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Abstract. We present a topological minimax theorem (Theorem 2.2).
The topological assumptions on the spaces involved are somewhat
weaker than those usually found in the literature. Even when reinter-
preted in the convex setting of topological vector spaces, our theorem
yields nonnegligible improvements, for example, of the Passy–Prisman
theorem and consequently of the Sion theorem, contrary to most results
on topological minimax. This work is part of our ongoing effort to
elaborate a coherent theory of minimax.
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1. Introduction

In this paper, we continue our investigation of minimax theorems, more
specifically topological minimax theorems. The beginning of our investi-
gations was announced in Ref. 1 and was initiated in Ref. 2.

We will say that a function f: XBY→�̄ defined on the product of
two topological spaces and taking values in �̄_�̄∪{±S} is a minimax
function3 if

sup
X

inf
Y

fGinf
Y

sup
X

f.

Our aim is simply stated: to find in a given context conditions (topological
in the present work) on the spaces X and Y and on the lower and upper
levels of a function f: XBY→�̄ that will guarantee that it is a minimax

1Professor, Dipartimento di Matematica, Universitá di Trento, Povo, Italy.
2Professor, Département de Mathématiques, Université de Perpignan, Perpignan, France.
3The expression supX infY f stands for supx∈X infy∈Y f (x,y), and similarly for infY supX f. The
maximization variable will be always in X, and the minimization variable will be always in Y.
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function. Our approach is through the intersection theorems for multi-
functions, like in most other works on this topic. But, whereas one usually
deduces the minimax theorems from the fact that the intersection of the
values of a multifunction are nonempty, we found it necessary to consider
a given family � of multifunctions and to give criteria that imply that all of
the multifunctions in � have the finite intersection property. These criteria
do not bear on the individual members of �; in that case, there would be
no difference with what is done usually, but on how the members of the
family � are interrelated.

The paper is organized as follows. In Section 2, the Passy–Prisman
minimax theorem is recalled and our main result (Theorem 2.2), which
extends the Passy–Prisman minimax theorem, is stated. We introduce the
notion of interconnectedness, which evolved from our topological reading
of the condition of P-convexity in the small considered by Passy and
Prisman.

In Section 3, we present the basic concepts from which, through a
sequence of simple lemmas and some remarks, we are led in three steps to
an intersection theorem for a family of multifunctions. First, we establish a
local pointed binary intersection property (Lemma 3.1). From the local
pointed binary intersection property, we go to the binary intersection prop-
erty (Lemma 3.2), and from there, with the unavoidable heredity conditions
in such a general context, we move to the finite intersection property
(Theorem 3.1).

In Section 4, we prove our main result, Theorem 2.2. We show in Sec-
tion 5 that, in the context of Theorem 2.2, interconnectedness is not only
sufficient but also necessary. Furthermore, we show also that none of the
five conditions of Theorem 2.2 can be dropped. In Section 6, we will see
that Theorem 2.2 extends the Sion minimax theorem in several ways. More-
over, we establish a link with our previous works (Refs. 1–2) and in the
process we single out a very large class of functions (PP functions) to which
Theorem 2.2 applies. In Section 7, we will improve Theorem 1.1 below, due
to König; as a further illustration of our method, we will conclude with
a result (Theorem 7.3), which encompasses the König general minimax
theorem, which we will recall in due time.

Theorem 1.1. See König (Ref. 3). Let [X be connected4 and] Y be
compact. A function f, both lower semicontinuous on Y and upper semi-
continuous on X, is a minimax function if, for every real number

4With respect to König’s statement, connectedness of X has to be added to avoid counter-
examples.
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λ ,5 the two conditions below are satisfied:

(i) �either (a) )
x∈F

{ fFλ} x is connected for any nonempty finite F⊂X,

or (b) )
x∈F

{ f⁄λ} x is connected for any nonempty finite F⊂X,

(ii) � either (a′ ) )
y∈A

{ fHλ} y is connected for any nonempty A⊂Y,

or (b′) )
y∈A

{ f¤λ} y is connected for any nonempty A⊂Y,

and in case of the combination (a) and (a′ ) the space Y is Hausdorff.

We close this section with some definitions and terminological conven-
tions to which we will adhere throughout the paper. In the sequel, X and Y
will always be nonempty topological spaces; f will always denote a function
from XBY to �̄; �̄ denotes the extended real line.

We will say that a multifunction Ω: X→→Y has the binary (or finite)
intersection property, if the family of its values {Ωx: x∈X} has it. We do
not impose a priori that a multifunction should have nonempty values. The
symbol dom Ω denotes the set {x∈X: Ωx≠∅}.

Given a subset A⊂X, we denote by ΩA the multifunction defined by

ΩAx_Ωx∩�)
z∈A

Ωz� .

We set

*
x∈∅

Ωx_∅ and )
x∈∅

Ωx_Y;

5More precisely, König takes

λHsup
X

inf
Y

fG:a.

But this clearly less demanding condition makes really no difference. In fact, assume
a≠+S, define the function f∨a by

[ f∨a](x)_max{ f (x), a},

and consider a function ψ: [a, +S]→�̄ which is continuous and strictly increasing. Let

f ′_ψ ° ( f∨a)

and observe that:

(a) if conditions (i) and (ii) hold for f, whenever λHa, then they hold for f ′, whenever
λ∈�;

(b) if f ′ is a minimax function, then f is a minimax function.
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hence,

Ω∅GΩ.

For a subset A⊂X, we define

Ω(A)_ *
x∈A

Ωx.

If Γ is another multifunction from X to Y, the statement Γ⊂ Ω means that
Γx⊂ Ωx, for each x∈X.

Given a subset A of X, the function fA : XBY→�r is defined by

fA (x, y)_max{ f (x, y), supz∈A f (z,y)}.

As usual, the supremum [resp. infimum] of the empty set is assumed to be
equal to −S [resp. +S]; hence, f∅Gf.

