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Abstract

It is shown that for many finite dimensional normed vector spaces V over C, a linear projectionP : V → V
will have nice structure if P + λ(I − P) is an isometry for some complex unit not equal to one. From these
results, one can readily determine the structure of bicircular projections, i.e., those linear projections P
such that P + μ(I − P) is an isometry for every complex unit μ. The key ingredient in the proofs is the
knowledge of the isometry group of the given norm. The proof techniques also apply to real vector spaces.
In such cases, characterizations are given to linear projections P such that P − (I − P) = 2P − I is an
isometry.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let (X, ‖ · ‖) be a complex Banach space and let P : X → X be a linear projection. Denote
by P = I − P its complementary projection. The projection P is called bicircular if the mapping
eiαP + eiβP is an isometry for all α, β ∈ R. Obviously, this is equivalent to the fact that the
mapping P + eiϕP is an isometry for all ϕ ∈ R.
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Let B(H) be the algebra of all bounded linear operators acting on a complex Hilbert space
H. Bicircular projections on B(H) and some subspaces of B(H), with respect to the spectral
norm, have nice structures as shown in [14]:

1. Let P : B(H) → B(H) be a bicircular projection. Then there exists a self-adjoint projection
p ∈ B(H) such that either P(x) = px for all x ∈ B(H), or P(x) = xp for all x ∈ B(H).

2. Let S(H) = {a ∈ B(H) : at = a}. Let P : S(H) → S(H) be a bicircular projection. Then
either P = 0 or P = I .

3. Let K(H) = {a ∈ B(H) : at = −a}. Let P : K(H) → K(H) be a bicircular projection.
Then there exists a unit vector α ∈ H such that either P(x) = px + xpt for all x ∈ K(H), or
P(x) = px + xpt for all x ∈ K(H), where p = α ⊗ α. In the second case we can also write
P(x) = qxq t , where q = 1 − p.

In this paper, we show that for many finite dimensional normed vector spaces V over C,
a linear projection P : V → V will have nice structure if P + λP is an isometry for some
λ ∈ {μ ∈ F : |μ| = 1, μ /= 1}. From these results, we can readily determine the structure of
bicircular projections. As we will see, the key ingredient in our proofs is the knowledge of
the isometries of the given norm. Our proof techniques also apply to real vector spaces. In such
cases, we determine the structure of linear projections P : V → V such that P − P = 2P − I is
an isometry.

We present our results for different classes of norms in Sections 2–5. Additional results and
remarks are given in Section 6.

In our discussion, we always assume that V is a finite dimensional vector space over F ∈ {C,R}
equipped with a fixed inner product 〈·, ·〉. For a pair of column vectors or a pair of matrices x
and y, we have the usual inner product 〈x, y〉 = tr(xy∗) = tr(y∗x). Denote by U(V) the group
of unitary (if F = C) or orthogonal (if F = R) operators on V. Suppose G is a closed subgroup
of U(V). A norm ‖ · ‖ on V is said to be G-invariant if

‖g(v)‖ = ‖v‖ for all g ∈ G, v ∈ V.

Denote by T = {μ ∈ F : |μ| = 1}. To avoid trivial consideration, we always consider non-trivial
linear projections, i.e., projections not equal to zero or the identity map. The following lemma is
useful in our discussion.

Lemma 1.1. Let ‖ · ‖ be a norm on V with isometry group K, and let λ ∈ T\{1}. Suppose
P : V → V is a non-trivial projection. The following conditions are mutually equivalent:

(i) P + λP ∈ K,

(ii) P = (T − λI)/(1 − λ) for some T ∈ K such that (T − I )(T − λI) = 0.

Proof. (i) ⇒ (ii) If we define T = P + λP , then T ∈ K and P = (T − λI)/(1 − λ). Since
P 2 = P , we get (T − I )(T − λI) = 0.

(ii) ⇒ (i) FromP = (T − λI)/(1 − λ)we getP + λP = T ∈ K. Since (T − I )(T − λI) =
0, we have P 2 = P . �

Remark 1.2. Suppose condition (ii) in Lemma 1.1 holds. If λ = −1 then T 2 = I ; if λ2 /= 1 then
T = (T 2 + λI)/(1 + λ), and hence P = (T − λI)/(1 − λ) = (T 2 − λ2I )/(1 − λ2).
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2. Inner product norms

Suppose a norm on V is a multiple of the inner product norm, i.e., the norm induced by the
inner product on V. Then the isometry group K is just U(V). Our problem has a very simple
answer.

Proposition 2.1. Let V be an n-dimensional inner product space, and let ‖ · ‖ be a multiple of
the norm induced by the inner product. Suppose P : V → V is a non-trivial linear projection and
λ ∈ T\{1}. The following conditions are mutually equivalent:

(i) P + λP is an isometry,
(ii) P is an orthogonal projection, i.e., there exists an orthonormal basis {e1, . . . , en} for V

such that P(ej ) = λj ej where λj ∈ {0, 1} for all j = 1, . . . , n.

