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In this article we describe the structure of projections acting on semiprime ∗-rings
and satisfying a certain functional identity. The main result is applied to bicircular
projections on C ∗-algebras.
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INTRODUCTION

This work is motivated by the study of bicircular projections on the
C∗-algebra B���, the algebra of all bounded linear operators on a Hilbert space � ,
carried out by Stachó and Zalar. In Stachó and Zalar (2004, Theorem 2.2) they
determined the structure of bicircular projections on B���. According to Stachó and
Zalar (2004, Proposition 3.4), every bicircular projection P � B��� → B��� satisfies
the functional identity

�FI� P�xyx� = P�x�yx − xP�y∗�∗x + xyP�x�

for all x� y ∈ B���. In this article, we investigate the structure of projections
satisfying (FI) in the general setting of 2-torsion free semiprime ∗-rings.

The article is organized as follows. In Section 1, we study the functional
identity (FI). The main theorem and its corollaries concerning the projections
satisfying (FI) are proven in Section 2. In Section 3, the main theorem is applied
to obtain a generalization of Stachó and Zalar (2004, Theorem 2.2) on an arbitrary
C∗-algebra. These sections correspond to the main steps of the proof of Stachó and
Zalar (2004, Theorem 2.2).
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PRELIMINARIES

Throughout this article, all rings and algebras will be associative. A ring R is
said to be 2-torsion free if 2a = 0 (where a ∈ R) implies a = 0. A ring R is called
a semiprime ring if aRa = 0 (where a ∈ R) implies a = 0 (this is equivalent to the
condition that R has no nonzero nilpotent two-sided ideals) and it is called a prime
ring if aRb = 0 (where a� b ∈ R) implies a = 0 or b = 0 (which is equivalent to the
condition that the product of two nonzero two-sided ideals of R is not 0). A ∗-ring
is a ring R with an involution, that is with an additive mapping ∗ � R → R such that
�a∗�∗ = a and �ab�∗ = b∗a∗ for all a� b ∈ R.

In the sequel the word ideal always stands for a two-sided ideal. An ideal I of
a ∗-ring R is called a ∗-ideal if I∗ = I . Let R be a semiprime ring. If I is an ideal
of R, then (for a ∈ R) Ia = 0 if and only if aI = 0� the set of all such a ∈ R will
be denoted by I⊥. Obviously, I⊥ is also an ideal of R. If I is a ∗-ideal, then I⊥ is a
∗-ideal too. We write I⊥⊥ for �I⊥�⊥. An ideal I of R is said to be an essential ideal if
I ∩ J �= 0 for every nonzero ideal J of R� this is equivalent to the fact that I⊥ = 0.
For every ideal I of R, the ideal I ⊕ I⊥ is essential.

Let R′ be a semiprime ring and let R be a subring of R′. A double centralizer
from R to R′ is a pair �T� S� of additive mappings T� S � R → R′ satisfying xT�y� =
S�x�y for all x� y ∈ R. The set of all double centralizers from R to R′ is denoted by
M�R�R′� and the set of all double centralizers from R to R is denoted by M�R�.

If R is an essential ideal of R′ and �T� S� ∈ M�R�R′�, it is not difficult to verify
that T�xy� = T�x�y and S�xy� = xS�y� for all x� y ∈ R. If �T� S� ∈ M�R�, this implies
that T�I⊥� ⊆ I⊥ and S�I⊥� ⊆ I⊥ for every ideal I of R.

For a ∈ R′� La denotes the left multiplication operator (defined by La�x� = ax
for every x ∈ R) and Ra denotes the right multiplication operator (which is given by
Ra�x� = xa for every x ∈ R�� �La� Ra� is an example of a double centralizer from
R to R′.

If R and R′ are ∗-rings, for �T� S� ∈ M�R�R′� we define T ∗ � R → R′ by T ∗�a� =
T�a∗�∗ and S∗ � R → R′ by S∗�a� = S�a∗�∗. It is easy to see that �S∗� T ∗� ∈ M�R�R′�.

For �T1� S1�, �T2� S2� ∈ M�R�, we define

�T1� S1�+ �T2� S2� = �T1 + T2� S1 + S2��

�T1� S1��T2� S2� = �T1T2� S2S1��

With respect to these operations, M�R� becomes a semiprime ring with identity
�id� id�, where id�x� = x for every x ∈ R. The ring M�R� is called the multiplier ring
of R.

The ring R is canonically embedded into M�R� by a 
→ �La� Ra�. Moreover,
R is an essential ideal of M�R�. Further, R = M�R� if and only if R is unital.
Regarding R as a subring of M�R�, every double centralizer �T� S� from R to R is
given by the element a = �T� S� in M�R� as a multiplier, that is �T� S� = �La� Ra� for
some a ∈ M�R� (more details can be found in Ara and Mathieu, 2003).

1. ON THE FUNCTIONAL IDENTITY (FI)

Let R′ be a ring and let R be a subring of R′. Recall that a derivation � � R → R′

is an additive mapping satisfying ��xy� = ��x�y + x��y� for all x� y ∈ R.
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Note that, if D � R → R is an additive mapping satisfying (FI) and the
additional assumption D�x∗�∗ = −D�x� for every x ∈ R, Brešar (1989, Theorem 4.3)
immediately implies that D is a derivation. However, the general situation is more
complicated to deal with. It will turn out that the mapping satisfying (FI) is
generated by a derivation � � R → R such that ��x∗�∗ = −��x� for every x ∈ R and
by a double centralizer �T� S� ∈ M�R�M�R�� with the property T = S∗.

Let us mention that the methods used in this section are similar to those in
Brešar (1989, Theorem 4.3).