For a real number λ∈�, sets of the form

{y∈Y: f (x, y)⁄λ} and {y∈Y: f (x, y)Fλ}

are referred to as large and strict lower levels of f at x. Sets of the form

{ẋ∈X: f (x, y)¤λ} and {x∈X: f (x, y)Hλ}

are referred to as large and strict upper levels of f at y. Notice that lower
level sets are taken with respect to the minimization variable, and that upper
level sets are taken with respect to the maximization variable.

To a given function f and a real number λ∈�, one can associate four
multifunctions:

(a) { f⁄λ} and { fFλ} from X to Y, which associate to each x∈X
the corresponding lower level;

(b) { f¤λ} and { fHλ} from Y to X, which associate to each y∈Y
the corresponding upper level.

Notice that

{ fAFλ}G{ fFλ}A , if A is finite ,

and

{ fA⁄λ}G{ f⁄λ}A , for any A.

Let P be a property. We say that a function f is arbitrarily P [resp.
finitely P ], if P is a property of fA for every subset [resp. for every finite
subset] A of X.
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2. Minimax Theorem for Interconnected Functions

Our aim is not to present yet another generalization of a minimax
theorem, but rather to present an approach to topological minimax the-
orems and their proofs which takes us further than what has been achieved
by other means. Let us emphasize also that the Passy–Prisman original
result (Theorem 2.1), is the core from which our investigations were born
and around which our methods were developed. We see it as much more
fundamental than the Sion theorem. We believe that the methods and results
of this paper for topological minimax theorems and those of Ref. 4 for
classical minimax theorems speak in favor of our point of view.

Now, we recall the minimax theorem of Passy–Prisman which will
motivate the introduction of some new definitions.

Theorem 2.1. See Passy–Prisman (Ref. 5). Let X and Y be two finite-
dimensional convex sets equipped with the Euclidean topology, and let Y
be compact. A function f: XBY→� is a minimax function, if the following
properties hold:

(i) ∀x∈X, the function y > f (x, y) is quasiconvex and lower semi-
continuous,

(ii) ∀y∈Y, the function x > f (x, y) is quasiconcave,
(iii) f is P-convex in the small in Y.

The definition of property (iii) as given by Passy and Prisman is the
following.

Definition 2.1. A function f: XBY→� is P-convex in the small in Y
if, for any µ∈� and any (x̄, ȳ)∈XBY such that f (x̄, ȳ)Fµ, there exists
(H0 such that, for any (x, y)∈XBY, if �xAx̄�F( and f (x, y)Fµ, then for
each ỹ∈[ ȳ, y] there exists x̃∈[x̄, x] such that f (x̃, ỹ)Fµ.

Remark 2.1. Taking into account the quasiconcavity of f, Theorem
2.1(iii) was reformulated in Ref. 1 as follows:

(i) For any real number µ, any x̄∈X, and any ȳ∈Y with ȳ∈{ fFµ}x̄,
there exists a neighborhood V of x̄ such that, for every x∈V,

[ ȳ, { fFµ}x]⊂{ fFµ}x̄ ∩ { fFµ}x,

where [ ȳ, { fFµ}x] is the segment-join.6

6If A and y are a subset and a point of a convex set Y, the segment-join [y, A] is defined by

[y, A]_ *
y′∈A∪{y}

[y, y′],

where [y, y′] is the segment

{(1At)yCty′: 0FtF1}.

See Section 6 for the relationship between property (iv) and PP functions.
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Remark 2.2. For a quasi-convex-concave function f, which is P-
convex in the small, we have that:

(i) f is arbitrarily P-convex in the small;
(ii) for any pair of real numbers µ and λ with µFλ and any x̄∈X

with { fFµ}x̄≠∅, there exists a neighborhood V of x̄ such that,
for every x∈V, there exists a convex subset D of Y verifying

{ fFµ}x⊂D⊂{ f⁄λ}x̄ ∪ { f⁄λ}x and D ∩ { f⁄λ}x̄≠∅.

After an obvious topological transcription Remark 2.2(ii) will be
retained as our interconnectedness condition.

Definition 2.2. A function f is said to be lower interconnected on Y if
Remark 2.2(ii) holds, when ‘‘convex’’ is replaced by ‘‘connected’’.

For further uses and also to be able to compare different conditions
where a mixture of strict and large levels occurs, let us introduce the follow-
ing notions.

A function f is said to be lower connected on Y if, for every x∈X and
for every pair of real numbers µ, λ with µFλ , there is a connected subset
D of Y such that

{ fFµ}x⊂D⊂{ f⁄λ}x. (1)

Clearly, a function f is arbitrarily lower connected [resp. finitely lower
connected] on Y if and only if, for every nonempty subset [resp. every non-
empty finite subset] A of X and for every pair of real numbers µ, λ with
µFλ , there is a connected subset D of Y such that

)
x∈Λ

{ fFµ}x⊂D⊂ )
x∈Λ

{ f⁄λ}x. (2)

Proposition 2.1. A function f is lower connected [resp. finitely or arbi-
trarily lower connected] on Y if and only if, for each µ∈� and for each
nonempty subset E of X which is a singleton [resp. finite or arbitrary], the
subset )x∈E{ fFµ}x of Y is connected.7

Proof. The ‘‘if part’’ of this claim is obvious. To prove the ‘‘only
if part’’, observe that, by definition of lower connectedness [resp. finitely,

7Let Y be the set of naturals numbers equipped with the cofinite topology. Consider the func-
tion f defined by f (x, y)_y, if y∈{0, 1}, and f (x, y)G1�y, otherwise. Observe that f is arbi-
trarily lower connected on Y; but the large sublevel sets { f⁄0}x, which are always equal to
{0, 1}, are not connected.