Clearly, using the complex case of the above proposition, we see thatP is a bicircular projection
if and only if condition (ii) holds.

Proof. Note that the isometry group of ‖ · ‖ is U(V). Furthermore, there is an orthonormal basis
B of V such that P and P + λP have matrix representations(

Ik X

0 0n−k

)
and

(
Ik (1 − λ)X

0 λIn−k

)
.

Evidently, there is λ ∈ T\{1} such that P + λP ∈ U(V) if and only if X = 0. �

3. Symmetric norms

Let V = Fn and let G be GP(n), the group of generalized permutation matrices (matrices of
the form DP, where D is a diagonal matrix in U(Fn) and P is a permutation matrix). Then G-
invariant norms are also known as symmetric norms (symmetric gauge functions). We will study
our problem for symmetric norms in the following. It is useful to have the following information
about the isometries for symmetric norms.

Since G is irreducible, the isometry group of a given symmetric norm is a subgroup of U(V).
A characterization of all the possible isometry groups of a G-invariant norm can be found in e.g.
[3,7]. Assume that a G-invariant norm ‖ · ‖ is not a multiple of the inner product norm on V. Let

A = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠ , B = 1√

2

⎛
⎜⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎟⎠ .

If Fn /= R2 and Fn /= R4, then K = G. If Fn = R4, then one of the following holds: (1) K = G,
(2) K = 〈G,A〉, the group generated by A and the elements in G, (3) K = 〈G,B〉, the group
generated by B and the elements inG. If Fn = R2, then K = G or K is the dihedral group with
8k elements.

Proposition 3.1. Let ‖ · ‖ be a symmetric norm on Fn not equal to a multiple of the norm induced
by the inner product norm 〈x, x〉1/2, and let K be the isometry group of ‖ · ‖. Suppose P : Fn →
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Fn is a non-trivial linear projection and λ ∈ T\{1}. Then P + λP is an isometry for ‖ · ‖ if and
only if one of the following holds:

(a) P = diag(λ1, . . . , λn) with λj ∈ {0, 1} for all j = 1, . . . , n.
(b) λ = −1, there is k � 1 and m = n− 2k such that P is permutationally similar to P =

P1 ⊕ · · · ⊕ Pk ⊕ diag(λ1, . . . , λm), where λj ∈ {0, 1} for all j = 1, . . . , m, and

Pi = 1

2

(
1 pi
p̄i 1

)
with |pi | = 1, i = 1, . . . , k.

(c) (Fn, λ) = (R4,−1), K ∈ {〈G,A〉, 〈G,B〉}, and there is T ∈ K with T = T t such that
P = (I + T )/2.

(d) (Fn, λ) = (R2,−1), K is a dihedral group, and there is T ∈ K with T = T t such that
P = (I + T )/2.

We remark that conditions (a)–(d) can be summarized into one single condition, namely, there
is T ∈ K with (T − λI)(T − I ) = 0 such that P = (T − λI)/(1 − λ). Our conditions give a
concrete description of the structure of P . In particular, in conditions (c) and (d) one can actually
enumerate all isometries T such that T = T t if so desired.

Using the complex case of the above proposition, we see that P is a bicircular projection if
and only if condition (a) holds,

Proof. (⇒) Suppose T = P + λP = λI + (1 − λ)P ∈ K. We consider three cases.
Case 1. Suppose K = G. Let T = DR be such that D is a diagonal matrix and R is a

permutation matrix. Then R is permutationally similar to R1 ⊕ R2 ⊕ · · · ⊕ Rk ⊕ Im such that
each Rj is a permutation matrix with ones in the (1, 2), (2, 3), . . . , (nj−1, nj ), (nj , 1) posi-
tions, where nj > 1 is the order of the matrix Rj . Suppose D is permutationally similar to
D1 ⊕ · · · ⊕Dk ⊕D0 accordingly. Then the spectrum of P = (T − λI)/(1 − λ) is {1, 0}, which
is a union of those of P1, . . . , Pk, P0, where Pi = (DiRi − λIni )/(1 − λ) for i = 1, . . . , k, and
P0 = (D0 − λIm)/(1 − λ). Note that for i = 1, . . . , k, Pi has ni distinct eigenvalues.

If k = 0, then condition (a) holds. If k > 0, then n1 = · · · = nk = 2, and each Pi has eigen-
values 1, 0. Hence, Pi has trace 1 and determinant 0. Thus, λ = −1 and Pi has the form described
in (b). Evidently, P0 = diag(λ1, . . . , λm) also has the form described in (b). So, condition (b)
follows.

Case 2. Suppose Fn = R4, and K ∈ {〈G,A〉, 〈G,B〉}. Then λ = −1. By Remark 1.2, we have
T 2 = I4. Since T tT = I4, we have T = T −1 = T t . So, condition (c) holds.