Lemma 1.1. Let R be a 2-torsion free semiprime ring. Suppose that D � R → R is an
additive mapping and � � R → R is a derivation such that

D�xyx� = D�x�yx − xD�y�x + x��y�x + xyD�x� �x� y ∈ R�� (1)

Then

D�xyz� = D�x�yz− xD�y�z+ x��y�z+ xyD�z� �x� y� z ∈ R��

Proof. Linearizing (1) we obtain

D�xyz+ zxy� = D�x�yz− xD�y�z+ x��y�z+ xyD�z�

+D�z�yx − zD�y�x + z��y�x + zyD�x� (2)

for all x� y� z ∈ R. Let a� b� c� x ∈ R and set W = D�abcxcba+ cbaxabc�. According
to (2) we arrive at

W = D��abc�x�cba�+ �cba�x�abc��

= D�abc�xcba− abcD�x�cba+ abc��x�cba+ abcxD�cba�

+D�cba�xabc − cbaD�x�abc + cba��x�abc + cbaxD�abc��

and on the other hand, using (1), we get

W = D�a�bcxcb�a+ c�baxab�c� = D�a�bcxcb�a�+D�c�baxab�c�

= D�a�bcxcba− aD�bcxcb�a+ a��bcxcb�a+ abcxcbD�a�

+D�c�baxabc − cD�baxab�c + c��baxab�c + cbaxabD�c�

= D�a�bcxcba− a�D�b�cxcb − bD�cxc�b + b��cxc�b + bcxcD�b��a

+ a��bcxcb�a+ abcxcbD�a�+D�c�baxabc

− c�D�b�axab − bD�axa�b + b��axa�b + baxaD�b��c

+ c��baxab�c + cbaxabD�c�

= D�a�bcxcba− aD�b�cxcba+ ab�D�c�xc − cD�x�c + c��x�c + cxD�c��ba

− ab��cxc�ba− abcxcD�b�a+ a��bcxcb�a+ abcxcbD�a�+D�c�baxabc

− cD�b�axabc + cb�D�a�xa− aD�x�a+ a��x�a+ axD�a��bc − cb��axa�bc

− cbaxaD�b�c + c��baxab�c + cbaxabD�c�
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= D�a�bcxcba− aD�b�cxcba+ abD�c�xcba− abcD�x�cba+ abc��x�cba

+ abcxD�c�ba− ab��c�xcba− abc��x�cba− abcx��c�ba− abcxcD�b�a

+ a��b�cxcba+ ab��c�xcba+ abc��x�cba+ abcx��c�ba+ abcxc��b�a

+ abcxcbD�a�+D�c�baxabc − cD�b�axabc + cbD�a�xabc − cbaD�x�abc

+ cba��x�abc + cbaxD�a�bc − cb��a�xabc − cba��x�abc − cbax��a�bc

− cbaxaD�b�c + c��b�axabc + cb��a�xabc + cba��x�abc + cbax��a�bc

+ cbaxa��b�c + cbaxabD�c��

Comparing the identities so obtained and using (2), it follows that

�D�cba�−D�c�ba+ cD�b�a− c��b�a− cbD�a��x�abc − cba�

+ �abc − cba�x�D�cba�−D�c�ba+ cD�b�a− c��b�a− cbD�a�� = 0� (3)

Let us write A�a� b� c� = D�abc�−D�a�bc + aD�b�c − a��b�c − abD�c� and
B�a� b� c� = abc − cba for brevity. Hence

A�c� b� a�xB�a� b� c�+ B�a� b� c�xA�c� b� a� = 0

for all x ∈ R. According to Brešar (1989, Lemma 1.1) this implies

A�c� b� a�xB�a� b� c� = B�a� b� c�xA�c� b� a� = 0

for all a� b� c� x ∈ R. By (2) we have A�a� b� c� = −A�c� b� a�. Using Brešar (1989,
Lemma 1.2) we get

A�a1� a2� a3�xB�b1� b2� b3� = B�b1� b2� b3�xA�a1� a2� a3� = 0 (4)

for all a1� a2� a3� b1� b2� b3� x ∈ R. Hence

2A�a� b� c�xA�a� b� c� = �A�a� b� c�− A�c� b� a��xA�a� b� c�

= �D�B�a� b� c��− B�D�a�� b� c�+ B�a�D�b�� c�

−B�a� ��b�� c�− B�a� b�D�c���xA�a� b� c��

Using (4) it follows that

2A�a� b� c�xA�a� b� c� = D�B�a� b� c��xA�a� b� c� (5)

for all a� b� c� x ∈ R. Similarly we can show that

2A�a� b� c�xA�a� b� c� = A�a� b� c�xD�B�a� b� c��� (6)
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Further we have, using (2),

0 = D�A�a� b� c�xB�a� b� c�+ B�a� b� c�xA�a� b� c��

= D�A�a� b� c��xB�a� b� c�− A�a� b� c�D�x�B�a� b� c�

+A�a� b� c���x�B�a� b� c�+ A�a� b� c�xD�B�a� b� c��

+D�B�a� b� c��xA�a� b� c�− B�a� b� c�D�x�A�a� b� c�

+B�a� b� c���x�A�a� b� c�+ B�a� b� c�xD�A�a� b� c���

According to (4), (5) and (6), from above, we get

0 = 4A�a� b� c�xA�a� b� c�+D�A�a� b� c��xB�a� b� c�+ B�a� b� c�xD�A�a� b� c���

Multiply this relation on the left by A�a� b� c�xA�a� b� c�y� x� y ∈ R. Using (4), we
obtain

4A�a� b� c�xA�a� b� c�yA�a� b� c�xA�a� b� c� = 0

for all x� y ∈ R. Since R is a 2-torsion free semiprime ring we arrive at A�a� b� c� = 0
for all a� b� c ∈ R. The proof is complete. �

Proposition 1.2. Let R be a 2-torsion free semiprime ∗-ring. Suppose that D � R → R
is an additive mapping satisfying (FI). If ��x� = D�x�−D�x∗�∗, then � is a derivation
on R with the property ��x� = −��x∗�∗. Further, there exists �T� S� ∈ M�R�M�R�� such
that T = S∗ and

2D�x� = ��x�+ T�x�+ S�x� �x ∈ R��

Proof. A linearization of (FI) implies

D�xyz+ zyx� = D�x�yz− xD�y∗�∗z+ xyD�z�

+D�z�yx − zD�y∗�∗x + zyD�x� (7)

for all x� y� z ∈ R. According to the definition of �, we have

��xyz+ zyx� = D�xyz+ zyx�−D�x∗y∗z∗ + z∗y∗x∗�∗

for all x� y� z ∈ R. Using (7), we get

��xyz+ zyx� = ��x�yz+ x��y�z+ xy��z�+ zy��x�+ ��z�yx + z��y�x (8)

for all x� y� z ∈ R. In particular,

��xyx� = ��x�yx + x��y�x + xy��x��

According to Brešar (1989, Theorem 4.3) � is a derivation on R. It is obvious that
for all x ∈ R we have ��x� = −��x∗�∗.
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From (7), we get

D�xyz+ zyx� = D�x�yz− xD�y�z+ x��y�z+ xyD�z�

+D�z�yx − zD�y�x + z��y�x + zyD�x�

for all x� y� z ∈ R. In particular,

D�xyx� = D�x�yx − xD�y�x + x��y�x + xyD�x�

for all x� y ∈ R. Lemma 1.1 implies

D�xyz� = D�x�yz− xD�y�z+ x��y�z+ xyD�z�

for all x� y� z ∈ R. Consider the expression W = D�vxyz�� v� x� y� z ∈ R. On the one
hand, we have

W = D��vx�yz� = D�vx�yz− vxD�y�z+ vx��y�z+ vxyD�z��

and on the other hand, we obtain

W = D�v�xy�z�

= D�v�xyz− vD�xy�z+ v��xy�z+ vxyD�z�

= D�v�xyz− vD�xy�z+ v��x�yz+ vx��y�z+ vxyD�z��

Comparing these two relations we arrive at

�D�vx�−D�v�x − v��x��yz+ v�D�xy�− xD�y��z = 0

for all v� x� y� z ∈ R. Using the semiprimeness of R it follows that

�D�vx�−D�v�x − v��x��y + v�D�xy�− xD�y�� = 0�

For a fixed x ∈ R let us write

T ′�y� = −D�xy�+ xD�y� and T ′′�v� = D�vx�−D�v�x − v��x�� (9)

Hence we have vT ′�y� = T ′′�v�y for all v� y ∈ R. Therefore �T ′� T ′′� is a double
centralizer from R to R, which yields �T ′� T ′′� = �L��x�� R��x�� for some ��x� ∈ M�R�.
Consequently,

T ′�y� = ��x�y and T ′′�v� = v��x��

which in turn implies

D�vx� = D�v�x + v��x�+ v��x�� (10)

D�xy� = xD�y�− ��x�y (11)

for all v� x� y ∈ R, by (9).
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Finally, from (10) and (11), we get

x�D�y�− ��y�− ��y�� = �D�x�+ ��x��y

for all x� y ∈ R. If we define T � R → M�R� by T�x� = D�x�− ��x�− ��x� and
S � R → M�R� by S�x� = D�x�+ ��x�, then �T� S� ∈ M�R�M�R�� and 2D�x� =
��x�+ T�x�+ S�x� holds.

Since ��x� = −��x∗�∗ for all x ∈ R, we have

2��x� = 2D�x�− 2D�x∗�∗

= ���x�+ T�x�+ S�x��− ���x∗�+ T�x∗�+ S�x∗��∗

= ��x�+ T�x�+ S�x�− ��x∗�∗ − T ∗�x�− S∗�x�

= 2��x�+ �T − S∗��x�+ �S − T ∗��x��

Therefore, T − S∗ = T ∗ − S. If we define V = T − S∗ = T ∗ − S, then

xV�y� = xT�y�− xS∗�y� = S�x�y − T ∗�x�y = −V�x�y (12)

for all x� y ∈ R, so �V�−V� ∈ M�R�M�R��. This implies

V�xy� = V�x�y�

V�xy� = xV�y�

and thus we have

xV�y� = V�x�y (13)

for all x� y ∈ R. From (12) and (13), using that R is 2-torsion free, we conclude that

V�x�y = 0 �x� y ∈ R��

Since R is an essential ideal of M�R�, we get V�x�= 0 for every x∈R. Hence, T = S∗.
�

Corollary 1.3. Let R be a 2-torsion free semiprime ∗-ring with the property that R2 = R
(resp. R2 = R if R is a semiprime Banach ∗-algebra). Suppose that D � R → R is an
additive mapping satisfying (FI). Then there exists a selfadjoint a ∈ M�R� such that

2D�x� = ��x�+ ax + xa �x ∈ R��

where � is a derivation on R defined by ��x� = D�x�−D�x∗�∗.

Proof. According to Proposition 1.2, there exists �T� S� ∈ M�R�M�R�� such that
T = S∗ and

2D�x� = ��x�+ T�x�+ S�x� �x ∈ R��
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where � � R → R is a derivation on R given by ��x� = D�x�−D�x∗�∗, so it is
sufficient to prove the existence of a ∈ M�R� such that �T� S� = �La� Ra�.

