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EXISTENCE OF ALMOST PERIODIC
SOLUTIONS FOR JUMPING
DISCONTINUOUS SYSTEMS

M. FECKAN (Bratislava)

- Abstract. An existence result for almost periodic sequences of ordinary dif-
ferential equations with linear boundary value conditions is derived by using the
Banach fixed point theorem together with a methed of majorant functions. An
application is given to a damped pendulum with a jumping length and external
force.

1. Introduction

Let us consider the motion of the damped mathematical pendulum with
changing length [5] I = I(t) and external force e = e(t) given by

(1.1) 1(t)$ + c¢ + sin ¢ = e(t).

We suppose that I(¢), e(t) are step functions. Very recently, the stability of
linear ordinary differential equations with step function coefficients has been
studied in [1], [2], [3], [4], [5].

In this paper we assume that I(2), () have certain almost periodicity in
the following sense: there are sequences

{t‘n}nez CR, {lliez C©C, {erlrez CC,
{Titrez €C, {wilrez CR
such that

tn=nT+Y Tee™™ VYneZ, T>0, Y [T} <T/2,
keZ keZ .

and for any ¢, < t < t,41, we have

e(t) = Y exe™, 1(t) =Y he s,

keZ keZ
where
D lerl <00, Y Ikl < o0,
keZ keZ
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Consequently, we suppose that I(t), e(t) are step functions with almost pe-
riodic jumpings. We are interested in finding conditions on I(t), e(?), ¢ that
(1.1} has a bounded solution on R with the same almost periodic proper-
ties as I(t), e(t). To handle this problem, in Section 2, we study a sequence
of ordinary differential equations with linear boundary value conditions. We
rewrite this sequence into an ordinary differential equation on a certain Ba-
nach space with a linear boundary value condition. We solve this boundary
value problem by using the Banach fixed point theorem together with a
method of majorant functions. We are motivated in applying this approach
by the books [6], [7], where continuous almost periodic ordinary differential
equations are widely studied. In Section 3, we apply results of Section 2 to
(1.1). We consider for simplicity a concrete form of (1.1).

Finally, we note that our approach can be directly modified for inves-
tigation of the existence of bounded solutions to almost periodic difference
equations. For instance, let us consider the difference equation

(1.2) Tnt2 + Qnp1 + Zn = bxd + dy cosnV2 + dasindn, n € Z,

where ¢ € R, |al > 2 and b,dy,ds € R. It can be shown that if
! ' 3
27[8l(1dal + |dal)* < 4(Ja] - 2)°,

then (1.2) has a solution of the form

d
R L L S P 3|d1|+| 2|
kpEZ kpeZd I -

2. Almost periodic solutions

Let {wy},-z be a sequence of real numbers such that
Py, + W, € {wk}kez V}‘J, d, k:la k? € Z1
wy # wy whenever k #£1
Let us consider a sequence of ordinary differential equations

21) { n = A(n)xn + f(n, zn,t) + h{n,t),

mn-l—l(o) = E(?’L)Iu(l), te [Dv 1]1 n €7,
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where
=3 Ge™ ™, h(n,t) = Dp(t)em,
keZ keZ
(n,z,t) Z ZB x(B)e ted e L(IC™), C= ZHCk“ < o0,
JZ1 kez keZ

Dyec(,1,C™), D= ;lekl < oo, |Di|= r[xgg:]chk(t)I,

E(n)=_ Epe™", EeL(C™), E=Y_ B <o,
kEZ _ keZ

B, € C{[0,1],7(C™), > (Z |B,k[) R <oo, |Bjl= max |B,,c @]

i=1 “keZ

for some constant R > 0. We put

a) = 3 (T 1B )

j21 “keZ

for 0 £ r < R. We are interested in almost periodic solutions of {2.1) of the
form

(F) zn(t) = Z ay(t)e*r"

kel

such that

Zlak(t)| < 00, maleak(tﬂ < 0.