Case 3. Suppose Fn = R2 and K is dihedral group. Using an argument similar to those in
Case 2, we get condition (d).

The converse of the result is clear. �

4. Unitarily invariant norms

Let V = Mm,n(F) and let G be the group of all linear operators of the form A �→ UAV for
some fixed unitary (orthogonal) U ∈ Mm(F) and V ∈ Mn(F). ThenG-invariant norms are called
unitarily invariant norms. In the following we determine the structure of those linear projections
P : Mm,n(F) → Mm,n(F) such that P + λP is an isometry for a unitarily invariant norm. The
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result is covered by Proposition 2.1 if the norm is a multiple of the Frobenius norm. So, we exclude
this case in our result. We first describe the isometries for unitarily invariant norms.

LetKbe the isometry group of a unitarily invariant norm‖ · ‖on V and let τ be the transposition
operator on Mn(F), i.e., τ(A) = At . Let ϕ : M4(R) → M4(R) be the linear operator defined by

ϕ(A) = (A+ B1AC1 + B2AC2 + B3AC3)/2,

where

B1 =
(

1 0
0 1

)
⊗

(
0 −1
1 0

)
, C1 =

(
1 0
0 −1

)
⊗

(
0 1

−1 0

)
,

B2 =
(

0 −1
1 0

)
⊗

(
1 0
0 −1

)
, C2 =

(
0 1

−1 0

)
⊗

(
1 0
0 1

)
,

B3 =
(

0 −1
1 0

)
⊗

(
0 1
1 0

)
, C3 =

(
0 1
1 0

)
⊗

(
0 1

−1 0

)
.

Suppose ‖ · ‖ is a G-invariant norm which is not a multiple of the Frobenius norm, i.e., the
norm induced by the inner product 〈X, Y 〉 = trXY ∗ on Mm,n(F). Then the following holds (see
for example [2,7,10]): if m /= n, the isometry group of ‖ · ‖ is G; if V = Mn(F) /= M4(R), the
isometry group of ‖ · ‖ is 〈G, τ 〉; if V = M4(R), the isometry group of ‖ · ‖ is 〈G, τ 〉 or 〈G, τ, ϕ〉.

Proposition 4.1. Let ‖ · ‖ be a unitarily invariant norm on Mm,n(F) not equal to a multiple of
the Frobenius norm, and let K be the isometry group of ‖ · ‖. Suppose P : Mm,n(F) → Mm,n(F)

is a non-trivial linear projection and λ ∈ T\{1}. Then P + λP ∈ K if and only if one of the
following holds:

(a) There exist R = R∗ = R2 in Mm(F) and S = S∗ = S2 in Mn(F) such that P has the form
A �→ RA or A �→ AS.

(b) λ = −1, and there exist R = R∗ = R2 in Mm(F) and S = S∗ = S2 in Mn(F) such that P
has the form A �→ RAS + (Im − R)A(In − S).

(c) m = n, λ = −1, and there is U ∈ U(Fn) such that P or P has the form A �→ (A+
UAtU)/2.

(d) Mm,n(F) = M4(R), and there is T ∈ K with T 2 = I such that P = (I + T )/2.

Using the complex case of the above proposition, we see that P is a bicircular projection if and
only if condition (a) holds. Also, it is possible to enumerate all T ∈ K satisfying condition (d); in
particular, since every T inK is an orthogonal operator onM4(R), we see that T 2 = I if and only
if T is self-adjoint, equivalently, (T (Epq), Ers) = (Epq, T (Ers)) for all p, q, r, s ∈ {1, . . . , 4}.

Proof. Suppose T = P + λP = λI + (1 − λ)P ∈ K. We consider three cases.
Case 1. Suppose T has the form A �→ UAV for some U ∈ U(Fm) and V ∈ U(Fn). By

Lemma 1.1, T has spectrum {1, λ}. Assume that U has eigenvalues u1, . . . , um and V has eigen-
values v1, . . . , vn. Then T = U ⊗ V t has eigenvalues u1v1, u1v2, . . . , umvn. We may assume that
u1v1 = 1. We may further assume that u1 = 1 = v1. Otherwise, replace (U, V ) by (U/u1, V/v1).
Because u1vj ∈ {1, λ} for all j , we see that V has spectrum {1, λ}. Similarly, we can show that
U has spectrum {1, λ}. If λ /= −1 then U = Im or V = In; otherwise, T = U ⊗ V has spectrum
{1, λ, λ2} /= {1, λ}. Thus, condition (a) holds. If λ = −1, then both U and V may have spectrum
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{1,−1}. So,U ∈ U(Fm) andV ∈ U(Fn) satisfyU = U∗ andV = V ∗. Moreover, the range space
of P is spanned by {X ∈ Mm,n(F) : UXV = X}. Thus, condition (b) holds.