For all x� y ∈ R,

T�xy� = T�x�y ∈ R�

S�xy� = xS�y� ∈ R�

If R2 = R, we have T�x� ∈ R and S�x� ∈ R for all x ∈ R. If R is a semiprime Banach
∗-algebra, the condition R2 = R can be replaced by R2 = R and the same is true since
T and S are continuous, which can be easily verified via the closed graph theorem.

Therefore, �T� S� is a double centralizer from R to R, so there exists a ∈ M�R�
such that �T� S� = �La� Ra�. Since T = S∗, we have La = Ra

∗ and thus

ax = La�x� = Ra
∗�x� = Ra�x

∗�∗ = �x∗a�∗ = a∗x

for every x ∈ R. This implies a = a∗ because R is an essential ideal of M�R�. �

2. MAIN THEOREM

A projection P on a ring R is an additive mapping P � R → R such that P2 = P.
If R is a ∗-ring, an element p in M�R� is called a selfadjoint projection if p∗ =p=p2.

In this section, we are going to study projections satisfying the functional
identity (FI). Let us begin with an example of such a projection.

Example 2.1. Let R be a semiprime ∗-ring and let I� J be ∗-ideals of R such that
I ⊕ J = R. Suppose that p ∈ M�R� is a selfadjoint projection. Define a mapping
P � R → R by P�x� = pu+ vp, where x = u+ v� u ∈ I� v ∈ J .

Note that pI ⊆ I and Jp ⊆ J . Namely, for a ∈ I we have pa ∈ R. Therefore,
there exist b ∈ I and c ∈ J such that pa = b + c. Multiplying this by rc from the
right, where r is an arbitrary element in R, we arrive at 0 = crc for all r ∈ R. The
semiprimeness of R implies c = 0, which in turn yields pa = b ∈ I . In the same way
it can be proven that Jp ⊆ J .

The mapping P is a projection since

P2�x� = P�pu+ vp� = p�pu�+ �vp�p = pu+ vp = P�x�

for all x ∈ R.
Let x� y ∈ R. There exist u1� u2 ∈ I , v1� v2 ∈ J such that x = u1 + v1 and

y = u2 + v2. We have

P�xyx� = P�u1u2u1 + v1v2v1� = p�u1u2u1�+ �v1v2v1�p

and, on the other hand,

P�x�yx − xP�y∗�∗x + xyP�x�

= �pu1 + v1p��u2 + v2��u1 + v1�− �u1 + v1��pu
∗
2 + v∗2p�

∗�u1 + v1�

+ �u1 + v1��u2 + v2��pu1 + v1p�
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= �pu1�u2u1 + �v1p�v2v1 − u1�u2p�u1 − v1�pv2�v1 + u1u2�pu1�+ v1v2�v1p�

= p�u1u2u1�+ �v1v2v1�p�

Hence, P satisfies the identity (FI).

We are going to prove that for every projection P � R → R satisfying the
functional identity (FI), there exist a ∗-ideal I of R and a selfadjoint projection p ∈
M�R� such that P on I⊥ ⊕ I⊥⊥ is of the form described in Example 2.1.

In the main theorem, we have to deal with derivations �1� �2 � R → M�R� such
that �1�R�R�2�R� = 0. This implies �R�1�R��R��2�R�R� = 0. When R is a prime ring,
it immediately follows that R�1�R� = 0 or �2�R�R = 0. Since R is an essential ideal
of M�R�, we conclude �1 = 0 or �2 = 0. In the following proposition, we are going
to generalize this fact to semiprime rings.

Proposition 2.2. Let R be a semiprime ring. If �1� �2 � R → M�R� are derivations
satisfying �1�x�R�2�y� = 0 for all x� y ∈ R, then �1�I

⊥⊥� = 0 and �2�I
⊥� = 0, where

I = R�2�R�R.

Proof. If x ∈ I⊥, then for all y ∈ I and z ∈ R,

y�2�x�z = �2�yx�z− �2�y�xz = −�2�y�xz ∈ I⊥�

On the other hand, y�2�x�z ∈ I . Hence, y�2�x�z = 0. Since y is an arbitrary element
in I , we conclude that �2�x�z ∈ I⊥ for every z ∈ R. This implies R�2�x�R ⊆ I⊥.
Because of R�2�x�R ⊆ I , we obtain R�2�x�R = 0. This implies R�2�x� = 0 since R is
semiprime. Using that R is an essential ideal of M�R�, we finally get �2�x� = 0 for
all x ∈ I⊥.

If x ∈ I⊥⊥� y ∈ I⊥ and z ∈ R, then

y�1�x�z = �1�yx�z− �1�y�xz = −�1�y�xz ∈ I⊥⊥�

Since y�1�x�z ∈ I⊥, we have y�1�x�z = 0. Because y ∈ I⊥ is arbitrary, we have
�1�x�z ∈ I⊥⊥, that is �1�x�R ⊆ I⊥⊥. On the other hand,

�1�x�RI = �1�x�R
2�2�R�R ⊆ �1�R�R�2�R�R = 0�

so �1�x�R ⊆ I⊥. Finally, �1�x�R = 0, so we get �1�x� = 0 for every x ∈ I⊥⊥. �

Now we are in the position to prove our main result.

Theorem 2.3. Let R be a 2-torsion free semiprime ∗-ring. Let P � R → R be a
projection satisfying the functional identity (FI). Then there exist a ∗-ideal I of R and
a selfadjoint projection p ∈ M�I⊥ ⊕ I⊥⊥� such that P�x� = px for every x ∈ I⊥ and
P�x� = xp for every x ∈ I⊥⊥.