keZ kez
Let

h = {{ak}kez lak eC™ lal =) laxl < 00}-

keZ

We intend to rewrite (2.1) as an ordinary differential equation on {; with a
linear boundary value condition. We have

n) Z aper” = (Z: Cjewjn) E e’ " = E z Cjake“"‘".

keZ JEZ keZ leZd witwp=w)
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Moreover, we get

2

ieZ

Z Cj Qg

wy g =wy

<> > G- laxl £ Clal.

leZ wjtwr=uw
Consequently, {A(”)}nez generates a bounded linear mapping L : I1 — 1

given by
L: {ﬂk}kez”"{ Z Cja’k} .
leZ

wj g =

We note that ||L|| £ C. Similarly, we can check that the sequences
{f(n,a:,t)}nez and {h(n,t)}nez
generate mappings
F: Bpx|[0,li—=1{, H:[D1 —h,

respectively, where By = {a € {1 ||a] < R}. Moreover, F is analytic in
a € Bp and F, H are continuous. Indeed, we compute

> > Bt ( )3 %e’“"’”)j

J21 kEZ peZ

= Z z Bji(t)ap, ap, - - ap; ™"

€L wptwpy +‘“+ij +wp=wy

Moreover, for @ € 1, |a| < R, we get

Z Z Bj(t)ap, ap * 0p; | S QU“D :
teZ | wpy Hwpy e twp; tup=wr
Consequently, we arrive at the formulas
Fla,t); = Z Bip(t)ap ap, - Gp;y  VIEZ,

Wpy +uwpg e wp; Fwk=w)
H(t), = Di(t), VIeZ
The above computations also give
|Fa,t)| £Q(lal), |H()| £D.
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Furthermore, for v = {vx},cz € &1, we have

(DGF(G’ t)v) [ = Z Bjk(t)('”m Qpy * ** Opy

Wpy gyt FHup; Fwp =W

+ap, UpyQpy "~ p; + -+~ + Opy """Pj-ﬂ’m) .

Hence
|DaF(a:t)U| < Z Z |Bjk|(|'”p1' aps < lag;]
€2 wpy twpy+-twp; +wa=uw
+lap:| - [vps] - lapsl -« < lap; | + o 4 lap, |- |ap;_, ] - |”pj|) £ Q' (laf) vl

The boundary value condition of (2.1) gives

E Epe™sn ( Z ap(l)e“""") = Z a;(0)e*te™™
keZ peZ leZ

e D" Eap(l) =af0) Vi€

W twp=iw

We introduce a linear continuous mapping M : Iy — {; given by

(Ma), =e " Z Epa,.

wptwg=wy

We have | M| £ E. Clearly the boundary value condition of (2.1) is ex-
pressed by a(0) = Ma(l). Summarizing, we arrive at the following result.

THEOREM 2.1. ‘Problem (2.1) generates a boundary value problem on
given by :

2.2) a=La+Flat)+ H{t), o0)= Ma(1),

where L, F, H, M are defined above,

Let us solve (2.2). The variation of constants formula for (2.2) gives

:
a(t) = elta(0) + feL(‘_s)(F(a(s),s) + H(s)) ds.
0
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The boundary value condition of (2.2) implies

1
Mefa(0) + M / X1V (F(a(s),s) + H(s)) ds = a(0).
0

By assuming
(2.3) I—Me* . Iy > Iy is continuously invertible,

we get

1

2(0) = KM [ e*=9(F(a(s),s} + H(s)) ds, K = (I—eL)'i.
(a(s),s)
0

Hence (2.2) is rewritten in the form

1
(2.4) a(t) = eLtKM/eL(l_s)(F(a(s), s} + H(s)) ds
0

¢
+/eL(t_s)(F(a(s),s) + H(s)) ds.
0

‘We can prove the main result of this section.
THEOREM 2.2. Assume (2.3). Let us put

e€ -1

o(r) = (eY||K||E +1) (9r) + D)

for v, 0 r < R. If there is an rp, 0 < 7g < R, such that ®(rg) £ ro and
®'(rq) < 1, then (2.1) has an almost periodic solution which can be obtained
by an iterative method.