Case 2. Supposem = n and T has the formA �→ UAtV for someU ∈ U(Fm) andV ∈ U(Fn).
Since T has spectrum {1, λ}, we see that T 2 has the form A �→ UV tAU tV and has spectrum
{1, λ2}. LetX = UV t and Y = U tV . ThenX and Y have the same eigenvalues, say, μ1, . . . , μn.
Further, T 2 is diagonalizable and has eigenvalues μiμj for 1 � i, j � n.

If λ2 /∈ {1,−1}, then X cannot have spectrum {1, λ2}; otherwise, T 2 will have spectrum
{1, λ2, λ4} /= {1, λ2}. So, X is a scalar matrix and so is Y . It follows that T 2 is a scalar operator,
which contradicts the fact that T 2 has spectrum {1, λ2}.

If λ2 = −1, then F = C, λ = ±i, X2 = I , and V = XtU . Suppose W1 ∈ U(Cn) is such that
X = W ∗

1DW1 with D = Ik ⊕ −In−k for some k ∈ {1, . . . , n− 1}. Then T 2 has the form

A �→ XAU tXtU = W ∗
1DW1AW

∗
2DW2

withW2 = W 1U . Thus,T 2(A) = A if and only ifW1AW
∗
2 = A1 ⊕ A2 for someA1 ∈ Mk(C) and

A2 ∈ Mn−k(C). Since T is a diagonalizable operator on Mn(C) with spectrum {1, λ} where λ =
±i, we see thatT (A) = A if and only ifT 2(A) = A. Thus, for anyA of the formW ∗

1 (A1 ⊕ A2)W2,
we have

W ∗
1 (A1 ⊕ A2)W2 = A = T (A) = UAtXtU = UW t

2(A
t
1 ⊕ At

2)W 1X
tU

= U(U∗W ∗
1 )(A

t
1 ⊕ At

2)W 1(W
t
1DW 1)U = W ∗

1 (A
t
1 ⊕ At

2)DW2,

which is impossible.
If λ2 = 1, then T 2 = I and λ = −1. We may assume that all the eigenvalues of X equal

μ ∈ {1,−1}. Thus, UV t = I or UV t = −I . Hence, T has the form A �→ ±UAtU . By Lemma
1.1, P = (T + I )/2 has the form A �→ (±UAtU + A)/2. Thus, condition (c) holds.

Case 3. SupposeMm,n(F) = M4(R) and K = 〈G, τ, ϕ〉. Then λ = −1. By Lemma 1.1, there
is T ∈ K with T 2 = I such that P = (I + T )/2. Thus, condition (d) holds.

The converse is clear. �

5. Unitary congruence invariant norms

In this section we consider V to be one of the following matrix spaces: Sn(C) is the linear space
of all n× n symmetric matrices over C, andKn(F) is the linear space of all n× n skew-symmetric
matrices over F. Let G be the group of all linear operators of the form A �→ U tAU for some
fixed unitary (orthogonal) U ∈ Mn(F). Then G-invariant norms are called unitary congruence
invariant norms. Of course, if U is unitary and T : V → V is defined by T (A) = UAU t , then
T is a unitary operator on V and preserves any unitary congruence invariant norm. Moreover,
supposeU ∈ U(Cn) has eigenvaluesμ1, . . . , μn with orthonormal eigenvectors u1, . . . , un. Then
for V = Sn(C), T has eigenvalues μiμj with eigenvector uiut

j + uju
t
i for 1 � i, j � n; for V =

Kn(C), T has eigenvalues μiμj with eigenvector uiut
j − uju

t
i for 1 � i < j � n. For Kn(R),

we can extend T toKn(C) and conclude that T has eigenvalues μiμj for 1 � i < j � n as well.
This observation will be used in our discussion.

If K is the isometry group of a unitary congruence invariant norm on Sn(C), which is not a
multiple of the Frobenius norm, then K = G (see [5,7]). If K is the isometry group of a unitary
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congruence invariant norm onKn(F), which is not a multiple of the Frobenius norm, then one of
the following holds (see [5,7]):

1. K = G if F = C, or K = 〈G, τ 〉 if F = R.
2. n = 4 and K = 〈G,ψ〉 if F = C, or K = 〈G, τ,ψ〉 if F = R, where ψ(A) is obtained from
A by interchanging its (1, 4) and (2, 3) entries, and interchanging its (4, 1) and (3, 2) entries
accordingly.