JOTA: VOL. 113, NO. 3, JUNE 2002 519

arbitrarily lower connectedness], for every pair (µ, λ ) with µFλ , there is a
connected subset D(µ, λ) of Y such that

)
x∈E

{ fFµ}x⊂D(µ, λ )⊂ )
x∈E

{ f⁄λ}x.

Therefore, we can find an increasing sequence {C (µn , µnC1)}n of connected
sets such that

*
n

C (µn , µnC1)G)
x∈E

{ fFµ}x.

Hence, the set )x∈E{ fFµ}x is connected. �

Dually, we give the notions of upper connected functions on X. A func-
tion f is said to be upper connected [resp. finitely and arbitrarily upper
connected] on X if −f is lower connected [resp. finitely and arbitrarily lower
connected] on X.

Finally let us state our main result which extends the Passy–Prisman
Theorem 2.1, and consequently the Sion theorem.

Theorem 2.2. Main Theorem. Let either X or Y be connected, and let
Y be compact. A function f is a minimax function, if the following con-
ditions are satisfied:

(i) f is lower semicontinuous on Y,
(ii) f is arbitrarily upper connected on X,
(iii) f is finitely lower interconnected on Y.

To appreciate the scope of this minimax theorem for ( finitely lower)
interconnected functions in comparison to the Passy–Prisman Theorem 2.1
and the Sion theorem, one can consider, in the standard topological convex
setting, an arbitrary multifunction Ω: X →→Y which is concave–convex8

with closed values, such that )x∈X Ωx≠∅. Clearly, its indicator function
verifies properties (i)–(iii); on the other hand, it is a quasi-concave–convex
lower semicontinuous function, but generally neither P-convex in the small
nor upper semicontinuous.

3. Tools and Concepts

We introduce in this section the tools and concepts that will be used to
establish the finite intersection property for a large class of multifunctions.
Recall that we have assumed that X and Y are nonempty topological spaces.

8Following Ref. 6, Ω is said to be concave–convex, if X, Y and Ωx are convex for every x∈X
and if Ω(x)⊂Ω(x1)∪Ω(x2), whenever x∈[x1 , x2 ]⊂X. The indicator function of Ω is the func-
tion f defined by f (x, y)_−S, if y∈Ωx, and by f (x, y)_CS, if y∉Ωx.
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Definition 3.1. A pair (Γ, Ω ) of multifunctions from X to Y is an inter-
connected pair if, for every x̄∈dom Γ, there exists a neighborhood V of x̄
such that

(i) ∀x∈V, ∃D ⊂ Y connected such that Γx ⊂ D ⊂ Ωx̄ ∪ Ωx and
D ∩ Ωx̄≠∅.

Remark 3.1. Sandwich Property. Notice that, if (Γ, Ω ) is an intercon-
nected pair, there exists a multifunction Ξ: X →→ Y with connected values
such that Γ⊂ Ξ⊂ Ω.

Definition 3.2. A pair of multifunctions (Ω, Φ ) from X to Y is topo-
logically concave between two points x1 and x2 of X if there is a connected
subset C of X such that

{x1 , x2} ⊂ C and Ω(C) ⊂ Φx1 ∪ Φx2 .

Moreover, (Ω, Φ ) is said to topologically concave if it is topologically con-
cave between any two points of X.

Notice that a pair (Ω, Φ ) is topologically concave if and only if, for
any B⊂Y, there is a connected subset C of X such that

{x∈X: Φx⊂B} ⊂ C ⊂ {x∈X: Ωx ⊂ B}.

Observe that, for any topologically concave pair (Ω, Φ ), we have
Ω⊂ Φ (take B_Φx). It is clear that the existence of a topologically concave
pair implies that X is connected (take B_Y).

Remark 3.2. Heredity of Topologically Concave Pairs. One readily
sees from the definition that, if a pair (Ω, Φ ) is topologically concave
between two points x1 and x2 and if Ω⊂ Φ, then so is the pair (ΩA , ΦA) for
any subset A⊂X.

Remark 3.3. Flexibility for Interconnected and Topologically Concave
Pairs. Let Ψ, Ψ′, Σ, Σ′ be multifunctions from X to Y such that Ψ′⊂Ψ
and Σ⊂ Σ′. Then, (Ψ′, Σ′ ) is interconnected [resp. topologically concave
between two points x1 and x2] if (Ψ, Σ ) is interconnected [resp. topologically
concave between two points x1 and x2].

Lemma 3.1. Local Pointed Binary Intersection Property. Let (Γ, Ω )
be an inter-connected pair of multifunctions from X to Y. If the values of
Γ are not empty, then:

(i) ∀x̄∈X, ∃ a neighborhood V of x̄ such that Ωx̄ ∩ Ωx≠∅ for any
x∈V.
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Proof. Since ∅≠Γx and Γx ⊂ Ωx for each x∈X, property (i) is an
immediate consequence of Definition 3.1. �

Lemma 3.2. Binary Intersection Property. Let (Ω, Φ ) be a pair of
multifunctions from X to Y which is topologically concave between two
points x1 and x2 of X and Ω ⊂ Φ. If the values of Ω are connected and if
Lemma 3.1(i) is satisfied, then:

Φx1 ∩ Φx2≠∅.

Proof. For contradiction, assume that

Φx1 ∩ Φx2G∅.

Let C be as in Definition 3.2. Consider the following sets:

AiG{x∈C: Ωx ⊂ Φxi},

where iG1, 2. Since Ω⊂Φ, each set Ai is nonempty, because it contains xi.
On the other hand, if x∈C, Definition 3.2(i) entails that Ωx ⊂ Φx1 ∪ Φx2;
but Ωx is connected; therefore,

Ωx⊂Φx1 or Ωx⊂Φx2.

This shows that

CGA1∪A2 .

The set C is connected; therefore, C∩A1∩A2 is nonempty. Pick a point x̄
in that set; we can assume that x̄∈A1 . Therefore,

x̄∈A1∩A2 .