Proof. By Proposition 1.2 we have

2P�x� = ��x�+ T�x�+ S�x� �x ∈ R�� (14)
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where � � R → R is a derivation defined by ��x� = P�x�− P�x∗�∗ and �T� S� ∈
M�R�M�R�� satisfies T = S∗. Using P2 = P, it follows that �2P�2 = 2 · 2P. Taking
into account (14), we get

�2�x�+ T 2�x�+ S2�x�+ �T�x�+ �S�x�+ T��x�

+ S��x�+ TS�x�+ ST�x� = 2��x�+ 2T�x�+ 2S�x�� (15)

In the sequel, we are going to use xT�y� = S�x�y, T�xy� = T�x�y and S�xy� = xS�y�
for all x� y ∈ R, as well as the fact that � is a derivation. Inserting yx instead of x in (15),
we obtain

����y�x + y��x��+ T�T�y�x�+ S�yS�x��+ ��T�y�x�+ ��yS�x��

+T���y�x + y��x��+ S���y�x + y��x��+ T�yS�x��+ S�T�y�x�

= 2��y�x + 2y��x�+ 2T�y�x + 2yS�x��

that is

�2�y�x + 2��y���x�+ y�2�x�+ T 2�y�x + yS2�x�

+ �T�y�x + T�y���x�+ ��y�S�x�+ y�S�x�

+T��y�x + T�y���x�+ ��y�S�x�+ yS��x�+ 2T�y�S�x�

= 2��y�x + 2y��x�+ 2T�y�x + 2yS�x�� (16)

Multiplying (15) from the left by y we get

y�2�x�+ S�y�T�x�+ yS2�x�+ y�T�x�+ y�S�x�+ S�y���x�

+ yS��x�+ S�y�S�x�+ yST�x� = 2y��x�+ 2S�y�x + 2yS�x�� (17)

Subtracting (17) from (16), we arrive at

�2�y�x + 2��y���x�+ T 2�y�x + �T�y�x + T�y���x�+ ��y�S�x�

+T��y�x + T�y���x�+ ��y�S�x�+ 2T�y�S�x�− S�y�T�x�

− y�T�x�− S�y���x�− S�y�S�x�− yST�x�

= 2��y�x + 2T�y�x − 2S�y�x� (18)

Let us write xz instead of x in (18):

�2�y�xz+ 2��y���x�z+ 2��y�x��z�+ T 2�y�xz+ �T�y�xz

+T�y���x�z+ T�y�x��z�+ ��y�xS�z�+ T��y�xz+ T�y���x�z

+T�y�x��z�+ ��y�xS�z�+ 2T�y�xS�z�− S�y�T�x�z− y�T�x�z

− yT�x���z�− S�y���x�z− S�y�x��z�− S�y�xS�z�− yT�x�S�z�

= 2��y�xz+ 2T�y�xz− 2S�y�xz� (19)
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Multiplying (18) from the right by z, we get

�2�y�xz+ 2��y���x�z+ T 2�y�xz+ �T�y�xz+ T�y���x�z

+ ��y�S�x�z+ T��y�xz+ T�y���x�z+ ��y�S�x�z+ 2T�y�S�x�z

− S�y�T�x�z− y�T�x�z− S�y���x�z− S�y�S�x�z− yST�x�z

= 2��y�xz+ 2T�y�xz− 2S�y�xz� (20)

Subtracting (20) from (19) yields

2��y�x��z�+ 2T�y�x��z�+ 2��y�xS�z�+ 2T�y�xS�z�

− yT�x���z�− S�y�x��z�− S�y�xS�z�− yT�x�S�z�

− 2��y�xT�z�− 2T�y�xT�z�+ S�y�S�x�z+ yST�x�z = 0�

which implies

��y�x��z�+ T�y�x��z�+ ��y�xS�z�+ T�y�xS�z�− S�y�x��z�

− S�y�xS�z�− ��y�xT�z�− T�y�xT�z�+ S�y�xT�z� = 0�

Finally,

���y�+ T�y�− S�y��x���z�+ S�z�− T�z�� = 0 �x� y� z ∈ R��

It is not difficult to verify that T − S is a derivation from R to M�R� since �T� S� ∈
M�R�M�R��. Let us define

�1 = �+ T − S�

�2 = �+ S − T�

The mappings �1 and �2 are derivations from R to M�R� satisfying �1�x�R�2�y� = 0
for all x� y ∈ R. Proposition 2.2 implies that for the ideal I = R�2�R�R of R we have
�1�I

⊥⊥� = 0 and �2�I
⊥� = 0. Note that I is a ∗-ideal since

�2�x�
∗ = ��x�∗ + S�x�∗ − T�x�∗ = −��x∗�+ S∗�x∗�− T ∗�x∗�

= −��x∗�+ T�x∗�− S�x∗� = −���x∗�+ S�x∗�− T�x∗�� = −�2�x
∗��

From �1�I
⊥⊥� = 0 and �2�I

⊥� = 0 we conclude

��x� = S�x�− T�x� �x ∈ I⊥⊥�� (21)

��x� = T�x�− S�x� �x ∈ I⊥�� (22)

By (14) this implies

P�x� = S�x� �x ∈ I⊥⊥�� P�x� = T�x� �x ∈ I⊥�� (23)
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Since P�x� ∈ R, it follows that S � I⊥⊥ → R and T � I⊥ → R. More precisely,
S � I⊥⊥ → I⊥⊥ and T � I⊥ → I⊥. Furthermore,

T�x� = 2P�x�− ��x�− S�x� ∈ R �x ∈ I⊥⊥��

so T � I⊥⊥ → R, which implies T � I⊥⊥ → I⊥⊥. Analogously, S � I⊥ → I⊥.
Consequently, �T� S� is a double centralizer from I⊥ ⊕ I⊥⊥ to I⊥ ⊕ I⊥⊥. Therefore,
there exists p ∈ M�I⊥ ⊕ I⊥⊥� such that �T� S� = �Lp� Rp�. In other words,

T�x� = px� S�x� = xp �x ∈ I⊥ ⊕ I⊥⊥�� (24)