Note that the mapping on K4(C) defined by A �→ ψ(UAU t) can be written as A �→ det(U)
Wψ(A)W t with W = RUR, where R = E14 − E23 + E32 − E41. (For instance, one can verify
the equality of the two mappings for A = Eij − Eji with 1 � i < j � 4.) As a result, for each
mappingT in 〈G,ψ〉\G there areX, Y ∈ U(C4) such thatT (A) = ψ(XAXt) = Yψ(A)Y t for all
A ∈ K4(C). Similarly, for eachU ∈ U(R4), a mapping defined byA �→ ψ(UAU t) can be written
as A �→ det(U)RURψ(A)RU tR, where R is defined as above. Consequently, for each mapping
T in 〈G, τ,ψ〉\G there are X, Y ∈ U(R4) such that T (A) = ±ψ(XAXt) = ±det(X)Yψ(A)Y t

for all A ∈ K4(R).

Proposition 5.1. Let ‖ · ‖ be a unitary congruence invariant norm on Sn(C), which is not a
multiple of the Frobenius norm, and let K be the isometry group of ‖ · ‖. Suppose P : Sn(C) →
Sn(C) is a non-trivial linear projection and λ ∈ T\{1}. Then P + λP ∈ K if and only if λ = −1
and there exists R = R∗ = R2 in Mn(C) such that P or P has the form A �→ RtAR + (I −
Rt)A(I − R).

By the above result, one sees that there are no non-trivial bicircular projections on Sn(C).

Proof. LetT = P + λP = λI + (1 − λ)P ∈ K. Then there existsU ∈ U(Cn) such thatT (A) =
U tAU for all A ∈ Sn(C). By Lemma 1.1, T has spectrum {1, λ}. Suppose U has eigenvalues
μ1, . . . , μn. Then T has eigenvaluesμjμk , 1 � j, k � n. IfU has at least three distinct eigenval-
ues, say,μ1, μ2, μ3, thenμ1μ2, μ2μ3, μ1μ3 are distinct eigenvalues of T , which is impossible.
Hence U has only two distinct eigenvalues, say, μ1 and μ2. Thus,

{
μ2

1, μ
2
2, μ1μ2

} = {1, λ}.
Hence, two of the numbers μ2

1, μ
2
2, μ1μ2 are equal, and we have μ1 = −μ2. As a result,

μ2
1 = μ2

2 = −μ1μ2. Hence, λ = −1 and either

(1) μ2
1 = μ2

2 = 1 with μ1μ2 = −1 so that {μ1, μ2} = {1,−1}, or

(2) μ2
1 = μ2

2 = −1 with μ1μ2 = 1 so that {μ1, μ2} = {i,−i}.

If (1) holds, then U = U∗; if (2) holds, then U = −U∗. Since T has the form A �→ U tAU ,
Lemma 1.1 implies that P has the form A �→ (A+ U tAU)/2. If U = U∗, then P has the form
A �→ RtAR + (I − Rt)A(I − R), withR = (I − U)/2. IfU = −U∗, then P has the formA �→
RtAR + (I − Rt)A(I − R), with R = (I − iU)/2. In both cases R = R∗ = R2.

The converse can be easily verified. �

Next, we consider Kn(F). Since K2(F) is one-dimensional, we assume that n � 3 to avoid
trivial consideration.
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Proposition 5.2. Let n � 3 and ‖ · ‖ be a unitary congruence invariant norm onKn(F), which is
not a multiple of the Frobenius norm. LetK be the isometry group of ‖ · ‖. SupposeP : Kn(F) →
Kn(F) is a non-trivial linear projection and λ ∈ T\{1}. Then P + λP ∈ K if and only if one of
the following holds:

(a) F = C, there existsR = vv∗ for a unit vector v ∈ Cn such that P has the formA �→ RtA+
AR or A �→ (I − Rt)A(I − R). (In the second case P is of the form A �→ RtA+ AR.)

(b) λ = −1, K = G if F = C or K = 〈G, τ 〉 if F = R, and there exists R = R∗ = R2 in
Mn(F) such that P or P has the form A �→ RtAR + (I − Rt)A(I − R).

(c) (λ, n)=(−1, 4), ψ ∈K and there is U ∈U(F4), satisfying ψ(U tAU)=Uψ(A)U∗ for all
A ∈ K4(F), such thatP orP has the formA �→ (A+ ψ(U tAU))/2=(A+ Uψ(A)U∗)/2.

By the above result, we see that P is a bicircular projection if and only if condition (a) holds.
Note that most of U ∈ U(F4) do not satisfy the condition required in (c). Here,

U = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎞
⎟⎟⎠ ∈ U(F4)

is an example of a matrix satisfying condition (c). One sees that condition (c) is equivalent to the
condition that (2P − I )2 = I .

Proof. (⇐) Suppose that (a) holds. For allA ∈ Kn(C)we have (vtAv)t = −vtAv. Since vtAv ∈
M1(C) we conclude vtAv = 0 and thus RtAR = 0. Furthermore, R = R∗ = R2.

If P is of the form A �→ RtA+ AR, then P + λP is of the form A �→ λA+ (1 − λ)(RtA+
AR). If we define U = R/

√
λ+ √

λ(I − R), then U is unitary and U tAU = (P + λP )(A) for
all A ∈ Kn(C). Hence, P + λP ∈ G ⊆ K.