From x̄∈A1 , we get

Ωx̄ ⊂ Φx1. (3)

Now, let V be the neighborhood given by Lemma 3.1(i). Since x̄∈A2 , there
is a point x̂ in V∩A2 . But from the definition of A2 and Lemma 3.1(i), it
follows respectively that

Ωx̂ ⊂ Φx2 and Ωx̄ ∩ Ωx̂ ≠ ∅. (4)

Hence, (3) and (4) imply

Φx1 ∩ Φx2≠∅;

thus, we have reached a contradiction. �

Proposition 3.1. Binary Intersection Property for a Family of Multi-
functions. Let � be a family of multifunctions from X to Y with closed
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nonempty values. Then, every multifunction in � has the binary intersection
property if the following two conditions hold:

(i) for any ∆∈� and any pair x1 , x2∈X, there exists ∆′∈� with ∆′⊂∆
such that the pair (∆′, ∆) is topologically concave between x1 and
x2;

(ii) for any ∆∈�, there exists ∆′∈� such that the pair (∆′, ∆) is
interconnected.

Proof. Fix an element Φ of � and two points x1 and x2 of X. Taking
into account Remark 3.3 and the sandwich property (Remark 3.1), it fol-
lows that there are Γ∈� and a multifunction Ω from X to Y such that:

(a) Γ ⊂ Ω⊂Φ;
(b) (Γ, Ω) is an interconnected pair, Ω has connected values, and

(Ω, Φ) is a topologically concave pair between x1 and x2.

Indeed, pick ∆′∈� with ∆′⊂Φ such that (∆′, Φ) is topologically concave
between x1 and x2. There is ∆′′∈� such that (∆′′, ∆′ ) is an interconnected
pair. By the sandwich property (Remark 3.1), there is a multifunction Ξ
with connected values such that ∆′′ ⊂ Ξ ⊂ ∆′. Finally, pick ∆′′′∈� such that
(∆′′′, ∆′′ ) is an interconnected pair. Now, let Γ_∆′′′, Ω_Ξ. That the choice
is appropriate follows from Remark 3.3 on flexibility of interconnected and
topologically concave pairs. Now, let us return to the main stream of the
proof.

The values of Γ are nonempty, because Γ∈�. The pair (Γ, Ω) is inter-
connected; therefore, from Lemma 3.1, we see that Ω fulfills Lemma 3.1(i).
Since Ω has connected values and (Ω, Φ) is a topologically concave pair
between x1 and x2 , Lemma 3.2 and the fact that the values of Φ are closed
yield that

Φx1 ∩ Φx2≠∅.

The points x1 and x2 of X and the multifunction Φ in � being arbitrary, we
have that the family {Φx: x∈X} has the binary intersection property, when-
ever Φ∈�. �

Theorem 3.1. Finite Intersection Property. Let � be a family of multi-
functions from X to Y with closed nonempty values. Then, every multifunc-
tion in � has the finite intersection property if Proposition 3.1(i) and the
following property hold:

(i) for any finite subset F of X and any ∆∈�, there exists ∆′∈� such
that the pair (∆′F , ∆F) is interconnected.
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Proof. We proceed by induction. Fix a natural number n¤1. Assume
that )x∈A∆x ≠∅, for any ∆∈� and any nonempty subset A of X having at
most n points. Take an arbitrary subset F⊂X of cardinality nA1. From
Remark 3.2 and the induction hypothesis, we see that the family

�F_{∆F : ∆∈�}

verifies all the conditions required by Proposition 3.1. Hence,

∆Fx1∩∆Fx2≠∅, for any ∆∈� and any x1 , x2∈X.

Therefore, )x∈A∆x≠∅ for any ∆∈� and any nonempty subset A of X
having at most nC1 points. �

4. Proof of the Main Theorem 2.2

Topologically concave pairs of multifunctions are related to arbitrarily
upper connected functions. In fact, we have the following lemma.

Lemma 4.1. Let X be connected. A function f is arbitrarily upper con-
nected on X if and only if

(i) for every µ, λ∈� with µFλ , the pair ({ fFµ}, { f⁄λ}) is topologi-
cally concave.

Proof. Let µ, λ be real numbers; let B⊂Y and C⊂X. The following
two conditions are equivalent:

(a) {x∈X: { f⁄λ}x⊂B}⊂C⊂{x∈X: { fFµ}x⊂B};
(b) )y∈Y\B{ fHλ}y⊂C⊂)y∈Y\B{ f¤µ}y.

Using the connectedness of X if YGB, and taking into account the
definitions of arbitrarily upper connected function and of topologically con-
cave pair, the required equivalence follows immediately. �

Lemma 4.2. From Y Connectedness to X Connectedness. Let Y be
connected and let f be a function which is both lower semicontinuous on Y
and arbitrarily upper connected on X. Then, there is a nonempty connected
subset X ′ of X such that the restriction of f on X ′BY, call it f ′, verifies:

(i) infY supX fGinfY supX ′ f ′,
(ii) f ′ is arbitrarily upper connected on X ′.

Moreover, if f is finitely lower interconnected on Y, then so is f ′.
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Proof.

Case 1. ∃y∈Y such that, for every x∈X, f (x, y)G−S. Pick any point
x̄ in X and define X ′G{x̄}. Obviously, (ii) holds; moreover, (i) also holds,
because

inf
Y

sup
X

fGinf
Y

sup
X ′

fG−S.

Case 2. ∀y∈Y, there is x∈X such that f (x, y)H−S. Now, define a
multifunction Ω: Y→→X by

Ωy_{x∈X: f (x, y)H−S};

observe that Ω has nonempty values; moreover, the values of Ω are connec-
ted, because f is upper connected. Consider the family H of open subsets
of Y defined by

H _{A⊂Y: A open and Ω(A) connected}.

Then:

(a) for every y∈Y, there is an open set U ∈N (y) such that U ∈H .