Comparing (23) and (24), we arrive at

P�x� = xp �x ∈ I⊥⊥��

P�x� = px �x ∈ I⊥��

Since T = S∗, for every x ∈ I⊥ ⊕ I⊥⊥ we have

�p− p∗�x = px − �x∗p�∗ = T�x�− S�x∗�∗ = T�x�− S∗�x� = 0�

This implies p = p∗.
For every x ∈ I⊥⊥,

0 = P2�x�− P�x� = P�xp�− xp = �xp�p− xp = x�p2 − p��

Similarly, for every x ∈ I⊥ we have

0 = P2�x�− P�x� = P�px�− px = p�px�− px = �p2 − p�x�

Since p = p∗ and I⊥ is a ∗-ideal, we get x�p2 − p� = 0 for every x ∈ I⊥. Therefore,

�I⊥ ⊕ I⊥⊥��p2 − p� = 0�

which implies p2 = p. �

According to Theorem 2.3, for every projection P on R satisfying (FI) there
exists an essential ideal of R on which the structure of P is completely determined.
The question when the obtained essential ideal is equal to the whole ring R appears
naturally. The following corollaries are related to this question.

Corollary 2.4. Let R be a 2-torsion free commutative semiprime ∗-ring. If P � R → R
is a projection satisfying (FI), then there exists a selfadjoint projection p ∈ M�R� such
that P�x� = px = xp for every x ∈ R.

Proof. First note that, for �T� S� ∈ M�R�M�R��, since R is commutative, we have

xT�y�z = S�x�yz = S�x�zy = yS�x�z

= S�yx�z = S�xy�z = xS�y�z �x� y� z ∈ R��
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The semiprimeness of R implies xT�y� = xS�y� for all x� y ∈ R. Since R is an essential
ideal of M�R�� T = S follows.

From now on, we use the same notations as in the proof of Theorem 2.3. After
inspection of the proof of that theorem, we observe that, using T = S, (21) and (22)
imply ��x� = 0 for every x ∈ I⊥ ⊕ I⊥⊥. Therefore, for x ∈ R and y ∈ I⊥ ⊕ I⊥⊥ we
have

��x�y = ��xy�− x��y� = 0�

Using that I⊥ ⊕ I⊥⊥ is an essential ideal of R, we conclude ��x� = 0 for every x ∈ R.
Since the mapping �2 � R → M�R� is defined by �2 = �+ S − T , we have

�2�x� = 0 for every x ∈ R. Then I = R�2�R�R = 0. Hence, p ∈ M�R� and P�x� = px
for every x ∈ R.

For all x� y ∈ R,

�px − xp�y = p�xy�− x�py� = p�yx�− �py�x = 0�

so px = xp. �

Corollary 2.5. Let R be a 2-torsion free prime ∗-ring. If P � R → R is a projection
satisfying (FI), then there exists a selfadjoint projection p ∈ M�R� such that P�x� = px
for every x ∈ R or P�x� = xp for every x ∈ R.

Proof. For every ideal I of R, in particular for the one obtained in Theorem 2.3,
I⊥ = 0 or I⊥⊥ = 0 since R is prime.

Suppose that I⊥ = 0. This implies I⊥⊥ = R. According to Theorem 2.3, there
exists a selfadjoint projection p ∈ M�R� such that P�x� = xp for every x ∈ R.

In the case when I⊥⊥ = 0, then I⊥ = R and Theorem 2.3 implies the existence
of a selfadjoint projection p ∈ M�R� such that P�x� = px for every x ∈ R. �

Corollary 2.6. Let 	Rk � k ∈ K
 be a family of 2-torsion free prime ∗-rings and let
R = ⊕

k∈K Rk. Then for every ideal I of R we have I⊥ ⊕ I⊥⊥ = R. Further, if P � R → R
is a projection satisfying (FI), then there exist a ∗-ideal I of R and a selfadjoint
projection p ∈ M�R� such that P�x� = py + zp, where y ∈ I⊥ and z ∈ I⊥⊥ are such that
y + z = x.

Proof. Let us define K0 = 	k ∈ K � I ∩ Rk = 0
. We are going to prove that
I⊥ = ⊕

k∈K0
Rk. Obviously, Rk ⊆ I⊥ for every k ∈ K0 and thus

⊕
k∈K0

Rk ⊆ I⊥.
Take x = x1 + x2 + · · · + xn ∈ I⊥, where xi ∈ Rki

are nonzero and ki �= kj if
i �= j. Suppose that, for example, k1 � K0. Hence, I ∩ Rk1

�= 0. From x�I ∩ Rk1
� = 0 it

follows that x1�I ∩ Rk1
� = 0. Since Rk1

is prime and I ∩ Rk1
�= 0 we arrive at x1 = 0,

which contradicts our assumption. Consequently, I⊥ ⊆ ⊕
k∈K0

Rk and therefore
I⊥ = ⊕

k∈K0
Rk.

Analogously, it can be proven that I⊥⊥ = ⊕
k∈K\K0

Rk. Finally, I
⊥ ⊕ I⊥⊥ = R.

�

Let us recall that a von Neumann algebra is a strongly closed ∗-subalgebra
of B���.
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Corollary 2.7. Let A be a von Neumann algebra. Then I⊥ ⊕ I⊥⊥ = A for every ideal
I of A. Further, if P � A → A is a projection satisfying (FI), then there exist a ∗-ideal
I of A and a selfadjoint projection p ∈ M�A� such that P�x� = py + zp, where y ∈ I⊥

and z ∈ I⊥⊥ are such that y + z = x.