If P is of the form A �→ (I − Rt)A(I − R), then P + λP has the form

A �→ A+ (λ− 1)(RtA+ AR) = U tAU

for the unitary U = λR + (I − R). Thus P + λP ∈ G ⊆ K.
If (b) or (c) holds, then one can easily verify that 2P − I ∈ K.
(⇒) Let T = P + λP = λI + (1 − λ)P ∈ K. We consider two cases.
Case 1. Suppose λ = −1. Then T 2 is the identity operator.
Assume that there is U ∈ U(Fn) such that T has the form A �→ U tAU or A �→ −U tAU . In

both cases, T 2 has the form A �→ XtAX, where X = U2. Since A = T 2(A) = XtAX for all
A ∈ Kn(F), it follows that X = I or −I . Hence U = U∗ or U = −U∗. Note that the second
case cannot occur if F = R. If F = R, then U = U∗ and T has the form A �→ U tAU or A �→
−U tAU . Lemma 1.1 implies that P has the form A �→ (A+ U tAU)/2, or P has the form
A �→ (A+ U tAU)/2. If we define R = (I − U)/2, then R = R∗ = R2, and P or P has the
formA �→ RtAR + (I − Rt)A(I − R). If F = C, thenU = U∗ orU = −U∗, and T has the form
A �→ U tAU . If U = U∗, then P has the formA �→ RtAR + (I − Rt)A(I − R), with R = (I −
U)/2. IfU = −U∗, thenP has the formA �→ RtAR + (I − Rt)A(I − R), withR = (I − iU)/2
satisfying R = R∗ = R2. Thus we get (b).

Suppose n = 4 and there is U ∈ U(F4) such that T has the form A �→ ψ(U tAU) or A �→
−ψ(U tAU). By the remark before Proposition 5.1, T 2(A) = det(U)XtAX with X = URUR,
where R = E14 − E23 + E32 − E41. Since T 2 is the identity operator, there is ξ ∈ C with ξ2 =
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det(U) such that I/ξ = X = URUR. If F = R, then X is a real matrix, and thus det(U) = 1. If
F = C, then we see that U∗ = ξRUR. In both cases, we have

ψ(U tAU) = Uψ(A)U∗

for all A ∈ K4(F). We get condition (c).
Case 2. Suppose λ /= −1. Then F = C.
Assume that there is U ∈ U(Cn) such that T has the form A �→ U tAU . If U has eigenvalues

μ1, . . . , μn, then T has eigenvaluesμiμj with 1 � i < j � n. IfU has three distinct eigenvalues,
say,μ1, μ2, μ3, thenμ1μ2, μ1μ3, μ2μ3 are distinct eigenvalues of T , which is impossible. So,
U has two distinct eigenvalues, say, μ1 and μ2. If each of them has multiplicities at least 2, then{
μ2

1, μ
2
2, μ1μ2

} = {1, λ}. Thus, two of the three numbers μ2
1, μ

2
2, μ1μ2 are equal. It follows

that μ1 = −μ2, and μ2
1 = μ2

2 = −μ1μ2. Hence, λ = −1, which is a contradiction. As a result,
the eigenvalues of U have the form μ1, . . . , μ1, μ2 such that either

(1) μ2
1 = λ and μ1μ2 = 1, or (2) μ2

1 = 1 and μ1μ2 = λ.

Consequently, the eigenvalues of U have one of the following patterns:

(i)
√
λ, . . . ,

√
λ, 1/

√
λ, (ii) − √

λ, . . . ,−√
λ,−1/

√
λ, (iii) 1, . . . , 1, λ,

(iv)−1, . . . ,−1,−λ.
If (i) or (ii) holds, then U = ±W ∗((1/

√
λ)E11 + √

λ(I − E11))W . Since E11AE11 = 0 for
all A ∈ Kn(C), we have

T (W tAW) = W t(λA+ (1 − λ)(E11A+ AE11))W

for all A ∈ Kn(C). If we put R = W ∗E11W , then

T (W tAW) = λW tAW + (1 − λ)(RtW tAW +W tAWR)

for all A ∈ Kn(C). By Lemma 1.1, P has the form A �→ RtA+ AR.
Now suppose (iii) or (iv) holds. Thus U = ±W ∗(λE11 + (I − E11))W . For all A ∈ Kn(C),

we have

T (W tAW) = W tAW − (1 − λ)(RtW tAW +W tAWR)

with R = W ∗E11W . By Lemma 1.1, P has the form A �→ RtA+ AR.
Note that R = W ∗E11W = vv∗ for the unit vector v = W ∗e1 ∈ Cn. Furthermore, RtAR =

W tE11(WAW
∗)E11W = 0 since WAW ∗ ∈ Kn(C). Therefore, if P has the form A �→ RtA+

AR, we can also write P(A) = (I − Rt)A(I − R). Hence we get (a).
Next, suppose n = 4 and there is U ∈ U(C4) such that T has the form A �→ ψ(U tAU). By

the remark before Proposition 5.1, T 2 has the form A �→ det(U)XtAX, where X = URUR

with R = E14 − E23 + E32 − E41. IfX has eigenvalues μ1, μ2, μ3, μ4, then T 2 has spectrum
{det(U)μiμj : 1 � i < j � 4} = {1, λ2}.

