1rŽ bq1.Ž .COROLLARY 8. Let f u s f u , and q t y t s L ) 0. As-a n nq1 n
sume that

` q qny1 n
min 1 y , 1 y s `. 36Ž .Ý ½ 5q qn nq1ns1

Then the conclusions of Corollary 6 hold.

wCorollary 8 generalizes and improves a theorem by F. V. Atkinson 1,
x Ž . Ž .Theorem 3 for Eq. 27 . Condition 36 can be written in the equivalent

form
` q qnq1 n

min ln , ln s `Ý ½ 5q qn ny1ns1

that is used in Atkinson’s theorem. This form expresses the importance of
Ž .the growth of ln q t .

5. GENERALIZATIONS

Our results here can also be derived under more general conditions.
Ž . Ž .Instead of f u , we can consider functions f u that are positive homo-b

Ž .geneous. For such functions, F is defined as in 4 , and the key estimate
Ž . Ž .8 for V t q 0 and Lemma 3 for f can be easily proved. But now f isn

Ž .not necessarily odd, and consequently, f u is not assumed to be odd,
either. The function D has to be defined for both positive and negative

Ž . Ž .halfcycles, D r and D r , respectively. Then, in this more generalq y
Ž . Ž . � Ž . Ž .4setting, D r can be defined by D r s min D r , D r . The proofs ofq y

our results can be carried through under the same conditions, where the
previous functions are replaced by these new ones.

Ž . ŽFinally, note that since D r can only be calculated in special cases for
.example, for power functions , computer methods and comparison results

Ž .are often useful in estimating the value of D r . The following lemma
w xgeneralizes Theorem 3.1.3 in 19 .

ˆ< Ž . < < Ž . < < Ž . < < Ž . <LEMMA 7. Let r ) 0 be gï en. If f u G f u and f u F f u0
� Ž . Ž . 4for u g u: F u F r , F u F r , then0 0

x xds dsˆD , F x s FŽ .Ž .ˆ H Hf , f y1y1 ˆ ˆ F F x y F sŽ . Ž .Ž .F F x y F s0 0Ž . Ž .Ž .
s D F x 37Ž . Ž .Ž .f , f

� Ž . Ž . 4for x g u: F u F r , F u F r .0 0
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Ž̂ . Ž . Ž . Ž . Ž .If f u s f u and f u s f u , then from 37 we obtain thata b

Ž .1r aq1 Ž bya .rŽaq1.Ž bq1.D F a q 1 r G M r ,Ž .Ž .Ž .f , f a , b

Ž .where M is the constant in 17 .a , b

As an example of our remarks in this section, we formulate a corollary
of Theorem 5 in this more general setting.

Ž . Ž .THEOREM 9. Assume that Attr L holds for Eq. 1 with L G 0, and
< Ž . < Ž . < < Ž . < < Ž . <there exist a , b , and r such that f u ¬G f u and f u F f u for0 a b

� Ž . Ž . 4 Ž .u g u: F u F r , F u F r . The zero solution of system 1 is asymptoti-0 0
cally stable if any one of the following holds:

Ž .a a s b and L - D ;a

Ž .b a ) b and L is bounded;
Ž .c a - b and L s 0.

Ž Ž .. Ž XŽ .. Ž .A region of attractï ity is F x 0 q F x 0 F R, where R s r for cases a0
L1rŽaq1. Ž bq1.rŽ bya .Ž . Ž ŽŽ . Ž . . Ž .and c , and R s min r , F a q 1 for case b .0 Ma , b

X X < Ž . < < Ž . <XAssume, in addition, that there exist a F b such that f u F f ua

< Ž . < < Ž . < � Ž . Ž . 4Xand f u G f u for u g u: F u G r , F u G r . Then the asymp-b 0 0
totic stability is global if either a X - b X and L is bounded, or a X s b X and
L - D .a
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