Proof. According to e.g. (Murphy, 1990, Theorem 4.1.8(2)), the annihilator of
every ideal of A is of the form qA for some central selfadjoint projection q ∈ A.
In particular, there exist central selfadjoint projections e� f ∈ A such that I⊥ = eA,
I⊥⊥ = fA. If x ∈ I⊥ ⊕ I⊥⊥, there are y ∈ I⊥ and z ∈ I⊥⊥ such that x = y + z, so

�e+ f − 1�x = �e+ f − 1��y + z� = ey + fz− y − z = y + z− y − z = 0�

Since I⊥ ⊕ I⊥⊥ is an essential ideal of A, we conclude that e+ f = 1. Hence, I⊥ ⊕
I⊥⊥ = eA⊕ fA = A. �

The most important role in theory of von Neumann algebras is played by the
so-called factors. A factor is a von Neumann algebra whose centre only contains the
scalar operators. Thus for every ideal I of a factor A we have I⊥ = 0 and I⊥⊥ = A,
or I⊥ = A and I⊥⊥ = 0, so the previous result directly implies

Corollary 2.8. Let A be a factor and let P � A → A be a projection satisfying (FI).
Then there exists a selfadjoint projection p ∈ M�A� such that P�x� = px for every x ∈ A
or P�x� = xp for every x ∈ A.

Let us also recall that a proper H*-algebra is a complex Banach ∗-algebra A
which is a Hilbert space with respect to the inner product ��� �
 such that �ab� c
 =
�b� a∗c
 and �ba� c
 = �b� ca∗
 for all a� b� c ∈ A. We have:

Corollary 2.9. Let A be a proper H*-algebra and let P � A → A be a projection
satisfying (FI). Then there exist a ∗-ideal I of A and a selfadjoint projection p ∈ M�A�
with the property P�x� = py + zp, where y ∈ I⊥ and z ∈ I⊥⊥ are such that y + z = x.

Howewer, there exist a ∗-ring R and a projection P � R → R satisfying (FI)
such that, for the ideal I obtained in Theorem 2.3, I⊥ ⊕ I⊥⊥ �= R. We are indebted
to Matej Brešar for suggesting us the following example.

Example 2.10. Let A be a nonunital prime ∗-algebra (over the field � with the
identity 1) with zero-centre, in which the involution is linear. Let � = A× A⊕�
be the unitization of the algebra A× A and let us define an involution in � by
��a� b�+ ��∗ = �a∗� b∗�+ �. Therefore � becomes a semiprime ∗-algebra over �.
If there exist such ideals U and V of � that � = U ⊕ V , then U = e� and
V = �1− e��, where e is a central idempotent in �. But the only central idempotents
in � are 0 and 1, so U = � or V = �.

Let q ∈ A be a nonzero selfadjoint projection. Let P � � → � be the mapping
defined by

P��a� b�+ �� = �qa+ �q� bq + �q� �a� b ∈ A� � ∈ ���
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Then P2 = P and P satisfies (FI). Theorem 2.3 implies the existence of an ideal I
of � and a projection p ∈ M�I⊥ ⊕ I⊥⊥� such that P�x� = px for every x ∈ I⊥ and
P�x� = xp for every x ∈ I⊥⊥.

Assume that I⊥ ⊕ I⊥⊥ = � for the obtained I . Then I⊥ = � or I⊥⊥ = �, that
is p ∈ M��� = � and P�x� = px for every x ∈ � or P�x� = xp for every x ∈ �. Since
P�x� ∈ A× A for every x ∈ �, we conclude that p = �p1� p2� for some projections
p1� p2 ∈ A.

If P�x� = px for every x ∈ �, then in particular

�0� bq� = P�0� b� = �p1� p2��0� b� = �0� p2b��

so bq = p2b for every b ∈ A. Then

b�q + p2� = bq + bp2 = p2b + �p2b�
∗ = p2b + �b∗q�∗ = �p2 + q�b�

which implies that q + p2 is in the centre of A. Hence, q + p2 = 0. Then

q = q2 = �−p2�
2 = p2

2 = p2 = −q�

so q = 0, which is a contradiction.
In the case when P�x� = xp for every x ∈ �, we have

�qa� 0� = P�a� 0� = �a� 0��p1� p2� = �ap1� 0��

Hence, qa = ap1 for every a ∈ A. Analogously, as in the previous case, we arrive at
a contradiction.

3. BICIRCULAR PROJECTIONS ON C∗-ALGEBRAS

Let �X� � · �� be a complex Banach space and let P � X → X be a linear
projection. We denote by P its complementary projection, that is the projection
1X − P. A projection P is called bicircular if the mapping ei�P + ei
P is an isometry
for all �� 
 ∈ �. Obviously, this is equivalent to the fact that the mapping P + ei�P is
an isometry for every � ∈ �. In particular, P − P is an isometry. It follows that P is
bounded. More precisely, �P� ≤ 1 and �P� ≤ 1, so P is a bicontractive projection.

In this section, we investigate bicircular projections on C∗-algebras. A
C∗-algebra is a complex Banach ∗-algebra �A� � · �� such that �a∗a� = �a�2 for every
a ∈ A.

First we shall give an example of a bicircular projection on a C∗-algebra.