Note that X cannot have three distinct eigenvalues, say, μ1, μ2, μ3. Otherwise, T 2/det(U)
will have distinct eigenvalues μ1μ2, μ1μ3, μ2μ3.

If X = ξI , then T 2 has spectrum {det(U)ξ2}. Then λ2 = 1, i.e., λ = −1, which contradicts
our assumption.

So, X has two distinct eigenvalues, say, μ1 and μ2.
Let Y = UR and Z = UR. Then X = YZ and X = ZY have the same eigenvalues. Thus,

the non-real eigenvalues of X occurs in complex conjugate pairs. Moreover, det(X) = det(U) ·
det(U) = 1.
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(1) If μ1 and μ2 are real numbers, then X has eigenvalues 1, 1, −1, −1, and T 2/det(U) has
spectrum {1,−1}. Hence, det(U) = ±1 and λ2 = −1.

(2) If μ1 or μ2 is non-real, then μ1 = μ̄2 and T 2/det(U) has spectrum
{
1, μ2

1, μ̄
2
1

}
. It follows

that μ1 = ±i. Thus, T 2 has spectrum {det(U),−det(U)}. So, det(U) = ±1 and λ2 = −1.
Let X = μW(I2 ⊕ −I2)W

∗ with μ = {1, λ}. Then

T 2(A) = ξW(I2 ⊕ −I2)W
tAW(I2 ⊕ −I2)W

∗

with ξ = ±1. Suppose ξ = 1. Since T = (T 2 + λI)/(1 + λ), for all A ∈ K4(C) of the form

W

(
A1 B

−B t A2

)
W ∗, A1, A2 ∈ K2(C),

we have

T (A) = W

(
A1 λB

−λB t A2

)
W ∗.

Now, the mapping L defined by

L(A) = (λI2 ⊕ I2)W
tT (WAW ∗)W(λI2 ⊕ I2)

is an isometry for K4(C), and for any A ∈ K4(C) of the form(
A1 B

−B t A2

)
, A1, A2 ∈ K2(C),

we have

L(A) =
(−A1 −B
B t A2

)
.

Since ‖ · ‖ is not a multiple of the inner product norm, there are X and Y with singular values
1, 1, 0, 0 and cos t, cos t, sin t, sin t for some t ∈ (0, π/4] such that ‖X‖ /= ‖Y‖. Let

Z = 1√
2

⎛
⎜⎜⎝

0 cos t sin t 0
−cos t 0 0 −cos t
−sin t 0 0 −sin t

0 cos t sin t 0

⎞
⎟⎟⎠ .

Then Z has singular values 1, 1, 0, 0, and L(Z) has singular values cost, cost, sint, sint .
Hence, Z is unitarily congruent to X and L(Z) is unitarily congruent to Y . However,

‖Z‖ = ‖X‖ /= ‖Y‖ = ‖L(Z)‖,
which is a contradiction.

If ξ = −1, then we observe P instead of P . Applying the above arguments to P we can derive
a contradiction. �

6. Additional results and remarks

We can use the same proof strategy to obtain results on other normed vector spaces equipped
with G-invariant norms. We mention a few more examples and some remarks in this section.

Let V = Hn(C) be the real space of all n× n complex hermitian matrices. LetG be the group
of linear operators on V of the form A �→ U∗AU for some U ∈ U(Cn). ThenG-invariant norms
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are called unitary similarity invariant norms. Let K be the isometry group of a unitary similarity
invariant norm ‖ · ‖ on V. Then K must be of one of the following forms (see [5,7,11,12]):

(a) K = SU(V)S−1 for some S ∈ �, where � is the group of invertible operators of the form
A �→ αA+ (β − α)(trA)In/n for some positive α, β ∈ R,

(b) K = U ′(V) = {U ∈ U(V)|U(In) = ±In},
(c) K = 〈G, τ, T0〉, where T0 is defined by T0(A) = A− 2(trA)In/n,
(d) K = 〈G, τ 〉.

Note that ifU ∈ U(Cn) has eigenvaluesμ1, . . . , μn, then the operatorA �→ UAU∗ onHn(C)
has the same eigenvalues as the operator acting on Mn(C) = Hn(C)+ iHn(C), namely, μiμ̄j
with 1 � i, j � n.