In fact, fix y∈Y; f being lower semicontinuous on Y, there is an open

set U∈N (y) such that )z∈UΩz≠∅; hence, the connectedness of the values
of Ω entails that U belongs to H . Moreover:

(b) the union of any chain of open sets belonging to H , belongs to
H ;

(c) A∪B∈H , if A, B∈H and A∩B≠∅.

Now, using the Zorn lemma, from the connectedness of Y and from proper-
ties (a), (b), (c) we have that Y∈H . Therefore, by definition of H , the
nonempty set X ′_Ω(Y) is connected.

Condition (ii) holds because

{ fHλ}y⊂X ′, for all λ∈� and y∈Y.

Finally, for every y∈Y and x∈X\X ′, we have f (x, y)G−S; hence,

sup
x∈X

f (x, y)Gsup
x∈X ′

f (x, y).

Therefore, (i) holds. �
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Proof of the Main Theorem 2.2.

Case 1. Assume that X is connected. Consider the family

�_�{ f⁄λ}: λHsup
X

inf
Y

f � .

Clearly, the multifunctions in � have nonempty values; moreover, by the
lower semicontinuity of f, they have also closed values. The connectedness
of X and the arbitrarily upper connectedness of f in conjunction with
Lemma 4.1 and Remark 3.3 on flexibility of topologically concave pairs
entails that:

(a) ∀λ , µ∈� with µFλ , the pair ({ f⁄µ}, { f⁄λ}) is topologically
concave.

On the other hand, f is finitely interconnected on Y, that is:

(b) ∀λ , µ∈� with µFλ and ∀ finite sets F⊂X, the pair
({ f⁄µ}F , { f⁄λ}F) is interconnected.

Properties (a) and (b) tell us that we are in the situation described in
Theorem 3.1. Now, apply that theorem to the family � and take into
account the compactness of Y to conclude that

)
x∈X

{ f⁄λ}x≠∅, for any λHsup
X

inf
Y

f.

Case 2: Assume that Y is connected. Use Lemma 4.2 to reduce this
case to Case 1. �

5. Comments on Properties Occurring in the Main Theorem 2.2

Necessity of the Interconnectedness Condition. We will see in Propos-
ition 6.1 that lower interconnected functions occur naturally in the context
of topological minimax theorems. One could ask to what extent such a
condition is unavoidable. First, consider the rather standard topological
setting described by the following two conditions.

(i) X is a connected topological space and Y is a compact space;
(ii) f: XBY → �̄ is a function verifying the following properties:

(a) f is lower semicontinuous on Y,
(b) f is finitely lower connected on Y,
(c) f is arbitrarily upper connected on X.
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Proposition 5.1. Minimax Criterion. Let

a_sup
X

inf
Y

f.

Then, under assumptions (i) and (ii), f is a minimax function if and only if
f ∨ a is finitely lower interconnected on Y.

Proof. If f verifies (i) and (ii), then so does f∨a. Therefore, if f ∨ a is
a finitely lower interconnected function on Y, from Theorem 2.2, it is a
minimax function. In other words, f is a minimax function.

The other implication is a consequence of the following simple remarks.
Assume that f is a minimax function. First, observe that

)
x∈X

{ fFλ}x≠∅, for all λHa.

Therefore, by (ii)(b), we have that, ∀λHa,∀ finite subsets F of X, the multi-
function { fFλ}F has connected values and

)
x∈X

{ fFλ}Fx≠∅.

Hence, ∀µ , λ with aFµFλ and ∀ finite subsets F of X, the pair
({ fFµ}F , { fFλ}F) is interconnected; therefore, f ∨ a is finitely lower inter-
connected on Y. �

Independence of the Properties Occurring in the Main Theorem
2.2. The examples below serve to show that none of the following five
properties which occur in Theorem 2.2 can be dropped:

(P1) either X or Y is connected;
(P2) Y is compact;
(P3) f is lower semicontinuous on Y;
(P4) f is arbitrarily upper connected on X;
(P5) f is finitely lower interconnected on Y.

In each of the examples below, a multifunction Ω: X →→ Y is given; its
indicator function verifies all except one of the previous five assumptions of
Theorem 2.2 and is not a minimax function, because the values of Ω are
nonempty and )x∈XΩxG∅.

Example 5.1. X_Y_{0, 1} are equipped with the discrete topology
and Ω is defined by

Ωx_�{0}, if xG0,

{1}, if xG1.

Clearly, neither X nor Y is connected; hence, (P1) does not hold.
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Example 5.2. X_Y_(0, 1] are equipped with the usual topology and
Ω is defined by

Ωx_ (0, 1�(nC1)],

where n¤1 is the natural number such that

1�(nC1)Fx⁄1�n.

Clearly, Y is not compact; hence, (P2) does not hold.

Example 5.3. X_Y_ [0, 1] are equipped with the usual topology and
Ω is defined by

Ωx_�
[0, 1�2), if xG0,

[0, 1�2], if x∈(0, 1�2),

{1�2}, if xG1�2,

[1�2, 1], if x∈(1�2, 1].

Clearly, (P3) does not hold, because Ω has values which are not closed.

Example 5.4. X_Y_ [0, 1] are equipped with the usual topology and
Ω is defined by

Ωx_�
{0}, if xG1�2,

{1}, if x∈[0, 1�4]∪ [3�4, 1],

[0, 1], if x∈(1�4, 1�2)∪ (1�2, 3�4).

Clearly, (P4) does not hold, because Ω has cofibers9 which are not
connected.

Example 5.5. X_Y_ [0, 1] are equipped with the usual topology and
Ω is defined by

Ωx_�
{0}, if xG0,

{1}, if xG1,

{0, 1}, if x∈(0, 1).

Clearly, (P5) does not hold, because Ω has values which are not connected.