Example 3.1. Let A be a C∗-algebra and let I� J be ∗-ideals of A such that I ⊕ J =
A. Let p be a selfadjoint projection in M�A�. Define P � A → A by P�x� = py + zp,
where y ∈ I and z ∈ J are such that x = y + z. Using pI ⊆ I and Jp ⊆ J (as proved
in Example 2.1),

�P�x�+ ei�P�x��2 = �py + zp+ ei��y + z− py − zp��2
= ∥

∥(py + ei��y − py�
)+ (

zp+ ei��z− zp�
)∥∥2
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= ∥
∥((py + ei��y − py�

)+ (
zp+ ei��z− zp�

))∗

× ((
py + ei��y − py�

)+ (
zp+ ei��z− zp�

))∥∥

= ∥
∥(py + ei��y − py�

)∗(
py + ei��y − py�

)

+ (
zp+ ei��z− zp�

)∗(
zp+ ei��z− zp�

)∥∥

= ∥
∥�y∗y�+ (

zp+ ei��z− zp�
)∗(

zp+ ei��z− zp�
)∥∥

= ∥
∥(y + zp+ ei��z− zp�

)∗(
y + zp+ ei��z− zp�

)∥∥

= ∥
∥(y + zp+ ei��z− zp�

)(
y + zp+ ei��z− zp�

)∗∥∥

= ∥
∥(yy∗ + �zp+ ei��z− zp���zp+ ei��z− zp��∗

∥
∥

= �yy∗ + zz∗� = ��y + z��y + z�∗� = �y + z�2 = �x�2�

Therefore, P is a bicircular projection on A.

In order to determine the structure of a bicircular projection on a C∗-algebra,
first we have to relate bicircular projections with the functional identity (FI).

Lemma 3.2. Let A be a C∗-algebra and let P � A → A be a bicircular projection.
Then P satisfies (FI).

Proof. Let us fix an arbitrary � ∈ � and define the mapping T� = P + ei�P.
According to the definition of a bicircular projection, T� is a linear isometry.
Since for every y ∈ A there exists x = T−��y� ∈ A with the property T��x� = y, the
mapping T� is a surjection. From Dang et al. (1990, Theorem E) we get

T��xy
∗z+ zy∗x� = T��x�T��y�

∗T��z�+ T��z�T��y�
∗T��x�

for all x� y� z ∈ A. Since this holds for every � ∈ �, the same calculation as in Stachó
and Zalar (2004, Proposition 3.4) leads to the functional identity (FI). �

The above lemma enables us to transfer the results from Section 2 to bicircular
projections on C∗-algebras.

Theorem 3.3. Let A be a C∗-algebra. Let P � A → A be a bicircular projection. Then
there exist a ∗-ideal I of A and a selfadjoint projection p ∈ M�I⊥ ⊕ I⊥⊥� such that
P�x� = px for every x ∈ I⊥ and P�x� = xp for every x ∈ I⊥⊥.

Corollary 3.4. Let A be a commutative C∗-algebra and let P � A → A be a bicircular
projection. Then there exists a selfadjoint projection p ∈ M�A� such that P�x� = px =
xp for every x ∈ A.

Corollary 3.5. Let A be a prime C∗-algebra and let P � A → A be a bicircular
projection. Then there exists a selfadjoint projection p ∈ M�A� such that P�x� = px for
every x ∈ A or P�x� = xp for every x ∈ A.
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If A is K��� or B��� (the algebra of all compact linear operators on a Hilbert
space � and the algebra of all bounded linear operators on �), then M�A� = B���.
For A = K��� this follows from Busby (1968, Theorem 3.9) and for A = B���, we
use the fact that M�A� = A since A is unital. Thus, from the above corollary, we get

Corollary 3.6. Let A be K��� or B��� and let P � A → A be a bicircular projection.
Then there exists a selfadjoint projection p ∈ B��� such that P�x� = px for every x ∈ A
or P�x� = xp for every x ∈ A.

Let us emphasize that the structure of bicircular projections in the case when
A = B��� was already determined in Stachó and Zalar (2004, Theorem 2.2).

Corollary 3.7. Let 	Ak � k ∈ K
 be a family of prime C∗-algebras and let A =⊕
k∈K Ak (the closure with respect to the norm given by ��xk�� = supk∈K �xk�). Then,

for every ideal I of A we have I⊥ ⊕ I⊥⊥ = A. Further, if P � A → A is a bicircular
projection, then there exist a ∗-ideal I of A and a selfadjoint projection p ∈ M�A� such
that P�x� = py + zp, where y ∈ I⊥ and z ∈ I⊥⊥ are such that y + z = x.

Proof. As in the proof of Corollary 2.6, we conclude that

I⊥ = ⊕

k∈K0

Ak� I⊥⊥ = ⊕

k∈K\K0

Ak�

where K0 = 	k ∈ K � I ∩ Rk = 0
. It is easy to verify that

⊕

k∈K
Ak =

⊕

k∈K0

Ak ⊕
⊕

k∈K\K0

Ak�

that is A = I⊥ ⊕ I⊥⊥. �

Corollary 3.8. Let A be a C∗-subalgebra of K���. Then for every ideal I of A we
have I⊥ ⊕ I⊥⊥ = A. Furthermore, if P � A → A is a bicircular projection, then there
exist a ∗-ideal I of A and a selfadjoint projection p ∈ M�A� such that P�x� = py + zp,
where y ∈ I⊥ and z ∈ I⊥⊥ are such that y + z = x.

Proof. According to Arveson (1976, Theorem 1.4.5), A is isometrically
∗-isomorphic to the closure (with respect to the norm given by ��xj�� = supj∈J �xj�)
of the direct sum of prime C∗-algebras K��j�, j ∈ J , so we can apply the previous
corollary. �

Corollary 3.9. Let A be a von Neumann algebra. Then I⊥ ⊕ I⊥⊥ = A for every ideal I
of A. Further, if P � A → A is a bicircular projection, then there exist a ∗-ideal I of A
and a selfadjoint projection p ∈ M�A� such that P�x� = py + zp, where y ∈ I⊥ and z ∈
I⊥⊥ are such that y + z = x.

Corollary 3.10. Let A be a factor and let P � A → A be a bicircular projection. Then
there exists a selfadjoint projection p ∈ M�A� such that P�x� = px for every x ∈ A or
P�x� = xp for every x ∈ A.
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