Proposition 6.1. Let ‖ · ‖ be a unitary similarity invariant norm on V = Hn(C), and letK be the
isometry group of ‖ · ‖. Suppose P : V → V is a non-trivial linear projection. Then P − P ∈ K
if and only if one of the following holds:

(a) K = SU(V)S−1 for some S ∈ �, and there exists R : V → V, satisfying R = R∗ = R2,

such that P = SRS−1.

(b) K = U ′(V), P = P ∗, and P(In) = 0 or P(In) = In.

(c) K = 〈G, τ 〉 or K = 〈G, τ, T0〉,
(c.1) there exists R = R2 ∈ Hn(C) such that P or P has the form

A �→ RAR + (I − R)A(I − R),

or
(c.2) there exists U ∈ U(Cn) with U = ±U t such that P or P has the form

A �→ (A+ UAtU)/2.

(d) K = 〈G, τ, T0〉,
(d.1) there exists R = R2 ∈ Hn(C) such that P or P has the form

A �→ RAR + (I − R)A(I − R)− (trA)In/n,

or
(d.2) there exists U ∈ U(Cn) with U = ±U t such that P or P has the form

A �→ (A+ UAtU)/2 − (trA)In/n.

Observe that case (a) happens if and only if the norm is induced by the inner product (X, Y ) =
(SX, SY ). Thus, the result also follows from Proposition 2.1.

Proof. Let us define T = P − P = 2P − I ∈ K. We consider three cases.
Case 1. Let K = SU(V)S−1 for some S ∈ �. Then T = SUS−1 for some fixed U ∈ U(V).

If we define R = (U + I )/2, then

P = (T + I )/2 = S(U + I )S−1/2 = SRS−1.

Furthermore, R is normal and its spectrum is {0, 1}, thus R2 = R = R∗. Hence we get (a).
Case 2. Let K = U ′(V). Then T is unitary, and T (In) = In or T (In) = −In. Since T 2 = I ,

we have T = T ∗. Then P = (T + I )/2 implies P ∗ = P . Since T (In) equals −In or In, we get
P(In) equals 0 or In. Thus condition (b) follows.
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Case 3. Suppose T has one of the following forms:

(i) A �→ aU∗AU + (b − a)(trA)In/n, or (ii) A �→ aU∗AtU + (b − a)(trA)In/n

for some U ∈ U(Cn) and a, b ∈ {−1, 1}. Then T 2 has the form A �→ X∗AX, with X = U2 if T
has the first form, and X = UU if T has the second form. Since T has spectrum {1,−1}, T 2 is
the identity operator. Since X is unitary, it has modulus one eigenvalues, say, μ1, . . . , μn. Then
T 2 has eigenvalues μiμj for 1 � i, j � n. Hence μiμj = 1 and thus μj = μi for 1 � i, j � n.
Therefore, X is a (unitary) scalar matrix.

Assume that T has the form (i) and U2 = μI for some modulus one μ ∈ C. Let R = (I −
(1/

√
μ)U)/2. Then R = R∗ = R2 and P or P has the form A �→ RAR + (I − R)A(I − R) or

A �→ RAR + (I − R)A(I − R)− (trA)In/n. So, we get (c.1) or (d.1). Now assume that T has
the form (ii) andUU = μI . ThenU = μU t = μ(μU t)t = μ2U , soμ2 = 1. ThusU is symmetric
or skew-symmetric. In this caseP orP has the formA �→ (A+ aU∗AtU + (b − a)(trA)In/n)/2.
We get (c.2) or (d.2).

The converse is easy to verify. �

One may consider orthogonal similarity invariant norms on the real space Sn(R) of n× n real
symmetric matrices, i.e., those norms ‖ · ‖ on Sn(R) such that ‖UAU t‖ = ‖A‖ for allA ∈ Sn(R)
and U ∈ U(Rn). The results on isometries of such norms are very similar to those of unitary
similarity invariant norms on Hn(C). Accordingly, one can obtain a result similar to Proposition
6.1 for orthogonal similarity invariant norms on Sn(R). In that case (c.2) and (d.2) reduce to (c.1)
and (d.1) respectively.

One can consider unitary congruence invariant norms onMn(F). We may focus on those norms
which are not unitarily invariant. Otherwise, we are back to Section 4. In many cases, the isometry
group is reducible and act on the subspaces Sn(F) and Kn(F) independently; see [5,7]. One can
deduce the results on Mn(F) using those on Sn(F) and Kn(F).

Similarly, one can consider unitary similarity invariant norms on Mn(C). Again, we should
assume that the norms are not unitarily invariant. In many cases (see [5]), the isometry group
would leave Hn(C) invariant (up to a unit multiple). Then, we can apply the result on Hn(C) to
obtain the result on Mn(C).

Our proof techniques can also be used to study other matrix spaces equipped withG-invariant
norms; [5,9,12]. It would be interesting to extend our techniques and results to infinite dimensional
normed spaces; [1,4,6,8,13].
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