9The cofibers of an arbitrary multifunction Ω: X→→Y are the sets {x∈X:y∉Ωx}, where
y∈Y.
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6. Extensions of the Sion Minimax Theorem: Cones and PP Functions

Proposition 6.1. Lower Interconnected Functions. The following pro-
perties holds:

(i) if f is lower interconnected on Y, then it is lower connected on Y;
(ii) if f is lower connected on Y and upper semicontinuous on X, then

it is lower interconnected on Y.

Proof. Interconnectedness of f on Y amounts to:

(a) ∀λ , µ∈ � with µFλ , the pair ({ fFµ}, { f⁄λ}) is interconnected.

Hence, (i) follows immediately from (a) and the sandwich property (Remark
3.1) for interconnected pairs.

Now, we will show (ii). Let µ, λ be real numbers with µFλ . If
{ fFµ}x̄≠∅, by upper semicontinuity choose ȳ∈{ fFµ}x̄ and a neighbor-
hood V of x̄ such that

ȳ∈{ fFµ}x, for any x∈V.

Since f is lower connected on Y, for each x∈V there is a connected set Dx

of Y such that

{ fFµ}x⊂Dx⊂ { f⁄λ}x.

Hence, for x∈V, we have

{ fFµ}x⊂Dx⊂{ f⁄λ}x̄∪{ f⁄λ}x and ȳ∈Dx∩{ f⁄λ}x̄.

This proves that the pair of multifunctions ({ fFµ}, { f⁄λ}) is intercon-
nected. �

From the definition of arbitrarily lower (inter)connectedness, Proposi-
tion 6.1 entails the following corollary.

Corollary 6.1. Let f be upper semicontinuous on X. Then, the follow-
ing properties are equivalent:

(i) f is arbitrarily lower connected on Y,
(ii) f is arbitrarily lower interconnected on Y.

From Corollary 6.1 and Theorem 2.2, the next theorem à la Sion fol-
lows in a straightforward manner.

Theorem 6.1. Let either X or Y be connected, and let either X or Y
be compact. A function f is a minimax function if the two conditions below



JOTA: VOL. 113, NO. 3, JUNE 2002 529

are satisfied:

(i) f is both lower semicontinuous and arbitrarily lower connected on
Y;

(ii) f is both upper semicontinuous and arbitrarily upper connected
on X.

That Theorem 6.1 is a topological version of the Sion theorem is clear
if we recall the inclusions (2) [resp. the dual inclusions] to deduce from
the quasiconvexity [resp. quasiconcavity] of a function its arbitrarily lower
connectedness [resp. arbitrarily upper connectedness].

How to construct arbitrarily lower interconnected functions, without
assuming upper semicontinuity as in Corollary 6.1 above?

Let us say that a pair (Γ, Ω) of multifunctions from X to Y is an
arbitrarily [resp. finitely] interconnected pair if, for every set [resp. finite set]
A⊂X, the pair (ΓA , ΩA) is interconnected.

Recognizing that a given pair is interconnected might be a difficult task,
seeing that it is finitely [resp. arbitrarily] interconnected might be even more
difficult. But, when the space Y has some geometric structure, we might be
able to show in one step that a pair of multifunctions is arbitrarily intercon-
nected. Convexity is one such structure; also, an interval structure10 would
do. But we prefer to express ourselves in another language.

The concept of a cone on a set, which we introduce now, is an instru-
mental and convenient tool for proving topological minimax theorems and
for defining large classes of minimax functions.

Definition 6.1. See Greco–Horvath (Ref. 2, Definition 2). A function
cn: YBP (Y )→P (Y ) is said to be a cone on Y if, for every y∈Y, A and
B∈P (Y ), the following two conditions are satisfied:

(i) {y}∪A⊂cn(y, A),
(ii) if A⊂B, then cn(y, A)⊂cn(y, B ).

The prototype of the cones is the segment-join

[y, A]_ *
y′∈A∪{y}

[y, y′],

where [y, y′] is the segment

{(1At)yCty′: 0⁄t⁄1}.

10An interval structure on Y (see Stachó, Ref. 7) is a function [[ · , · ]] which maps each pair
(y, y′)∈YBY to a connected subset [[y, y′]] of Y including the points y and y′.
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Among the convex cones (i.e., cones with convex values), the standard con-
vex cone is the smallest.

A cone on Y with connected values is said to be a connected cone.
Clearly, if a convex set Y is equipped with a topology which turns segments
into connected sets, then every convex cone is connected. To every interval
structure [[ · , · ]] on Y, we can associate the connected cone, defined by

[[y, A]]_ *
y′∈A∪{y}

[[y, y′]].

Conversely, to any connected cone cn on Y, there corresponds the interval
structure defined by

[[y, y′]]_cn(y, {y′}).

The latter cone includes the former, i.e.,

[[y, A]]⊂cn(y, A), for y∈Y and A⊂Y.

Lemma 6.1. See Greco–Horvath (Ref. 2, Definition 3). For a pair
(Γ,Ω ) of multifunctions from X to Y to be interconnected, it is sufficient
that there exists a connected cone cn on Y such that:

(i) for any x̄∈X and ȳ∈Γx̄, there exists V∈N (x̄) such that, for any
x∈V,

cn(ȳ, Γx)⊂Ωx̄∪Ωx.

The obvious proof is left to the reader. If conditions (i) is satisfied for some
connected cone, we say that (Γ, Ω) is a PP pair.

Lemma 6.2. Heredity. Let (Γ, Ω) be a PP pair of multifunctions from
X to Y. Then, for any subset A⊂X, the pair (ΓA , ΩA) is PP.