PROOF. We solve (2.4) on X = C([0,1],1;) by using the Banach fixed
point theorem to a mapping G : X — X given by

1
Gl)(t) = e“K M f e20=9) (P (a(s),s) + H(s)) ds
0

¢
-I—feL(t_’}(F(a(s),s) + H(s)) ds
0
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for r € X, |z| < R. The above computations imply

el —1

C

|G(2)] £ (CIKIE+1) (2(|z) + D),

c_
1P6@)| < (CIKIE +1) =5 (jal).

Hence, we arrive at
|G(z)| £ @(lal}, || DG £ #'(Ia]).
On the ball By, = {z € X | |z| £ g}, we have
|G(z}| £ ®(ro) 1o, || DG(x)| £ @' (ro) < 1.

The Banach fixed point theorem gives a unique solution of z = G(z) on By,.
O

The main difficulty in applying Theorem 2.1 is the verification of (2.3},
which is equivalent to 1 ¢ o(Me*). Here ¢ means the spectrum.

LEMMA 2.3, Assume
An)=A, E(r)=8S VnelZ
If e & o(Sed)VEk € Z and

2.6 = A w -1
(2.6) mo ilélZ)H(Se e J) u < o0,

then (2.3) is satisfied along with ||K|| £ mq.
Proor. We have

((I = Meb)a) = (I — e+ Set) .
If % ¢ o(SeA) then (I —e~**Se?) ™" exists and we can put

(Ka), = (I —e**Se*) ' VkeZ

Hence :

1Kl £ 37 || (41 — Se) *|| - Jag| S mola]. O
kEZ
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LeMMA 2.4, Assume
Alny= A+ Ai(n), B(n)=85+FEi(n) Ynel,
where

Ai(n) =) Cuie™*”, Cr € L(C™), Ci=) |Cull < oo,
keZ keZ

Bi(n)=)_ Ene™", En €L(C"), Ei=) [Bul <.
keZ keZ

If (2.6) holds nlong with

(2.7) (ISIICy + Ep) elltl+Crmg < 1,

then (2.3} holds with

(2.8) 1K £ ma/ (1= (ISIC1 + Br) el41+Cimg).

PROOF. Now we have M = My + My, L = Ly + L, where like above M),
M, Lg, Ly correspond to S, Eq(-), A, Ai(-), respectively. Moreover, we get

Mol S IISN, |Mil| £ Er,  [[Loli £ 1Al L1l £ Cu.
We compute
I — Me¥ =T — Myefo + My(efo — elo¥lr) _ ppjelotin
Since
[ Mot — et )| < |SelI=Crcy,  Mpetoti < Brel At

the Neumann theorem implies the assertion of Lemma 2.4. O
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3. A damped pendulum with a jumping length
and external force

Let us consider a pendulum given by
(3.1) 1,0+ c¢ +sing = £ + ysinwan,
tp =n+asinwn <t<n+ltasinw(n+1)=typ1, I =1+ 0sinwen,

t—lgf.l— $(t) = tlgf_l_ ¢(t)_a -1 t—lg}?— ot} =ln t_lgf_{_ ¢(t), VYnel,
where ¢ > 0, [ > 0, wy,ws, w3 € R\ {Z7}, a,8,7,¢ € R, and
1asin %\ <172, 18| <

Here ¢ is the angle between the axis directed vertically downward and the
thread. Equation (3.1) describes the motion of the pendulum with a sudden
almost periodic change of the length together with an external force at any
t=tn, n€Z Foranyt,t, St<t,y, weput

t=gtgy1+ (1 —8)tn, ¢€[0,1], n(s)=2).