Proof. Let cn be a connected cone on Y with respect to which the
pair (Γ, Ω ) is PP. Fix a subset A⊂X. Now, let x̄∈X and ȳ∈ΓΛx̄. Since
ȳ∈Γx̄, from the definition of PP pair it follows that there is a neighborhood
V of x̄ such that

cn(ȳ, Γx) ⊂ Ωx̄ ∪ Ωx, for any x∈V. (5)

Notice that

cn(y, Γx) ⊂ Ωx, if y∈Γx.
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Combined with the monotonicity of the cone, this yields

cn(ȳ, ΓAx) ⊂ cn(ȳ, Γx) ∩ � )
x′∈A

Ωx′�.
Finally, taking (5) into account we get that, for any x∈V,

cn(ȳ, ΓAx) ⊂ ΩAx̄ ∪ ΩAx. �

Let us say that a function f is a PP function if, for every λ , µ∈� with
µFλ , the pair ({ fFµ}, { f⁄λ}) is PP. It is immediate to check that the
minimax functions of the Passy–Prisman Theorem 2.1 are PP functions with
respect to the segment-join; recall Remark 2.1. Lemmas 6.1 and 6.2 lead to
the following theorem.

Theorem 6.2. Every PP function is arbitrarily lower interconnected on
Y. Therefore, Theorem 2.2 holds if (iii) is replaced by ‘‘f is a PP function’’.

For example, let X and Y be topological spaces with an interval struc-
ture [[ · , · ]] on Y. If f: XBY→�̄ is a function such that, for every λ , µ∈�

with µFλ , at least one of the following seven pairs is PP with respect to
the cone associated to the interval structure, then f is a PP function:

(L) ({ fFµ}, { fFλ}), ({ fFµ}, { f⁄λ}),

({ f⁄µ}, { fFλ}), ({ f⁄µ},{ f⁄λ}),

({ fFµ}, { fFµ}), ({ fFµ}, { f⁄µ}),

({ f⁄µ}, { f⁄µ}).

As we have seen in Remark 2.1, the hypotheses of the Passy–Prisman
Theorem 2.1 imply that, for each µ∈�, the pairs of multifunctions
({ fFµ}, { fFµ}) are PP. The list (L) shows that one can mix strict and
large inequalities as one likes. Concerning the version with strict inequalit-
ies, ({ fFµ}, { fFµ}), and the version with large inequalities,
({ f⁄µ}, { f⁄µ}), we showed in Ref. 1, Examples 2 and 3, that they are
independent; that is, one cannot be derived from the other. One can also
find in Ref. 2 explicit formulations in terms of interval spaces, for example
in topological semilattices or hyperconvex metric spaces.

In the setting of upper semicontinuous functions, we have the following
proposition, which offers a new insight on Theorem 6.1 (à la Sion) above.
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Proposition 6.2. Let Y be connected, and let f be upper semicontinu-
ous on X. The following properties are equivalent:

(i) f is arbitrarily lower connected,
(ii) f is arbitrarily lower interconnected,
(iii) f is a PP function.

Proof. The equivalence (i) ⇔ (ii) was stated in Corollary 6.1. The
implication (ii) ⇔ (iii) is stated in Theorem 6.2. Now, assume (i). To show
(iii), it is enough to prove that ({ fFµ}, { fFµ}) is a PP pair for every real
number µ. Let us fix µ.

For every y, y′∈Y, let

[[y, y′]]_�Y, if there is no x∈X such that {y, y′}⊂{ fFµ}x,

∩ {{ fFµ}x: x∈X and {y, y′}⊂{ fFµ}x}, otherwise,

and define a cone cn on Y by

cn(y, A)_ *
y′∈A∪{y}

[[y, y′]].

The sets [[y, y′]] are connected, since f is arbitrarily lower connected on Y;
hence, the cone cn is connected.

Observe that

cn(y, { fFµ}x)G{ fFµ}x, if y∈{ fFµ}x. (6)

Now, to verify Lemma 6.1(i), let x̄∈X and ȳ∈{ fFµ}x̄. By the upper semi-

continuity of f, there is V∈N (x̄) such that, for every x∈V,

ȳ∈{ fFµ}x;

hence, by (6), we have

cn(ȳ, { fFµ}x)⊂{ fFµ}x∪{ fFµ}x̄, for every x∈V;

therefore, f is a PP function. �

In the usual context of interval spaces, interval structures are fixed,
independently of any function (see the Stachó theorem below); in con-
trast, for each given PP function, there is a family of intervals [see (6) in
the proof above], each one adapted to the family of strict sublevel sets
{{ fFµ}x: x∈X}.

The first minimax theorem in the context of interval spaces (i.e., a space
with a fixed interval structure) was given by Stachó11 in Ref. 7. Given two
interval spaces (X, [[ · , · ]]) and (Y, [[ · , · ]]), let us say that f: XBY→� is quasi-
concave in the sense of Stachó on the interval space (X, [[ · , · ]]) if, for all
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x1 , x2∈X and for all x∈[[x1 , x2 ]], one has min{ f (x1 , f (x2)}⁄ f (x). Quasicon-
vexity on the interval space (Y, [[ · , · ]]) is defined similarly.

Theorem 6.3. See Stachó (Ref. 7). Let (X, [[ · , · ]]) and (Y, [[ · , · ]]) be two
compact interval spaces. A continuous function f: XBY→� is a minimax
function if it is both quasiconcave on X and quasiconvex on Y in the sense
of Stachó.

7. Improvements of the König Minimax Theorem

From Proposition 6.1 and the definition of finitely lower (inter)connect-
edness, we have the following corollary.

Corollary 7.1. Let f be upper semicontinuous on X. Then, the follow-
ing properties are equivalent:

(i) f is finitely lower connected on Y,
(ii) f is finitely lower interconnected on Y.

The next theorem à la Sion follows in a straightforward way from this
corollary and our main result, Theorem 2.2.

Theorem 7.1. Let either X or Y be connected, and let Y be compact.
A function f is a minimax function if the two conditions below are satisfied:

(i) f is both lower semicontinuous and finitely lower connected on Y,
(ii) f is both upper semicontinuous and arbitrarily upper connected

on X.