Then (3.1) becomes

(3.2) bn = —6tn — Bodn,

y dn . 1 ] h
o = 86 = 0¥ + Cnthn + 2 5in ¢ — --(¢ — sin ) + ot g, 2,

bt () = 6a(1), $ur1(0) = (1) + gutin()) + L guga(),

where

— e+ 48212 — 4 c+ ik + 4622 — 4l
ﬁ0= )

G

2l ! 2!
. Bsinwan — 2al cos wll’lzﬂ sin 4
T {(I + Bsinwsn) '
_ 4odcosw, ntd gin 4 + 40%1 cos® wy 2H 5in L — Gsin wan

k]

{1 + Bsin ugn)
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(1 + 2a cos wy 2L sin —l) (€ + ysinwsn)
n = H

[+ Bsinwyn

(1 + 2arsin —21~cosw1 ) (I + Bsinwyn) _
1+ 2arsin % coswy 2”"'1) (I + Bsinwa(n + 1))

n = (
Assume that w;, we, wa are incommensurable, i.e.

(3.3) pwr+quy +rwy #0 V(p,q,r) € 22\ {(0,0,0)}.

Take {wi}pez = {Pw1 + qwz + w3}y 4 ryeze- (3-2) has the form of (2.1) with

A(n) =A= (“:560 ~¢ ) s h(n, t) = (01 _'hn/é)!

o

¢+ T sing — 2o(

sz(gg)? E(n) = 5 + By (n), Emﬂ=(mim i)'

Consider the norm | (¢,%)| = 1/|¢|* + |%|* on C?. We have

1

wWwn —ULTL

. 1
sinwn = —e™" — _¢
% % !

f(ﬂafﬁ,%t): (D:Cn¢+ __1' (b—sinqb)),

2n+j _ lezwjﬂewn + .1_9_3‘”55/2.3““““, j=1,3.
2 ¥

2

cosw

Hence

] |8] + 21 asin 4|
el Sc

1{t—191)
4I|asin%ll + 4a?lsin® 4 + |4

{1~ 181)

=F11

|dn‘ é = F21

hal < (1 + 1) &

= P3$

4l|asin5"-1-| +4*aﬁsinﬂ| + 2|81
(1 —2]053111 |)(l— 181)
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As a majorant function for 2(r) from Section 2, in this case we take

B(r) = (1 50) Tyr+ —I"g sinhr + ! sinhr — 7).

] ) 36(

In context of Lemma 2.4, it is not hard to see that

wn=L.&g(@- )H—Pa

Cr=0, |AllSy/of+8}+262=Ts.

Furthermore, since ||e?|| £ e~220, we get for (2.6)
mg £1/(1 — e7?),
Condition (2.7)‘is satisfied when
(3.4) Tgele <1 — e 2%,
According to (2.8) of Lemma 2.4, we get
I € 1/(1 -7 —Tge's).

Summarizing, we obtain that we can take

1 el's — Ty
— [ Ts
®(r) = (e e e _Tyels 1+ + 1) T (9(1‘) 5 )

= nir + g sinkir + m3(sinhr —r) + 74

as the function ® in Theorem 2.2 where

= (el 1 (14T +1) ot
TEN® T ta0 “Tyele 3 T

If

(3.5) T+ 1 <1,
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then there is a unique rg > 0 such that

(3.6) m1 + T3 coshrg + 73{coshrg - 1) =1,

and for any 74 satisfying

(3.7) T4 < To — TiT0 — T2 sinhrp — 13(sinhrg — rp},

there is a unique r1, 0 < 7| < 7p, such that ®(ry) = r; and &'(r1) < 1. We
note that such ry is determined by the equation

(3.8) 717y + Tesinhry + ms(sinhry — )+ 1y =11.

Consequently, for such ry, the conditions of Theorem 2.2 are satisfied. Sum-
marizing, we arrive at the following result.

THEOREM 3.1. Let (3.3), (3.4) and (3.5) be satisfied. Let rg > 0 be given
by (3.6). If (3.7) holds, then (3.1) possesses an almost periodic solution z of
the form (F) such that supg |2(-)| £ i, where v, 0 <71 <ro, is given by
(3.8).

We note that 73 = 7 = 0, ['s = 0 when o = 3 = 0, and then (3.4), (3.5)
are trivially satisfied.
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