That Theorem 7.1 improves the König Theorem 1.1 is clear; there are
no separation properties on Y, and the connectedness of Y can replace that
of X. There were attempts by König to remove the Hausdorff condition on
Y; he showed that it could be replaced by the weaker and unusual weak
Hausdorff property; see Ref. 3 and references therein.

König gave two versions of his theorem, one in Ref. 3 cited here as
Theorem 1.1 and another in Ref. 8, which we will recall as Theorem 7.2
below.

Let a∈�̄; a subset B⊂� is said to be a border set at a if a is the
infimum of B and each b∈B is strictly greater than a. Obviously, a convex
border set is an interval.
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Theorem 7.2. See König (Ref. 8). Let X be connected, Y compact,
and f a function both lower semicontinuous on Y and upper semicontinuous
on X. Let B and I be respectively a border [resp. border convex] set at
a_supX infY f. Then, f is a minimax function under each of the four
assumptions below:

(i) �(a) )
x∈F

{ f⁄λ}x is connected, ∀λ∈B, ∀ nonempty finite F⊂X,

(b) )
y∈H

{ fHλ}y is connected, ∀λ∈B, ∀ nonempty subset H⊂Y;

(ii) �
(a) )

x∈F
{ fFλ}x is connected, ∀λ∈I, ∀ nonempty finite F⊂X,

(b) )
y∈H

{ fHλ}y is connected, ∀λ∈B,∀ nonempty subset H⊂Y,

(c) Y is Hausdorff;

(iii) �(a) )
x∈F

{ fFλ}x is connected, ∀λ∈B, ∀ nonempty finite F⊂X,

(b) )
y∈H

{ f¤λ}y is connected, ∀λ∈B, ∀ nonempty subset H⊂Y;

(iv) �(a) )
x∈F

{ f⁄λ}x is connected, ∀λ∈I, ∀ nonempty finite F⊂X,

(b) )
y∈H

{ f¤λ}y is connected, ∀λ∈B, ∀ nonempty subset H⊂Y;

The König proof of Theorem 7.2 was not simple. The statement of the
theorem itself is quite intricate. Now, we give an improvement of the König
Theorem 7.2 by allowing a free mixture of large�strict lower�upper level
sets.

Theorem 7.3. Let X be connected, and let Y be compact. Assume that
f is a function which is both lower semicontinuous on Y and upper semicon-
tinuous on X. Let a_supX infY f. Then, f is a minimax function if the two
conditions below are satisfied:

(i) For any λHa and for any finite subset F⊂X, there exists µ with
aFµFλ such that, for every x∈X,

∃ D⊂Y connected such that { fFµ}Fx⊂D⊂{ f⁄λ}Fx.

(ii) For any λHa and for any nonempty subset H⊂X, there exists µ
with aFµFλ and

∃C⊂X connected such that )
y∈H

{ fHλ}y⊂C⊂ )
y∈H

{ f¤µ}y.
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Proof. We have to see that the family of multifunctions
�G{{ f⁄λ}: λHa} has the finite intersection property. For that purpose,
we will use Theorem 3.1. Hence, we have to show that Proposition 3.1(i)
and Theorem 3.1(i) hold.

Claim 1. Proposition 3.1(i) holds. Fix λHa and x1 , x2 in X. By the
flexibility of topologically concave pairs (see Remark 3.3), it is enough to
show that: for every λHa, there exists µ with aFµFλ such that the pair
({ fFµ}, { f⁄λ}) is topologically concave between x1 , x2 . Define

H_{y∈Y: {x1 , x2}⊂{ fHλ}y}. (7)

If HG∅, choose a real number µ such that aFµFλ . Then, one has

YG{ f⁄λ}x1∪{ f⁄λ}x2 ;

in other words,

{ fFµ}x⊂{ f⁄λ}x1∪{ f⁄λ}x2 , for every x∈X.

Hence, X being connected, from Definition 3.2 it follows that the pair
({ fFµ}, { f⁄λ}) is topologically concave between x1 , x2 .

Otherwise, in the case where H≠∅, take µ and C as in (ii). By (7), we
have that

{x1 , x2}⊂ )
y∈H

{ fHλ}y;

hence, from (ii), it follows that {x1 , x2}⊂C. On the other hand, from the
inclusion

C⊂ )
y∈H

{ f¤µ}y

in (ii) and from the definition (7) of H, it follows easily that

{ fFµ}x⊂{ f⁄λ}x1∪{ f⁄λ}x2 , for every x∈C.

Hence, by Definition 3.2, we have that the pair ({ fFµ}, { f⁄λ}) is topologi-
cally concave between x1 , x2 .

Claim 2. Theorem 3.1(i) holds. Fix λHa and F⊂X finite subset. By
flexibility of the interconnected pairs (see Remark 3.3), it is enough to show
that, for every λHa, there exists µ with aFµFλ such that the pair
({ fFµ}F , { f⁄λ}F) is interconnected.

Hence, choose µ as in (i) and fix x̄∈X such that { fFµ}Fx̄≠∅. By the
upper semicontinuity of fF, choose ȳ∈Y and a neighborhood V of x̄ such
that

ȳ∈{ fFµ}Fx, for any x∈V.
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Property (i) entails that, for each x∈V, there exists a connected set D of Y
such that

{ fFµ}Fx⊂D⊂{ f⁄λ}Fx.

Hence, for x∈V, we have

{ fFµ}Fx⊂D⊂{ f⁄λ}F x̄∪{ f⁄λ}Fx and ȳ∈D∩{ f⁄λ}Fx̄.

Thus, the pair ({ fFµ}F , { f⁄λ}F) is interconnected. �

References

1. GRECO, G. H., and HORVATH, C. D., Passy–Prisman’s Minimax Theorem,
Annales des Sciences Mathématiques du Quebec, Vol. 22, pp. 181–191, 1998.

2. GRECO, G. H., and HORVATH, C. D., Topological Versions of Passy–Prisman’s
Minimax Theorem, Optimization, Vol. 47, pp. 155–166, 2000.
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